Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 25 maja 2025 22:27
  • Data zakończenia: 25 maja 2025 22:44

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wartość koloru RGB(255, 170, 129) odpowiada zapisie

A. #81AAFF
B. #18FAAF
C. #FFAA81
D. #AA18FF
Zapis koloru RGB(255, 170, 129) jest konwertowany na format heksadecymalny poprzez przekształcenie wartości RGB do postaci heksadecymalnej. Z wartości 255 otrzymujemy 'FF', z 170 - 'AA', a z 129 - '81'. Tak więc, łącząc te wartości, otrzymujemy kod #FFAA81. Użycie notacji heksadecymalnej jest standardem w projektowaniu stron internetowych oraz w grafice komputerowej, co pozwala na łatwe i przejrzyste definiowanie kolorów. W praktyce, znajomość takiej konwersji jest niezwykle przydatna dla programistów front-end oraz grafików, którzy często muszą dostosowywać kolory w swoich projektach. Na przykład, przy tworzeniu stylów CSS, kod heksadecymalny może być użyty w definicjach kolorów tła, tekstu, obramowania itp., co daje dużą swobodę w kreacji wizualnej.

Pytanie 2

Aby zmierzyć tłumienie światłowodowego łącza w dwóch zakresach długości fal 1310 nm i 1550 nm, należy zastosować

A. miernika mocy optycznej
B. rejestratora cyfrowego
C. testera UTP
D. reflektometr TDR
Reflektometr TDR (Time Domain Reflectometer) jest urządzeniem używanym do diagnostyki linii transmisyjnych, w tym kabli miedzianych, jednak nie jest odpowiedni do pomiarów w systemach światłowodowych. Działa na zasadzie wysyłania impulsu elektrycznego i analizy odbitych sygnałów, co pozwala na lokalizację usterek, ale nie jest w stanie zmierzyć tłumienia sygnału optycznego. W przypadku światłowodów, bardziej adekwatnym narzędziem byłby reflektometr OTDR (Optical Time Domain Reflectometer), który jest w stanie analizować sygnał optyczny. Rejestrator cyfrowy służy do zapisu danych, ale nie przeprowadza pomiarów mocy sygnału optycznego, przez co nie spełnia wymagań dotyczących testowania tłumienia. Tester UTP jest urządzeniem przeznaczonym do weryfikacji kabli miedzianych i nie ma zastosowania w pomiarach światłowodowych. Użytkownicy często popełniają błąd, myśląc, że narzędzia zaprojektowane do mediów miedzianych mogą być zastosowane w systemach światłowodowych, co kończy się nieprawidłowymi wynikami. Kluczowe jest zrozumienie specyfiki technologii światłowodowej oraz wybór odpowiednich narzędzi zgodnych z normami i dobrymi praktykami branżowymi, aby zapewnić prawidłowe pomiary i diagnostykę.

Pytanie 3

Jakie jest źródło pojawienia się komunikatu na ekranie komputera, informującego o wykryciu konfliktu adresów IP?

A. Inne urządzenie w sieci posiada ten sam adres IP co komputer
B. Adres bramy domyślnej w ustawieniach protokołu TCP/IP jest nieprawidłowy
C. Adres IP komputera znajduje się poza zakresem adresów w sieci lokalnej
D. Usługa DHCP nie funkcjonuje w sieci lokalnej
Poprawna odpowiedź odnosi się do sytuacji, w której dwa lub więcej urządzeń w tej samej sieci lokalnej zostało skonfigurowanych z tym samym adresem IP. Jest to klasyczny przypadek konfliktu adresów IP, który prowadzi do zakłóceń w komunikacji sieciowej. Gdy system operacyjny wykrywa taki konflikt, wyświetla odpowiedni komunikat, aby użytkownik mógł podjąć odpowiednie kroki w celu rozwiązania problemu. Przykładem może być sytuacja, gdy podłączysz nowy laptop do sieci, a jego adres IP został ręcznie przypisany do tego samego zakresu co inny, już działający w sieci komputer. W takich przypadkach zaleca się korzystanie z protokołu DHCP, który automatycznie przydziela adresy IP, minimalizując ryzyko konfliktów. Zastosowanie DHCP to jedna z najlepszych praktyk w zarządzaniu adresacją IP, gdyż pozwala na centralne zarządzanie i kontrolę nad przydzielanymi adresami, zapewniając ich unikalność oraz optymalizując wykorzystanie dostępnych zasobów sieciowych.

