Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 kwietnia 2025 20:49
  • Data zakończenia: 15 kwietnia 2025 21:07

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Zbieżność kół przednich mierzona jest poprzez określenie różnicy

A. pomiędzy rozstawem kół po lewej i prawej stronie
B. odległości między obrzeżami obręczy kół przednią a tylną osią
C. przesunięcia kół tylnych w stosunku do kół przednich
D. kątów nachylenia kół jezdnych na osi napędowej
Pojęcia związane z pomiarem zbieżności kół są często mylone, co prowadzi do nieprawidłowych wniosków na temat diagnostyki układów jezdnych. Odpowiedzi dotyczące różnicy między rozstawem kół z lewej i prawej strony oraz kątów pochylenia kół jezdnych osi napędzanej nie odnoszą się bezpośrednio do zbieżności, która koncentruje się na relacji między przednim a tylnym obrzeżem kół w osi pojazdu. Różnice w rozstawie kół mogą wpłynąć na statykę pojazdu, ale nie są one miarą zbieżności, która ma na celu ocenę równoległości kół przednich. Z kolei kąt pochylenia kół jezdnych odnosi się do innego aspektu geometrii zawieszenia, który ma wpływ na zachowanie pojazdu w zakrętach, ale nie jest bezpośrednio związany z zbieżnością. Ponadto, przesunięcie kół tylnych w stosunku do kół przednich jest innym zagadnieniem, które dotyczy ogólnej geometrii pojazdu, ale nie jest elementem pomiaru zbieżności kół przednich. W odpowiedzi, która sugeruje pomiar odległości między obrzeżami obręczy kół, znajduje się klucz do poprawnej diagnostyki, ponieważ to właśnie te odległości decydują o prawidłowej zbieżności kół przednich, co z kolei przekłada się na bezpieczeństwo i komfort jazdy.

Pytanie 2

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Średnicówki zegarowej
B. Mikrometru
C. Suwmiarki
D. Sprawdzianu do otworów
Średnicówka zegarowa jest narzędziem pomiarowym o wysokiej precyzji, które jest szczególnie przydatne w pomiarach średnic otworów, zarówno cylindrycznych, jak i innych kształtów. Jej konstrukcja pozwala na dokładne i łatwe odczytywanie wyników dzięki zastosowaniu mechanizmu zegarowego, co znacznie ułatwia pracę. W przypadku pomiaru tulei cylindra, świetnie sprawdza się, ponieważ dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego luzu oraz prawidłowego dopasowania elementów silnika. Używając średnicówki zegarowej, można wykryć nawet niewielkie odchylenia od normy, co pozwala na wczesne wykrycie potencjalnych problemów w procesie produkcji lub remontu silnika. W praktyce, pomiar za pomocą tego narzędzia jest często stosowany w warsztatach mechanicznych i w przemyśle motoryzacyjnym, gdzie precyzja ma krytyczne znaczenie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co tylko potwierdza wybór średnicówki zegarowej jako narzędzia właściwego w tym kontekście.

Pytanie 3

Tuż po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym, należy

A. sprawdzić i usunąć pamięć błędów sterownika ABS
B. wykonać obowiązkowe odpowietrzanie całego układu
C. ustawić podstawowe parametry układu przy użyciu testera
D. zrealizować adaptację układu hamulcowego podczas jazdy próbnej
Adaptacja układu hamulcowego w czasie jazdy próbnej po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym ma swoje ograniczenia. Choć jazda próbna jest ważnym elementem testowania działania pojazdu po serwisie, nie jest to wystarczające ani odpowiednie podejście do kalibracji nowo zamontowanych klocków. Podczas jazdy próbnej nie są w stanie zostać wprowadzone precyzyjne wartości ustawień, które są wymagane dla prawidłowego funkcjonowania układu hamulcowego. Proces odpowietrzania układu hamulcowego również nie jest bezpośrednio związany z wymianą klocków, chyba że podczas serwisu doszło do sytuacji, w której układ został naruszony, co jest rzadkością i nie wynika z standardowych procedur wymiany klocków. Odczyt i kasowanie pamięci błędów sterownika ABS, choć mogą być ważne w kontekście diagnostyki, nie są kluczowym krokiem po wymianie klocków hamulcowych. W wielu przypadkach błędy związane z ABS mogą być nieobecne przed wymianą, a ich kasowanie nie wpływa na ustawienia związane z nowymi klockami. Wprowadzenie podstawowych nastaw układu przy pomocy testera jest jedynym właściwym podejściem, które zapewnia nie tylko bezpieczeństwo, ale również efektywność hamowania poprzez eliminację błędów w instalacji. Bez tej procedury, ryzykujemy poważne problemy z bezpieczeństwem na drodze, a także zwiększone koszty naprawy w przyszłości.

Pytanie 4

Mechanik wymieniający wahacze osi przedniej może dokręcić

A. śruby umieszczone w płaszczyźnie poziomej tylko w położeniu normalnej pracy zawieszenia.
B. śruby umieszczone w płaszczyźnie pionowej tylko w położeniu normalnej pracy zawieszenia.
C. śrubę/nakrętkę sworznia dopiero po ustawieniu zbieżności kół.
D. wszystkie śruby w dowolnym ułożeniu zawieszenia.
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 5

Na korbowodowych czopach wałów korbowych silników czterosuwowych wykorzystuje się łożyska

A. igłowe
B. kulowe
C. ślizgowe
D. stożkowe
Wybór łożysk igiełkowych w kontekście czopów korbowodowych silników czterosuwowych jest nietrafiony, ponieważ łożyska te są przystosowane do przenoszenia sił wzdłużnych i nie radzą sobie z obciążeniami radialnymi, które dominują w pracy wałów korbowych. Ich konstrukcja opiera się na szeregu cienkich igiełek, co ogranicza ich zdolność do absorpcji dużych nacisków, które występują w silnikach. W przypadku łożysk kulkowych, mimo że są one popularne w wielu zastosowaniach mechanicznych, ich zastosowanie w silnikach czterosuwowych byłoby nieefektywne ze względu na mniejsze możliwości przenoszenia obciążeń przy dużych prędkościach obrotowych. Łożyska kulkowe mogą wymagać większej precyzji w montażu, a ich wytrzymałość na wysokie temperatury jest ograniczona, co czyni je mniej odpowiednimi do pracy w ekstremalnych warunkach silnika spalinowego. Z kolei łożyska stożkowe są projektowane głównie do przenoszenia obciążeń osiowych i radialnych, ale w kontekście czopów korbowodowych nie zapewniają one wymaganego poziomu stabilności i efektywności. Typowe błędy myślowe prowadzące do wyboru niewłaściwych łożysk często wynikają z braku zrozumienia specyfiki pracy silnika oraz charakterystyki różnych typów łożysk. Właściwe zrozumienie tych aspektów jest kluczowe dla projektowania wydajnych układów napędowych w nowoczesnych silnikach.

