Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 czerwca 2025 16:04
  • Data zakończenia: 16 czerwca 2025 16:30

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 5 V
B. 25 V
C. 10 V
D. 15 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
B. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
C. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
D. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 4

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. Q
C. I
D. T
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Imbusowego
C. Płaskiego
D. Dynamometrycznego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 11

Na etykiecie rozdzielacza pneumatycznego MEH-5/2-1/8-B zaznaczono średnicę przyłącza

A. G 1/8
B. 5 mm
C. 8 mm
D. G5/2
Odpowiedzi, które wskazują na inne oznaczenia, mogą prowadzić do nieporozumień dotyczących specyfikacji przyłącza. Na przykład, odpowiedź G5/2 nie jest poprawna, ponieważ nie odnosi się do standardowego oznaczenia gwintu, które powinno jednoznacznie wskazywać jego średnicę. G5/2 mogłoby być mylone z innymi typami złącz, co w praktyce może skutkować stosowaniem nieodpowiednich elementów w układzie, prowadząc do problemów z bezpieczeństwem i wydajnością. Odpowiedzi 5 mm i 8 mm również nie odpowiadają rzeczywistym standardom przyłączeniowym. Mylne jest założenie, że te wartości mogą być używane w kontekście gwintów, ponieważ średnice 5 mm i 8 mm nie mają zastosowania w kontekście normy BSP, co prowadzi do błędnego doboru komponentów. W przypadku układów pneumatycznych, zrozumienie specyfikacji i standardów jest niezbędne dla zapewnienia właściwego działania systemu. Użytkownicy powinni unikać uproszczonych założeń dotyczących wymiarów, które mogą prowadzić do awarii systemu. Kluczowe jest zrozumienie, że dobieranie komponentów do systemów pneumatycznych wymaga ścisłego przestrzegania norm, a nie luźnych interpretacji wymiarów, co może wpływać na integralność i funkcjonalność całej instalacji.

Pytanie 12

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
B. HT - ester syntetyczny, najlepiej ulegający biodegradacji
C. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
D. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
Wybór odpowiedzi związanych z HT, HTG oraz HV nie odpowiada wymaganiom stawianym cieczy hydraulicznej pracującej w warunkach zagrożenia pożarowego. Ciekłe estry, takie jak HT, mimo że są bardziej ekologiczne i biodegradowalne, nie zapewniają wystarczającej ochrony przed ryzykiem pożaru, gdyż ich palność, choć obniżona, wciąż może stwarzać zagrożenie. Cieczy HTG, wytwarzane na bazie olejów roślinnych, oferują pewne korzyści ekologiczne, jednak ich nierozpuszczalność w wodzie sprawia, że w przypadku wycieku nie można liczyć na efekt chłodzący, co w warunkach kontaktu z ogniem jest niezwykle istotne. Z kolei ciecz HV, przeznaczona dla urządzeń pracujących w zróżnicowanych temperaturach, nie spełnia wymagań dla środowisk, gdzie kluczowe jest zachowanie niskiej palności. W kontekście bezpieczeństwa pożarowego, wybór niewłaściwej cieczy hydraulicznej może prowadzić do niebezpiecznych sytuacji, w których wycieki mogą zapalić się, narażając na straty materialne oraz zdrowotne. Zatem kluczowym błędem w myśleniu jest brak uwzględnienia aspektów związanych z palnością i bezpieczeństwem cieczy hydraulicznych w kontekście pracy w warunkach zagrożenia pożarowego.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Emulator
B. Deasembler
C. Debugger
D. Kompilator
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Silikon
B. Pastę
C. Proszek
D. Olej
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 20