Pytanie 4

Administrator sieci komputerowej z adresem 192.168.1.0/24 podzielił ją na 8 równych podsieci. Ile adresów hostów będzie dostępnych w każdej z nich?

A. 30
B. 26
C. 28
D. 32
Odpowiedź 30 jest poprawna, ponieważ przy podziale sieci o adresie 192.168.1.0/24 na 8 równych podsieci, musimy najpierw obliczyć, ile bitów jest potrzebnych do reprezentacji 8 podsieci. Używając wzoru 2^n, gdzie n to liczba bitów, odkrywamy, że 2^3 = 8, co oznacza, że potrzebujemy 3 bitów. Zmieniając maskę sieci, pierwotna maska /24 staje się /27 (24 + 3 = 27). Oznacza to, że w każdej podsieci dostępne będą 32 adresy (2^(32-27)=32), z czego dwa adresy są zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego. Pozostaje zatem 32 - 2 = 30 możliwych adresów hostów w każdej z 8 podsieci. Ta wiedza jest kluczowa w administracji sieci, gdzie efektywne zarządzanie adresacją IP pozwala na lepsze wykorzystanie zasobów sieciowych oraz ich skalowalność.

Pytanie 5

Technik serwisowy zrealizował w ramach zlecenia działania wymienione w zestawieniu. Całkowity koszt zlecenia obejmuje cenę usług wymienionych w zestawieniu oraz wynagrodzenie serwisanta, którego stawka godzinowa wynosi 60,00 zł netto. Oblicz całkowity koszt zlecenia brutto. Stawka VAT na usługi wynosi 23%

LPCzynnośćCzas wykonania w minutachCena usługi netto w zł
1.Instalacja i konfiguracja programu3520,00
2.Wymiana płyty głównej8050,00
3.Wymiana karty graficznej3025,00
4.Tworzenie kopii zapasowej
i archiwizacja danych
6545,00
5.Konfiguracja rutera3020,00

A. 436,80 zł
B. 455,20 zł
C. 400,00 zł
D. 492,00 zł
Całkiem dobrze, że wyszukałeś te liczby! Koszt zlecenia brutto to 492,00 zł, ale żeby tam dojść, musisz najpierw zsumować wszystkie usługi i dodatek za pracę serwisanta. W tabeli widzimy, że usługi kosztują razem 160,00 zł, czyli: 20,00 zł + 50,00 zł + 25,00 zł + 45,00 zł + 20,00 zł. Serwisant pracował przez 240 minut, co daje 4 godziny, a przy stawce 60,00 zł za godzinę, koszt pracy wynosi 240,00 zł. Tak więc, całkowity koszt netto to 160,00 zł + 240,00 zł, co daje 400,00 zł. Potem musisz doliczyć 23% VAT, co nam daje 400,00 zł * 1,23 = 492,00 zł. Ta umiejętność jest naprawdę przydatna, zwłaszcza w zarządzaniu kosztami w serwisie i przy wystawianiu faktur klientów. Ogólnie, znajomość rachunkowości jest kluczowa, żeby wszystko grało w firmie. Fajnie jest wiedzieć, jak przedstawiać te koszty klientom, żeby budować zaufanie i pokazać profesjonalizm.

Pytanie 6

Podczas wyboru zasilacza do komputera kluczowe znaczenie

A. Ma współczynnik kształtu obudowy
B. Ma rodzaj procesora
C. Maję specyfikację zainstalowanego systemu operacyjnego
D. Ma łączna moc wszystkich komponentów komputera
Zgadza się, poprawna odpowiedź to 'Ma łączna moc wszystkich podzespołów komputerowych'. Wiesz, zasilacz w komputerze musi dawać taką moc, żeby wszystko działało jak trzeba. Każdy element, czyli procesor, karta graficzna, RAM i dyski twarde, potrzebują swojej energii, więc musimy to wszystko zsumować, żeby wiedzieć, jak mocny zasilacz musimy kupić. Rekomenduję wybierać zasilacz z zapasem, tak z 20-30% więcej niż całkowite zapotrzebowanie. Na przykład, jak wszystkie komponenty łącznie biorą 400 W, to lepiej wziąć zasilacz na 500-600 W. A jeśli do tego weźmiesz zasilacz z certyfikatem 80 Plus, to jeszcze zaoszczędzisz na rachunkach za prąd, bo mniej energii się zmarnuje. Czyli dobrze dobrany zasilacz to naprawdę kluczowa sprawa dla stabilności i długiego życia komputera.