Pytanie 6

"Sworzeń pływający" to element sworznia

A. obracający się w głowicy korbowodu i w piastach tłoka
B. zamocowany w piastach tłoka i obracający się w głowicy korbowodu
C. mogący swobodnie przesuwać się wzdłuż osi w piastach tłoka
D. zamocowany w głowicy korbowodu i obracający się w piastach tłoka
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumienia dotyczącego funkcji sworznia pływającego oraz jego roli w mechanice silników. Stwierdzenie, że sworzeń jest 'zamocowany w główce korbowodu i obracający się w piastach tłoka', jest mylące, ponieważ sworzeń pływający nie jest bezpośrednio zamocowany w główce korbowodu. Jego konstrukcja jest zaprojektowana tak, aby umożliwiać rotację i ruch osiowy, co jest kluczowe dla działania mechanizmów korbowych. Kolejny błąd polega na opisie sworznia jako 'zamocowanego w piastach tłoka i obracającego się w główce korbowodu', co jest także technicznie nieprawidłowe. Sworzeń pływający łączy tłok z korbowodem, a nie obraca się w główce korbowodu. Z kolei stwierdzenie, że sworzeń 'może swobodnie przesuwać się po osi w piastach tłoka', również jest błędne, ponieważ sworzeń pływający ma ograniczony ruch wzdłuż osi, co jest niezbędne do prawidłowego funkcjonowania silnika. Ruch sworznia pływającego powinien być kontrolowany i dostosowany do wymagań pracy silnika, co jest kluczowe dla zapobiegania nadmiernemu zużyciu komponentów i zapewnienia ich trwałości. Wnioski płynące z niepoprawnych odpowiedzi mogą prowadzić do większej awaryjności silników oraz nieefektywności ich działania.

Pytanie 7

Srednicówka czujnikowa jest wykorzystywana do pomiaru średnicy

A. tarczy hamulcowej
B. wewnętrznej cylindra
C. trzonka zaworu
D. czopa wału korbowego
Wybór odpowiedzi dotyczący trzonka zaworu, czopa wału korbowego czy tarczy hamulcowej jest błędny, ponieważ każde z tych elementów ma inne wymagania pomiarowe i nie jest celem działania srednicówki czujnikowej. Trzonek zaworu, na przykład, może mieć różne średnice w różnych jego częściach, a pomiar średnicy trzonka wymaga innych narzędzi, takich jak suwmiarki lub mikrometry, które są bardziej odpowiednie do pomiarów zewnętrznych, a nie wewnętrznych. Podobnie, czop wału korbowego, będący kluczowym elementem silnika, również nie jest mierzony za pomocą srednicówki czujnikowej, ponieważ jego średnica jest mierzona w inny sposób, często w kontekście dopasowania do łożysk. Tarcza hamulcowa z kolei, która może być przedmiotem pomiaru grubości i średnicy zewnętrznej, również nie mieści się w zakresie działania srednicówki czujnikowej, która jest dedykowana do pomiarów średnic wewnętrznych. Wszelkie błędne wnioski mogą wynikać z niepełnego zrozumienia funkcji i zastosowania narzędzi pomiarowych, a także z zamiany pojęć dotyczących różnych typów pomiarów, co prowadzi do nieprecyzyjnych i nieadekwatnych rozwiązań w kontekście inżynierskim.

Pytanie 8

Połączenie elementów składowych podłogi samochodu osobowego wykonuje się najczęściej za pomocą

A. lutowania.
B. zgrzewania.
C. skręcania.
D. klejenia.
Wydaje się, że wybór innych metod łączenia elementów podłogi w samochodach może być łatwy, ale każda z nich ma swoje ograniczenia. Na przykład, skręcanie wykorzystuje mechaniczne połączenia, które mogą osłabić strukturę, szczególnie gdy elementy są narażone na wibracje i różne obciążenia. Jeśli używamy śrub czy nakrętek, to czasem może to prowadzić do luzów, a w ekstremalnych warunkach użytkowania, jak w samochodach, mogą wystąpić poważne awarie. A lutowanie, mimo że jest popularne w elektronice, nie nadaje się raczej do materiałów konstrukcyjnych podłogi - potrzebuje szczególnych stopów, które mogą nie wytrzymać obciążeń w pojazdach. I jeszcze do tego, lutowanie nie tworzy jednolitej struktury, co może być kluczowe dla wytrzymałości. Choć klejenie czasami działa, w motoryzacji często nie radzi sobie z warunkami atmosferycznymi i zmianami temperatury. To wszystko sprawia, że zgrzewanie wydaje się najlepszym wyborem, bo łączy w sobie wytrzymałość, niską wagę oraz koszty produkcji, co pokazuje, jak ważne jest dobrze dobierać metody łączenia w inżynierii motoryzacyjnej.