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Bezobsługowość
B. Efektywność
C. Niezawodność
D. Iskrobezpieczeństwo
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. obr/min
B. rad/s
C. km/h
D. m/s
Wybór nieprawidłowej jednostki prędkości kątowej często wynika z pomylenia różnych typów prędkości. Na przykład, obr/min (obroty na minutę) jest jednostką, która mierzy ilość pełnych obrotów wykonanych przez obiekt w ciągu minuty. Choć obr/min jest użyteczną miarą w niektórych kontekstach, takich jak prędkość obrotowa silników, nie jest to jednostka zgodna z układem SI. Z kolei jednostki m/s i km/h są miarą prędkości liniowej, a więc odnoszą się do przemieszczenia obiektu wzdłuż drogi, a nie wokół osi. To może prowadzić do typowych błędów myślowych, takich jak mylenie ruchu obrotowego z ruchem translacyjnym, co jest szczególnie powszechne w przypadku osób mniej obeznanych z zagadnieniami fizycznymi. Kluczowe jest zrozumienie, że prędkość kątowa odnosi się do kąta obrotu w czasie, co wymaga użycia jednostki rad/s. Ignorowanie tej zasady prowadzi do nieprecyzyjnych obliczeń i błędnych wniosków w kontekście obliczeń inżynieryjnych czy fizycznych. Właściwe zrozumienie jednostek jest nie tylko istotne dla właściwych analiz, ale także kluczowe w wielu zastosowaniach praktycznych, gdzie precyzyjne obliczenia są niezbędne dla bezpieczeństwa i efektywności procesów technologicznych.

Pytanie 23

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. reduktor, filtr powietrza, smarownica
B. reduktor, smarownica, filtr powietrza
C. smarownica, filtr powietrza, reduktor
D. filtr powietrza, reduktor, smarownica
Kolejność montażu elementów w systemie sprężonego powietrza jest krytyczna dla jego prawidłowego funkcjonowania. Odpowiedzi, które proponują instalację reduktora przed filtra powietrza, ignorują podstawową zasadę ochrony komponentów systemu przed zanieczyszczeniami. Reduktor powinien być umieszczony za filtrem, aby zapobiec osadzaniu się zanieczyszczeń w mechanizmach reduktora, co mogłoby prowadzić do jego uszkodzenia oraz niewłaściwej regulacji ciśnienia. Instalacja smarownicy przed filtrem powietrza wprowadza również ryzyko, że zanieczyszczenia dostaną się do układu smarowania, co z kolei może prowadzić do uszkodzenia narzędzi pneumatycznych. Odpowiedzi sugerujące montaż smarownicy przed innymi elementami nie uwzględniają także, iż smarownica musi operować na już oczyszczonym i odpowiednio uregulowanym ciśnieniu powietrza. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują brak zrozumienia funkcji poszczególnych elementów oraz ich interakcji w systemie. Dlatego tak ważne jest, aby przy projektowaniu i montażu systemów sprężonego powietrza przestrzegać odpowiednich norm i procedur, co pozwoli na efektywne i bezawaryjne działanie urządzeń.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy oczkowych
B. Kluczy płaskich
C. Szczypiec płaskich
D. Szczypiec uniwersalnych
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 27

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zmniejszeniem prędkości obrotowej
B. zwiększeniem prędkości obrotowej
C. wzrostem reaktancji uzwojeń
D. spadkiem reaktancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 28

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. polerowania
B. napawania
C. spawania
D. lutowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Nominalne
B. Rzeczywiste
C. Jednostronne
D. Graniczne
Wybór odpowiedzi, która nie odnosi się do wymiarów granicznych, może prowadzić do nieporozumień w zakresie tolerancji wykonania elementów mechanicznych. Odpowiedź 'Rzeczywiste' sugeruje skupienie na wymiarach, które są mierzone po zakończeniu produkcji. To podejście, choć istotne, nie definiuje dopuszczalnych błędów wykonania, a jedynie rzeczywiste wyniki pomiarów, które mogą być poza akceptowalnymi limitami, co prowadzi do problemów z jakością. Odpowiedź 'Nominalne' odnosi się do idealnych wymiarów projektowych, które są podstawą do określenia wymiarów granicznych, ale nie stanowią one o tolerancjach wykonania. Z kolei 'Jednostronne' sugeruje podejście do tolerancji, które nie jest standardowo stosowane w produkcie, ponieważ rzeczywiste aplikacje często wymagają tolerancji dwustronnych dla zapewnienia pełnej funkcjonalności i bezpieczeństwa komponentów. Poprzez takie myślenie, można nieświadomie wprowadzać błędy do procesu projektowania i produkcji, prowadząc do nieprzewidzianych błędów montażowych oraz awarii mechanicznych. Dlatego kluczowe jest zrozumienie, że tolerancje graniczne odgrywają fundamentalną rolę w inżynierii i produkcji, a ich pominięcie może skutkować krytycznymi problemami operacyjnymi.