Pytanie 7

Jakie urządzenie jest przedstawione na rysunku?

Ilustracja do pytania
A. Bridge.
B. Hub.
C. Access Point.
D. Switch.
Punkt dostępowy to urządzenie, które umożliwia bezprzewodowy dostęp do sieci komputerowej. Działa jako most pomiędzy siecią przewodową a urządzeniami bezprzewodowymi, takimi jak laptopy, smartfony czy tablety. W praktyce punkt dostępowy jest centralnym elementem sieci WLAN i pozwala na zwiększenie jej zasięgu oraz liczby obsługiwanych użytkowników. Standardy takie jak IEEE 802.11 regulują działanie tych urządzeń, zapewniając kompatybilność i bezpieczeństwo. W zastosowaniach domowych oraz biurowych punkty dostępowe są często zintegrowane z routerami, co dodatkowo ułatwia zarządzanie siecią. Ich konfiguracja może obejmować ustawienia zabezpieczeń, takie jak WPA3, aby chronić dane przesyłane przez sieć. Dobre praktyki sugerują umieszczanie punktów dostępowych w centralnych lokalizacjach w celu optymalizacji zasięgu sygnału i minimalizacji zakłóceń. Przy wyborze punktu dostępowego warto zwrócić uwagę na obsługiwane pasma częstotliwości, takie jak 2.4 GHz i 5 GHz, co pozwala na elastyczne zarządzanie przepustowością sieci.

Pytanie 8

Jakie jest oprogramowanie serwerowe dla systemu Linux, które pozwala na współdziałanie z grupami roboczymi oraz domenami Windows?

A. Apache
B. Samba
C. NTP
D. CUPS
Samba to super narzędzie, które pozwala systemom Linux komunikować się z Windowsami. Moim zdaniem, to naprawdę przydatna opcja, bo możemy zrobić z Linuxa serwer plików czy drukarek dla użytkowników Windows. Samba wykorzystuje protokoły SMB i CIFS, co sprawia, że wymiana danych między tymi systemami jest naprawdę prosta. Na przykład, w firmie, gdzie są komputery z różnymi systemami, Samba umożliwia wspólne korzystanie z dokumentów czy drukarek, co na pewno zwiększa efektywność pracy. Zauważyłem, że Samba ma wiele przydatnych funkcji, jak kontrola dostępu czy autoryzacja użytkowników, więc jest to narzędzie, które warto mieć w swoim arsenale w dziedzinie IT.

Pytanie 9

Która z usług pozwala na zdalne zainstalowanie systemu operacyjnego?

A. RIS
B. IRC
C. IIS
D. DNS
RIS, czyli Remote Installation Services, to usługa stworzona przez firmę Microsoft, która pozwala na zdalną instalację systemu operacyjnego Windows na komputerach w sieci. Dzięki RIS administratorzy IT mogą zaoszczędzić czas i zasoby, ponieważ nie muszą fizycznie przebywać przy każdym urządzeniu, które wymaga instalacji systemu. Proces ten odbywa się poprzez przesyłanie obrazu systemu operacyjnego z serwera na komputer kliencki, co znacznie upraszcza zarządzanie dużymi środowiskami IT. Przykładowo, w firmach z licznymi stanowiskami roboczymi, administratorzy mogą zdalnie instalować aktualizacje lub całe systemy, co jest zgodne z najlepszymi praktykami IT w zakresie bezpieczeństwa i efektywności operacyjnej. Dodatkowo RIS może być zintegrowany z Active Directory, co umożliwia bardziej zautomatyzowane i bezpieczne zarządzanie użytkownikami oraz ich uprawnieniami zgodnie z polityką firmy.