Pytanie 9

Jakiego oleju używa się do smarowania przekładni głównej, który ma symbol

A. L-DAA
B. DOT-4
C. SG/CC SAE 10W/40
D. GL5 SAE 75W90
Odpowiedź GL5 SAE 75W90 jest poprawna, ponieważ ten typ oleju jest specjalnie zaprojektowany do smarowania przekładni głównych w pojazdach. Oznaczenie GL5 odnosi się do klasy olejów przekładniowych, które spełniają wymagania dla zmiennych obciążeń i dużych obrotów, co jest kluczowe w aplikacjach takich jak mosty i przekładnie. Olej SAE 75W90 oznacza, że ma odpowiednią lepkość w niskich temperaturach (75W) oraz w wysokich temperaturach (90), co zapewnia odpowiednią ochronę w różnych warunkach eksploatacyjnych. W praktyce użycie oleju GL5 SAE 75W90 zapewnia lepsze smarowanie, zmniejsza tarcie oraz poprawia wydajność układów przeniesienia napędu, co przekłada się na dłuższą żywotność komponentów. Zastosowanie tego typu oleju jest zgodne z zaleceniami wielu producentów pojazdów oraz normami branżowymi, co czyni go standardem w branży motoryzacyjnej.

Pytanie 10

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 224 zł
B. 154 zł
C. 204 zł
D. 124 zł
Wybór niepoprawnej odpowiedzi wynika najczęściej z braku uwzględnienia wszystkich kosztów związanych z naprawą silnika. Przykładowo, niektórzy mogą skupić się wyłącznie na kosztach części zamiennych, pomijając istotny element, jakim jest koszt robocizny. Koszt części zamiennych w tej sytuacji wynosi 104 zł, co mogłoby prowadzić do założenia, że całkowity koszt naprawy będzie zbliżony do tej wartości. Jednakże, koszty robocizny są kluczowym elementem wyceny usług w branży mechaniki samochodowej. Nieprawidłowe obliczenia mogą również wynikać z pomijania przeliczenia czasu pracy na godziny, co jest istotne, zwłaszcza w kontekście ustalania stawek za roboczogodzinę. W tej sytuacji, czas potrzebny na dostarczenie zaworów wynosi 80 minut, co po przeliczeniu daje 1,33 godziny. Zignorowanie tego faktu prowadzi do błędnych wniosków dotyczących całkowitych kosztów. Dodatkowo, niektórzy mogą popełniać błąd, sumując tylko koszty zaworów i ignorując czas pracy, co jest typowym błędem poznawczym w analizie kosztów. Kluczowe jest zrozumienie, że zarówno materiały, jak i robocizna muszą być uwzględnione w całkowitym koszcie naprawy, co jest zgodne z najlepszymi praktykami branżowymi w zakresie kalkulacji kosztów usług.

Pytanie 11

Przed przystąpieniem do diagnostyki oraz regulacji zbieżności kół osi przedniej pojazdu, nie jest konieczne przeprowadzenie dokładnej oceny stanu technicznego

A. opon.
B. napędu.
C. zawieszenia.
D. kierowniczego.
Stwierdzenie, że kontrola stanu ogumienia, zawieszenia lub układu kierowniczego przed regulacją zbieżności kół nie jest konieczna, prowadzi do kilku kluczowych nieporozumień w zakresie diagnostyki i obsługi pojazdów. Ogumienie stanowi fundamentalny element bezpieczeństwa, a jego stan ma bezpośredni wpływ na przyczepność, prowadzenie i efektywność hamowania. Niewłaściwe ciśnienie w oponach lub ich uszkodzenia mogą skutkować nierównomiernym zużyciem, co z kolei może prowadzić do problemów z zbieżnością. Podobnie, zawieszenie i układ kierowniczy są krytycznymi komponentami, które wpływają na kontrolę pojazdu. Elementy te często ulegają zużyciu, co może wpływać na geometrię kół oraz stabilność jazdy. Na przykład, uszkodzone tuleje czy zużyte łożyska mogą prowadzić do nieprawidłowego ustawienia kół, co wymaga wcześniejszej diagnostyki. Zasady dobrych praktyk w branży motoryzacyjnej zalecają, aby przed każdą regulacją zbieżności szczegółowo sprawdzić stan tych komponentów. Pomijanie tej kontroli może prowadzić do poważnych konsekwencji, takich jak pogorszenie właściwości jezdnych pojazdu oraz zwiększone zużycie opon. W rezultacie, odpowiedzi wskazujące na pominięcie analizy stanu technicznego tych kluczowych układów są niewłaściwe i mogą być niebezpieczne dla użytkowników dróg.

Pytanie 12

Diagnostykę układu kontroli trakcji zawsze powinno się rozpocząć od

A. odczytania pamięci błędów sterownika.
B. wyważenia kół pojazdu.
C. kontroli poziomu płynu hamulcowego w zbiorniczku.
D. zweryfikowania ciśnienia w ogumieniu pojazdu.
Odczytanie pamięci błędów sterownika to kluczowy pierwszy krok w diagnostyce układu kontroli trakcji, ponieważ pozwala na zidentyfikowanie ewentualnych problemów, które mogą wpływać na jego funkcjonowanie. Współczesne pojazdy są wyposażone w zaawansowane systemy elektroniczne, które monitorują różne aspekty pracy pojazdu, w tym systemy związane z bezpieczeństwem, takie jak ABS i kontrola trakcji. Odczytując pamięć błędów, technik może szybko zdiagnozować, czy jakiekolwiek błędy zostały zapisane przez system, co może wskazywać na uszkodzone czujniki, problemy z elektroniką lub inne usterek. Przykładowo, jeśli w pamięci błędów pojazdu zapisany jest błąd dotyczący czujnika prędkości, technik może natychmiast skupić się na tym elemencie, co pozwala na szybkie i skuteczne rozwiązanie problemu. Dobre praktyki diagnostyczne sugerują, że zawsze warto rozpocząć od analizy danych zapisanych w systemie, co zwiększa efektywność pracy i minimalizuje czas potrzebny na eliminację usterki.