Pytanie 33

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 80 mm
B. 63 mm
C. 50 mm
D. 100 mm
Wybór niepoprawnej średnicy cylindra siłownika pneumatycznego często wynika z niepełnego zrozumienia istoty obliczeń i zastosowanych parametrów. Odpowiedzi o średnicy 63 mm, 50 mm czy 100 mm są niewłaściwe z kilku powodów. W przypadku 63 mm i 50 mm, nie spełniają one wymaganego zapasu mocy, co wynika z analizy obliczonej średnicy 65 mm. Takie podejście często prowadzi do sytuacji, w których siłownik nie ma wystarczającej siły do podnoszenia obciążenia, zwłaszcza gdy uwzględnimy wahania ciśnienia. Z drugiej strony, wybór 100 mm, choć teoretycznie wydaje się bezpieczny, może prowadzić do nieefektywności. Siłowniki o zbyt dużej średnicy mogą generować nadmierny opór, co skutkuje niepotrzebnym zużyciem energii i obciążeniem całego systemu pneumatycznego. Kluczowe jest zrozumienie, że dobór średnicy cylindra musi być zrównoważony, uwzględniając zarówno wymagania obciążeniowe, jak i rzeczywiste warunki pracy. W branży pneumatycznej istnieją standardy, które podkreślają znaczenie zachowania równowagi między mocą a efektywnością, co pozwala uniknąć problemów z wydajnością oraz awariami systemu.

Pytanie 34

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. imbusowego
B. płaskiego
C. nasadowego
D. nasadowego
Wybór odpowiedzi dotyczących klucza nasadowego lub płaskiego jest nieprawidłowy, a ich zastosowanie w kontekście wykręcania śruby z gniazdem sześciokątnym jest niewłaściwe. Klucz nasadowy, mimo że jest popularnym narzędziem do pracy z różnymi rodzajami śrub, jest skonstruowany głównie do pracy z gniazdami prostokątnymi lub sześciokątnymi zewnętrznie, a nie wewnętrznie jak w przypadku gniazd sześciokątnych. Użycie klucza nasadowego w tym przypadku może prowadzić do uszkodzenia gniazda, ponieważ nie zapewnia on płynnego dopasowania do kształtu sześciokątnego. Klucz płaski z kolei, choć również użyteczny w wielu zastosowaniach, jest przeznaczony do pracy z zewnętrznymi krawędziami śrub, a nie do gniazd wewnętrznych. Użycie klucza płaskiego w przypadku śrub sześciokątnych jest mało efektywne, ponieważ nie zapewnia odpowiedniego chwytu, co może skutkować poślizgiem i uszkodzeniem zarówno klucza, jak i samej śruby. Typowym błędem myślowym jest założenie, że klucze nasadowe i płaskie mogą zastąpić klucz imbusowy w każdym zastosowaniu, co nie znajduje uzasadnienia w praktyce inżynieryjnej i może prowadzić do niepożądanych sytuacji podczas pracy. Dlatego ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co jest kluczowe dla bezpieczeństwa i efektywności pracy.

Pytanie 35

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. rejestrów licznikowych
B. zegarów czasowych
C. przerzutników
D. filtrów komparatorowych
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. naprężenie
B. smarowanie
C. bicie osiowe
D. temperaturę
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 39

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. termoaktywną
B. bawełnianą w formie kombinezonu
C. roboczą standardową
D. roboczą trudnopalną
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.