Pytanie 13

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. drożność filtra paliwa
B. opory w układzie napędowym
C. ciśnienie w układzie smarowania
D. szczelność układu chłodzenia
Zarządzanie problemami związanymi z pracą silnika wymaga systematycznego podejścia do diagnostyki. Odpowiedzi, które koncentrują się na oporach w układzie napędowym, ciśnieniu w układzie smarowania oraz szczelności układu chłodzenia, mogą nie być właściwym kierunkiem rozwiązywania problemu z nierówną pracą silnika przy wyższych prędkościach obrotowych. Oprócz tego, układ napędowy, choć ma znaczenie dla całej dynamiki pojazdu, nie jest bezpośrednio odpowiedzialny za dostarczanie paliwa i jego efektywne spalanie, co jest kluczowe dla stabilności pracy silnika. Oporami w układzie napędowym mogą być wpływy związane z zużyciem mechanizmów przeniesienia napędu, które nie manifestują się w formie nierówności pracy silnika, lecz raczej w odczuciu szarpania czy problemach z przyspieszeniem. Ponadto, ciśnienie w układzie smarowania wpływa głównie na odpowiednie smarowanie elementów silnika, co jest istotne, ale niewystarczające dla analizy problemów z dostarczaniem paliwa. Z kolei szczelność układu chłodzenia jest kluczowa dla uniknięcia przegrzewania silnika, lecz sama w sobie nie ma wpływu na jego pracę, gdyż nie dotyczy bezpośrednio układu paliwowego. Oparte na niepoprawnych przesłankach diagnozowanie problemów silnikowych może prowadzić do błędnych decyzji serwisowych i niepotrzebnych kosztów. Aby skutecznie zarządzać problemami silnika, istotne jest zrozumienie, że priorytetowe jest zbadanie układu paliwowego, co w praktyce może znacznie ułatwić proces naprawy.

Pytanie 14

Do demontażu końcówki drążka kierowniczego z ramienia zwrotnicy należy użyć

A. ściągacza do przegubów kulowych.
B. prasy hydraulicznej.
C. młotka bezwładnościowego.
D. szczypiec uniwersalnych.
Stosowanie młotka bezwładnościowego do demontażu końcówki drążka kierowniczego może się wydawać łatwe, ale w rzeczywistości może prowadzić do problemów. Mimo że to mocne narzędzie, to w przypadku demontażu połączeń kulowych stwarza ryzyko uszkodzenia zarówno końcówki, jak i zwrotnicy. Uderzenia mogą zniekształcić elementy, co potem utrudnia ich ponowne zamocowanie lub w ogóle zmusza do wymiany. Zresztą prasa hydrauliczna, choć przydatna, jest zbyt mocna do takich delikatnych zadań jak demontaż końcówki, gdzie lepiej mieć precyzję. Używanie szczypiec uniwersalnych też nie jest najlepszym pomysłem, bo nie dają one odpowiedniej stabilności, a ich użycie może skończyć się zniszczeniem końcówki lub połączenia. Ważne jest, by zrozumieć, że wybór właściwego narzędzia nie tylko przyspiesza pracę, ale też pomaga uniknąć uszkodzeń, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 15

Wymiana klocków hamulcowych tylnej osi w pojazdach wyposażonych w Electronic Power Board lub Sensotronic Brake Control wymaga

A. odpowietrzenia układu hamulcowego.
B. równoczesnej wymiany tarcz i klocków hamulcowych.
C. dezaktywacji zacisków hamulcowych.
D. wymiany płynu hamulcowego.
Dezaktywacja zacisków hamulcowych to naprawdę ważny krok, gdy wymieniamy klocki w autach z systemami jak Electronic Power Board czy Sensotronic Brake Control. Chodzi o to, żeby najpierw odłączyć zasilanie lub zresetować system, dzięki czemu możemy bez stresu zdemontować klocki, nie obawiając się o uszkodzenia. Na przykład, jeśli nie zastosujemy się do tego, to możemy przypadkiem zepsuć czujniki czy inne elementy regulacyjne. Dlatego zawsze warto zajrzeć do instrukcji serwisowej przed przystąpieniem do pracy. Dzięki temu mamy pewność, że wszystko zrobimy jak należy, co jest kluczowe dla bezpieczeństwa i prawidłowego działania układu hamulcowego po wymianie. No i przestrzeganie dobrych praktyk serwisowych to podstawa, jeśli chcemy czuć się pewnie za kierownicą.

Pytanie 16

Jaką wartość minimalną powinien mieć wskaźnik TWI w oponie całorocznej?

A. 4,0 mm
B. 3,0 mm
C. 1,0 mm
D. 1,6 mm
Wybór głębokości bieżnika innej niż 1,6 mm, na przykład 4,0 mm, 1,0 mm czy 3,0 mm, jest nieprawidłowy z kilku powodów. Przede wszystkim, głębokość 4,0 mm, choć może wydawać się bezpiecznym wyborem, w rzeczywistości przekracza minimalne wymogi prawne, co nie oznacza, że opona będzie w pełni funkcjonalna w długim okresie użytkowania. Opony nowoczesne zazwyczaj mają głębokość bieżnika na poziomie 8-9 mm, a ich stopniowe zużycie jest naturalnym procesem eksploatacyjnym. Wybierając głębokość 1,0 mm, użytkownik naraża się na poważne niebezpieczeństwo, gdyż taka wartość jest zdecydowanie poniżej normy prawnej i może prowadzić do znacznego wzrostu ryzyka wypadków, zwłaszcza w warunkach deszczowych, gdzie nieodpowiednie odprowadzanie wody może spowodować aquaplaning. Natomiast 3,0 mm, mimo że jest wyższą wartością, również nie jest zgodna z wymaganiami prawnymi, co może prowadzić do nieodpowiednich warunków użytkowania opon. Ogólnie rzecz biorąc, właściwe podejście do głębokości bieżnika jest kluczowe dla zapewnienia bezpieczeństwa. Użytkownicy powinni być świadomi, że w przypadku, gdy głębokość bieżnika zbliża się do minimalnego wskaźnika, nie należy zwlekać z wymianą opon, ponieważ ich stan bezpośrednio wpływa na przyczepność, stabilność i ogólne bezpieczeństwo jazdy.

Pytanie 17

Aby zmierzyć odległość między elektrodami świecy zapłonowej, należy zastosować

A. wzorcową płytkę.
B. szczelinomierz.
C. suwmiarkę.
D. mikrometr do średnic.
Szczelinomierz to narzędzie pomiarowe, które jest idealnie przystosowane do pomiaru przerwy między elektrodami świecy zapłonowej. Dzięki swojej budowie, szczelinomierz pozwala na dokładne określenie wymiaru szczeliny, co jest kluczowe dla prawidłowego funkcjonowania świecy zapłonowej. Utrzymanie odpowiedniej przerwy między elektrodami jest istotne, ponieważ wpływa na efektywność zapłonu mieszanki paliwowej, co z kolei przekłada się na osiągi silnika oraz jego oszczędność paliwa. Zbyt mała przerwa może prowadzić do niepełnego spalania i zwiększonej emisji spalin, natomiast zbyt duża może skutkować trudnościami w uruchomieniu silnika oraz niestabilną pracą. Użycie szczelinomierza, zwłaszcza w kontekście regularnych przeglądów i konserwacji, jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Przykładowo, podczas wymiany świec zapłonowych warto sprawdzić ich przerwę, aby upewnić się, że silnik będzie pracował optymalnie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zanim mechanik umieści pojazd na podnośniku kolumnowym, powinien zweryfikować, czy podnośnik dysponuje ważnym zaświadczeniem o przeprowadzonym badaniu technicznym, które zostało zrealizowane przez

A. Państwową Inspekcję Pracy
B. Urząd Dozoru Technicznego
C. Państwową Inspekcję Sanitarną
D. Urząd Nadzoru Budowlanego
Urząd Dozoru Technicznego (UDT) jest odpowiedzialny za kontrolę oraz nadzór nad urządzeniami technicznymi, w tym podnośnikami kolumnowymi. Posiadanie aktualnego zaświadczenia o przeprowadzonym badaniu technicznym jest kluczowe dla zapewnienia bezpieczeństwa pracy w warsztatach i serwisach samochodowych. Badania te obejmują ocenę stanu technicznego urządzenia, weryfikację jego parametrów oraz bezpieczeństwa użytkowania. Przykładowo, przed wprowadzeniem pojazdu na podnośnik, mechanik powinien upewnić się, że podnośnik nie tylko funkcjonuje poprawnie, ale również spełnia normy bezpieczeństwa określone przez regulacje UDT. Kontrola ta jest częścią systemu zarządzania jakością i bezpieczeństwem w miejscu pracy, co jest zgodne z dobrymi praktykami branżowymi. Umożliwia to nie tylko zabezpieczenie zdrowia pracowników, ale również minimalizację ryzyka uszkodzenia pojazdów. Dlatego regularne przeglądy i badania techniczne są niezbędne w każdym serwisie, gdzie używane są podnośniki.

Pytanie 20

Aby zweryfikować poprawność przeprowadzonej naprawy układu kierowniczego, należy zrealizować

A. sprawdzenie luzu elementów układu zawieszenia
B. badanie na stanowisku rolkowym
C. pomiar siły hamowania
D. jazdę próbną
Jazda próbna jest kluczowym etapem weryfikacji poprawności wykonanej naprawy układu kierowniczego, ponieważ pozwala na bezpośrednią ocenę zachowania pojazdu w czasie rzeczywistym. Podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w pracy układu kierowniczego, takie jak luzy, nieprecyzyjne skręcanie, czy zjawiska takie jak drżenie kierownicy. Praktyka pokazuje, że dopiero rzeczywiste warunki drogowe ujawniają potencjalne problemy, które mogą nie być widoczne podczas statycznych testów. Ponadto jazda próbna umożliwia również sprawdzenie, czy naprawa nie wpłynęła negatywnie na inne układy pojazdu, takie jak zawieszenie czy hamulce. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie tego etapu w procesie naprawy i konserwacji pojazdów. Dlatego każdy warsztat samochodowy powinien wdrożyć procedury jazdy próbnej jako integralną część procesu weryfikacji napraw.

Pytanie 21

Specyfikacja techniczna elementu wchodzącego w skład instalacji elektrycznej informuje, że rezystancja uzwojenia pierwotnego wynosi 3 Ohm, natomiast uzwojenia wtórnego 70 Ohm. Co to za element?

A. Cewka zapłonowa
B. Czujnik temperatury
C. Świeca zapłonowa
D. Czujnik ciśnienia paliwa
Odpowiedzi takie jak czujnik ciśnienia paliwa, świeca zapłonowa oraz czujnik temperatury są elementami układów elektronicznych w pojazdach, ale nie odpowiadają podanym wartościom rezystancji. Czujnik ciśnienia paliwa nie generuje wysokiego napięcia ani nie ma uzwojeń, a jego działanie opiera się na pomiarze ciśnienia w układzie paliwowym, co nie ma związku z rezystancjami uzwojeń. Świeca zapłonowa, mimo że jest kluczowym elementem układu zapłonowego, nie ma właściwości indukcyjnych i jej rezystancja nie jest mierzona w ten sposób; zamiast tego, świeca zapłonowa działa jako punkt zapłonu, gdzie wysokie napięcie generowane przez cewkę zapłonową przeskakuje przez gapę w elektrodach. Czujnik temperatury również nie ma rezystancji uzwojeń, a jego działanie opiera się na zmianach oporu elektrycznego materiału w zależności od temperatury, co jest zupełnie innym zjawiskiem. Te błędne odpowiedzi wynikają z mylnego zrozumienia funkcji i budowy elementów elektronicznych w pojazdach. Ważne jest, aby rozróżniać różne komponenty oraz ich specyfikacje techniczne, co pozwala na właściwe diagnozowanie problemów i zapewnienie skuteczności napraw oraz konserwacji systemów elektrycznych w samochodach.

Pytanie 22

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,5 mm
B. 0,01 mm
C. 0,1 mm
D. 0,05 mm
Pojawia się wiele nieporozumień dotyczących dokładności pomiarowej mikrometrów, szczególnie w odniesieniu do parametrów takich jak skok śruby czy liczba nacięć na bębnie. Odpowiedzi sugerujące dokładność na poziomie 0,1 mm, 0,5 mm lub 0,05 mm bazują na błędnym oszacowaniu lub pomyłkach w obliczeniach. Na przykład, wybór 0,1 mm jako dokładności może wynikać z przeoczenia faktu, że mikrometr jest narzędziem, które służy do bardzo dokładnych pomiarów, a 0,1 mm byłoby zbyt dużym błędem w kontekście precyzyjnych aplikacji inżynieryjnych. Z kolei odpowiedź 0,5 mm w ogóle nie odnosi się do metody pomiarowej mikrometru, ponieważ wskazuje na wartość całkowitego skoku, a nie na rozdzielczość pomiarową. Odpowiedź 0,05 mm również nie uwzględnia liczby nacięć, prowadząc do mylnego przekonania, że taka wartość pomiaru jest odpowiednia dla narzędzi, które są zbudowane z myślą o znacznie większej precyzji. Wszelkie niepoprawne podejścia do tego tematu mogą prowadzić do istotnych błędów w projektach inżynieryjnych, gdzie precyzja jest kluczowa dla sukcesu operacji. W praktyce, właściwe zrozumienie zasad działania mikrometrów i ich dokładności pomiarowej jest niezbędne do efektywnego wykorzystania ich w różnych dziedzinach techniki.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Działanie stetoskopu opiera się na zjawisku

A. hydraulicznych
B. akustycznym
C. elektrycznym
D. grawitacyjnym
Wybór innych zjawisk, takich jak grawitacyjne, hydrauliczne czy elektryczne, jako podstawy działania stetoskopu jest nieprawidłowy z kilku powodów. Zjawisko grawitacyjne odnosi się do przyciągania mas, a w kontekście stetoskopu nie ma znaczenia dla analizy dźwięków. W rzeczywistości, grawitacja nie wpływa na to, jak dźwięki są przenoszone przez powietrze czy inną substancję, dlatego nie może być uznana za podstawę jego działania. Podobnie, zjawisko hydrauliczne, które odnosi się do przepływu cieczy, nie ma zastosowania w kontekście stetoskopu, który zajmuje się falami dźwiękowymi w gazie, a nie w cieczy. Poza tym, wybór elektrycznego zjawiska również jest mylny, ponieważ choć niektóre nowoczesne stetoskopy mogą mieć funkcje elektroniczne, ich podstawowa zasada działania opiera się na akustyce. Błędem myślowym jest zatem zakładanie, że jedynie nowoczesne technologie lub zasady fizyczne związane z cieczami mogą być podstawą działania tak prostego, ale zarazem skutecznego narzędzia. Rzeczywistość jest taka, że skuteczność stetoskopu w diagnostyce medycznej opiera się na umiejętności wykrywania i analizy dźwięków, co czyni zjawisko akustyczne jego kluczowym elementem.

Pytanie 25

Jakie kroki powinny zostać podjęte w sytuacji poparzenia?

A. Należy usunąć z miejsca poparzenia przyległe fragmenty odzieży
B. Warto przemyć poparzone miejsce ciepłą wodą z mydłem
C. Należy przemyć poparzone miejsce spirytusem lub wodą utlenioną
D. Oparzoną powierzchnię należy schłodzić dużą ilością zimnej wody oraz zakryć opatrunkiem z jałowej gazy
Oparzenie to uraz wymagający natychmiastowej reakcji, aby zmniejszyć uszkodzenia skóry oraz złagodzić ból. Schładzanie oparzonego miejsca zimną wodą przez co najmniej 10-20 minut jest kluczowe, ponieważ pozwala obniżyć temperaturę tkanek, co minimalizuje rozległość oparzenia oraz zapobiega dalszym uszkodzeniom. Ważne jest, aby nie stosować lodu bezpośrednio na skórę, ponieważ może to prowadzić do dodatkowych urazów. Przykrycie oparzenia jałowym opatrunkiem z gazy wspomaga ochronę rany przed zakażeniem oraz utrzymuje wilgotność, co sprzyja procesowi gojenia. W kontekście praktycznym, wiedza ta jest kluczowa nie tylko w sytuacjach domowych, ale i w miejscu pracy, gdzie mogą wystąpić oparzenia. Dlatego znajomość procedur postępowania w takich sytuacjach jest niezbędna i powinna być częścią każdego szkolenia BHP. Dodatkowo, warto pamiętać, że w przypadku poważnych oparzeń, konieczna jest niezwłoczna pomoc medyczna.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 1,5 godz
B. 1,0 godz
C. 2,0 godz
D. 0,5 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W funkcjonowaniu podnośników hydraulicznych stosowane jest prawo

A. Kirchoffa
B. Pascala
C. Hooke'a
D. Boyle'a-Mariott'a
Odpowiedzi wskazujące na inne prawa, takie jak prawo Kirchoffa czy prawo Boyle'a-Mariott'a, mogą wydawać się związane z obszarem inżynierii, jednak w kontekście podnośników hydraulicznych są zupełnie nieadekwatne. Prawo Kirchoffa dotyczy zachowania prądów i napięć w obwodach elektrycznych, co nie ma zastosowania w systemach hydraulicznych. Z kolei prawo Boyle'a-Mariott'a odnosi się do gazów i ich ciśnienia w zamkniętej objętości, co również nie jest tematem podnośników hydraulicznych, które operują cieczami, a nie gazami. Prawo Hooke'a, związane z deformacją ciał sprężystych, również nie jest właściwe w kontekście hydrauliki, gdyż nie opisuje zasad działania cieczy ani przekazywania sił. Wybór niewłaściwej odpowiedzi często wynika z błędnego skojarzenia funkcji danego prawa z działaniem podnośników. Dlatego kluczowe jest zrozumienie specyfiki każdego z tych praw oraz ich zastosowania w odpowiednich dziedzinach nauki i inżynierii. Zrozumienie i umiejętność właściwego przyporządkowania praw fizycznych do odpowiednich zjawisk jest niezbędne w pracy inżyniera i technika, co wpływa na jakość podejmowanych decyzji w praktyce.

Pytanie 30

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na uszkodzenie termostatu
B. na uszkodzenie uszczelki głowicy
C. na użycie niewłaściwego oleju
D. na uszkodzenie pompy oleju
Zastosowanie niewłaściwego oleju silnikowego może wpłynąć na jego właściwości smarne, ale nie prowadzi bezpośrednio do pojawienia się kropel płynu chłodzącego w misce olejowej. Olej i płyn chłodzący pełnią różne funkcje i nie powinny się ze sobą mieszać. Niewłaściwy dobór oleju może skutkować jego dużym zużyciem, przegrzewaniem się silnika czy zwiększeniem tarcia, ale nie prowadzi do mieszania się z płynem chłodzącym. Uszkodzenie pompy oleju z kolei objawia się głównie niskim ciśnieniem oleju lub hałasem, nie ma jednak związku z obecnością płynu chłodzącego. Pompa oleju jest kluczowa dla utrzymania odpowiedniego ciśnienia w systemie smarowania, ale nie wpływa na obieg płynu chłodzącego. Uszkodzenie termostatu może powodować problemy z temperaturą silnika, jednak nie prowadzi do przedostawania się płynu chłodzącego do miski olejowej. Typowym błędem myślowym jest łączenie objawów z różnych systemów silnika, co prowadzi do fałszywych wniosków o ich przyczynach. W przypadku zauważenia kropel płynu chłodzącego w oleju, kluczowe jest zrozumienie, że może to wskazywać na bezpośrednie problemy z uszczelką głowicy, co wymaga natychmiastowej uwagi mechanika.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Czym charakteryzuje się sprzęgło w samochodzie?

A. nie pozwala na płynne łączenie oraz rozłączanie części układu napędowego
B. pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
C. nie pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
D. stanowi trwałe połączenie silnika spalinowego z innymi elementami układu napędowego
Sprzęgło samochodowe jest kluczowym elementem układu napędowego, który umożliwia płynne łączenie i rozłączanie silnika spalinowego z pozostałymi komponentami, takimi jak skrzynia biegów. Główna funkcja sprzęgła polega na przenoszeniu momentu obrotowego z silnika na koła, co jest niezbędne podczas zmian biegów oraz uruchamiania pojazdu. Dzięki zastosowaniu sprzęgła, kierowca może kontrolować moment przeniesienia mocy, co pozwala na wygodne manewrowanie oraz uniknięcie szarpania podczas jazdy. W praktyce, dobrej jakości sprzęgło powinno charakteryzować się niskim zużyciem, odpornością na wysokie temperatury oraz zdolnością do przenoszenia dużych obciążeń. W branży motoryzacyjnej stosowane są różne typy sprzęgieł, w tym sprzęgła suche, mokre oraz wielotarczowe, z których każdy ma swoje zastosowanie w zależności od specyfikacji pojazdu. Warto również zaznaczyć, że regularna kontrola i serwisowanie sprzęgła są kluczowe dla utrzymania sprawności układu napędowego oraz zwiększenia bezpieczeństwa na drodze.

Pytanie 34

Optymalna grubość powłoki lakierniczej na elementach karoserii pojazdu to około

A. 0,01 mm
B. 150 µm
C. 0,1 mm
D. 250 µm
Ludzie często mylą się co do grubości lakieru, przez niejasności w jednostkach i standardach. Na przykład grubość 0,01 mm, co jest tylko 10 µm, to zdecydowanie za mało na ochronę nadwozia. Taki cienki lakier nie spełnia wymagań i może szybko się niszczyć przez różne chemikalia czy warunki pogodowe. Z drugiej strony grubość 250 µm, czyli 0,25 mm, jest zbyt gruba, co może prowadzić do pęknięć i złuszczania. Co do 0,1 mm, czyli 100 µm, to też nie jest w normie, bo jest poniżej zalecanej grubości, co znacząco obniża odporność lakieru. W przemyśle, jak w produkcji samochodów, producenci mają swoje procedury kontrolne, żeby mieć pewność, że grubość powłok jest w porządku, co jest kluczowe dla jakości i trwałości pojazdów. Zrozumienie tej kwestii to naprawdę ważna sprawa, jeśli ktoś zajmuje się naprawą aut, bo źle zrobiona powłoka może potem sporo kosztować.

Pytanie 35

W trakcie weryfikacji czopów głównych wału korbowego stwierdzono, że wymiary czopów I, II i IV są bliskie wymiarom nominalnym, a czop III został zakwalifikowany do szlifowania na wymiar naprawczy. Jak powinna wyglądać dalsza naprawa?

A. Szlifowanie czopów II i III (współbieżnych) na wymiar naprawczy i montaż z nadwymiarowymi panewkami.
B. Szlifowanie czopa III na wymiar naprawczy i montaż z nominalnymi panewkami.
C. Szlifowanie czopów I, II, III i IV na wymiar naprawczy i montaż z nadwymiarowymi panewkami.
D. Szlifowanie czopa III na wymiar naprawczy i montaż z nadwymiarowymi panewkami.
Decyzje dotyczące szlifowania czopów głównych wału korbowego są kluczowe dla zachowania jego funkcjonalności i trwałości. Wybór szlifowania tylko czopa III na wymiar naprawczy i montaż z nominalnymi panewkami może prowadzić do poważnych problemów. Nominalne panewki są zaprojektowane do pracy z wymiarami nominalnymi czopów, a ich zastosowanie w połączeniu z czopem, który przeszedł szlifowanie, prowadzi do nieprawidłowego dopasowania. W konsekwencji, może to spowodować nadmierne zużycie panewki, a nawet awarię silnika. Alternatywne podejście, takie jak szlifowanie czopów II i III, które jest niezbędne tylko dla czopów współbieżnych, może również wydawać się kuszące, jednak w przypadku wykrycia nieprawidłowości w jednym z czopów, najlepszą praktyką jest kompleksowe podejście do naprawy. Szlifowanie tylko wybranych czopów nie zapewnia równomiernego zużycia i może prowadzić do dalszych problemów mechanicznych, które w dłuższej perspektywie zwiększą koszty naprawy. Właściwe procedury naprawcze powinny obejmować całość, a nie tylko fragmentaryczne podejście, które może być efektem błędnego rozumienia zasad dotyczących tolerancji i wymiarów w silnikach spalinowych. Dlatego też istotne jest, aby przed podjęciem decyzji o naprawie, przeanalizować wszystkie czopy oraz ich stan techniczny.

Pytanie 36

Masa własna pojazdu to?

A. masa pojazdu z typowym wyposażeniem: paliwem, olejami, smarami oraz cieczami w ilościach nominalnych, bez kierowcy
B. masa pojazdu z osobami oraz ładunkiem, gdy jest dopuszczony do ruchu na drodze
C. maksymalna masa ładunku oraz osób, którą pojazd może przewozić
D. masa pojazdu razem z masą osób i przedmiotów, które się w nim znajdują
Wybór odpowiedzi, która definiuje masę własną pojazdu jako największą masę ładunku i osób, jaką może przewozić pojazd, jest błędny, ponieważ myli pojęcia związane z masą pojazdu. Masa własna odnosi się do wagi samego pojazdu, a nie do ładowności, co jest zupełnie innym wskaźnikiem. Definiowanie masy własnej w kontekście ładunku prowadzi do mylnego myślenia, że pojazd bez żadnych dodatkowych obciążeń ma tę samą masę, co przy pełnym załadunku. Ponadto, masa pojazdu obciążonego osobami i ładunkiem dopuszczonego do poruszania się po drodze odnosi się do masy całkowitej, co jest również innym pojęciem niż masa własna. Zrozumienie różnicy między tymi pojęciami jest kluczowe dla utrzymania bezpieczeństwa na drogach oraz przestrzegania przepisów dotyczących masy pojazdów. Błędy w klasyfikacji masy pojazdu mogą prowadzić do niepoprawnych decyzji podczas transportu, co zwiększa ryzyko wypadków oraz naruszenia regulacji prawnych. W praktyce, kierowcy oraz operatorzy floty muszą być świadomi tych różnic, aby skutecznie zarządzać pojazdami i zapewnić ich odpowiednie wykorzystanie zgodnie z przepisami oraz standardami branżowymi.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. prostopadłość
B. płaskość
C. szczelność
D. równoległość
Weryfikacja kadłuba i głowicy silnika wymaga precyzyjnych pomiarów, a odpowiedzi związane z innymi parametrami, takimi jak szczelność, równoległość czy prostopadłość, mogą wprowadzać w błąd. Szczelność odnosi się do zdolności komponentów do utrzymywania płynów i gazów, co jest ważne, ale nie związane bezpośrednio z pomiarami płaskości. W przypadku silnika, szczelność jest kontrolowana głównie poprzez uszczelki oraz odpowiednie dopasowanie części, nie przez pomiar z użyciem liniału krawędziowego. Równoległość dotyczy relacji między dwiema równoległymi powierzchniami, natomiast prostopadłość odnosi się do kątów prostych między powierzchniami. Choć te parametry są również istotne dla działania silnika, ich pomiar nie jest bezpośrednio związany z weryfikacją płaskości. Wykonywanie pomiarów równoległości lub prostopadłości może być mylone z pomiarem płaskości, co może prowadzić do błędnych wniosków o stanie komponentów silnika. Dlatego kluczowe jest, aby podczas oceny kadłuba i głowicy silnika skupić się na płaskości, jako podstawowym kryterium, a nie na innych parametrach, które mogą wydawać się atrakcyjne, ale nie są właściwe w tym kontekście. Zrozumienie różnicy między tymi pojęciami jest istotne dla skutecznego przeprowadzania analiz i zapewnienia właściwego funkcjonowania silników.

Pytanie 39

Końcową obróbkę kół zębatych w przekładni głównej tylnego mostu realizuje się poprzez metodę

A. honowania
B. szlifowania
C. ugniatania
D. toczenia
Szlifowanie jest kluczową metodą obróbki końcowej kół zębatych w przekładniach głównych, ponieważ pozwala na uzyskanie wysokiej precyzji wymiarowej oraz odpowiedniej chropowatości powierzchni. W procesie szlifowania wykorzystuje się narzędzia ścierne, które usuwają niewielkie ilości materiału, co umożliwia osiągnięcie dokładnych tolerancji. Metoda ta jest szczególnie istotna w przypadku kół zębatych, gdzie precyzyjne dopasowanie jest niezbędne do minimalizacji luzów oraz hałasu podczas pracy przekładni. W praktyce, szlifowanie zębów kół zębatych jest realizowane na szlifierkach z zastosowaniem narzędzi o różnej ziarnistości, co pozwala na dostosowanie procesu do specyficznych wymagań projektowych. Standardy takie jak ISO 1328 definiują klasy dokładności zębów kół zębatych, co dodatkowo podkreśla znaczenie szlifowania w inżynierii mechanicznej.

Pytanie 40

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z dwoma wałkami rozrządu w głowicy
B. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
C. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
D. górnozaworowy z jednym wałkiem rozrządu w głowicy
Nieprawidłowe odpowiedzi odnoszą się do różnych typów układów rozrządu, które są niezgodne z definicją DOHC. Układ dolnozaworowy z jednym wałkiem rozrządu w kadłubie to klasyczna konstrukcja, znana jako OHV (Overhead Valve), która ma swoje zastosowanie w starszych silnikach, ale nie oferuje takiej samej efektywności jak DOHC. Tego rodzaju silniki mają ograniczoną wydajność przy wysokich obrotach, co może prowadzić do mniejszej mocy i gorszej dynamiki. Odpowiedzi dotyczące górnozaworowego układu z jednym wałkiem rozrządu w kadłubie oraz z dwoma wałkami rozrządu w głowicy również nie oddają pełni możliwości konstrukcji DOHC. W przypadku jednego wałka w kadłubie, wirujący komponent ma ograniczone możliwości dostrojenia pracy zaworów. Z kolei konstrukcja z dwoma wałkami w głowicy, ale nie w pełni eksploatująca ich potencjał, z reguły nie oferuje korzyści związanych z niezależnym sterowaniem zaworami. Brak synchronizacji i zmienności w otwieraniu i zamykaniu zaworów skutkuje mniejszym efektem w zakresie spalania i osiągów, co jest kluczowe w nowoczesnych silnikach. Rozumienie tych różnic jest istotne dla inżynierów oraz entuzjastów motoryzacji, aby zrozumieć, jak konstrukcja silnika wpływa na jego ogólne parametry i efektywność pracy.