Pytanie 10

Zastąpienie koncentratorów przełącznikami w sieci Ethernet doprowadzi do

A. rozszerzenia domeny rozgłoszeniowej.
B. potrzeby zmiany adresów IP.
C. zmiany w topologii sieci.
D. redukcji liczby kolizji.
Wymiana koncentratorów na przełączniki w sieci Ethernet prowadzi do znacznego zmniejszenia ilości kolizji. Koncentratory działają na zasadzie rozsyłania sygnału do wszystkich połączonych urządzeń, co zwiększa ryzyko kolizji danych, gdy wiele urządzeń próbuje jednocześnie wysłać dane. Przełączniki natomiast działają na poziomie warstwy drugiej modelu OSI i używają tabel MAC do kierowania ruchu do odpowiednich portów. Dzięki temu, gdy jedno urządzenie wysyła dane do innego, przełącznik przesyła je tylko na odpowiedni port, a nie do wszystkich urządzeń w sieci. To zastosowanie zmniejsza liczbę kolizji, a w efekcie zwiększa wydajność sieci. W praktyce, sieci z przełącznikami mogą obsługiwać większą liczbę jednoczesnych połączeń oraz oferują lepszą kontrolę nad ruchem sieciowym, co jest kluczowe w nowoczesnych środowiskach korporacyjnych, gdzie zasoby takie jak serwery i aplikacje wymagają stabilnych i szybkich połączeń.

Pytanie 11

Do zrealizowania macierzy RAID 1 wymagane jest co najmniej

A. 3 dysków
B. 4 dysków
C. 5 dysków
D. 2 dysków
Macierz RAID 1, znana jako mirroring, wymaga minimum dwóch dysków, aby mogła efektywnie funkcjonować. W tym konfiguracji dane są kopiowane na dwa lub więcej dysków, co zapewnia ich redundancję. Gdy jeden z dysków ulegnie awarii, system nadal działa, korzystając z danych przechowywanych na pozostałym dysku. To podejście jest szczególnie cenione w środowiskach, gdzie dostępność danych jest kluczowa, na przykład w serwerach plików, bazach danych oraz systemach krytycznych dla działalności. Przykładem zastosowania RAID 1 mogą być serwery WWW oraz systemy backupowe, gdzie utrata danych może prowadzić do znacznych strat finansowych oraz problemów z reputacją. Standardy branżowe, takie jak te opracowane przez organizację RAID Advisory Board, podkreślają znaczenie RAID 1 jako jednego z podstawowych rozwiązań w kontekście ochrony danych. Z perspektywy praktycznej warto również zauważyć, że chociaż RAID 1 nie zapewnia zwiększenia wydajności zapisu, to jednak może poprawić wydajność odczytu, co czyni go atrakcyjnym rozwiązaniem dla niektórych zastosowań.

Pytanie 12

Główna rola serwera FTP polega na

A. udostępnianiu plików
B. zarządzaniu kontami e-mail
C. nadzorowaniu sieci
D. synchronizacji czasu
Podstawową funkcją serwera FTP (File Transfer Protocol) jest udostępnianie plików między systemami w sieci. FTP umożliwia użytkownikom przesyłanie, pobieranie oraz zarządzanie plikami na zdalnych serwerach. Protokół ten działa na zasadzie klient-serwer, gdzie klient zainicjowuje połączenie i przesyła zapytania do serwera. Przykładowe zastosowanie FTP to transfer dużych plików, takich jak obrazy, dokumenty czy oprogramowanie, co jest szczególnie przydatne w kontekście firm zajmujących się grafiką komputerową lub programowaniem. Dobre praktyki branżowe zalecają korzystanie z bezpiecznych wersji FTP, takich jak FTPS lub SFTP, które dodają warstwę szyfrowania, chroniąc dane podczas przesyłania. Zrozumienie funkcji FTP i jego zastosowań jest kluczowe dla efektywnego zarządzania danymi w środowisku sieciowym oraz dla zapewnienia ich bezpieczeństwa.

Pytanie 13

Procesor RISC to procesor o

A. rozbudowanej liście instrukcji
B. zmniejszonej liście instrukcji
C. głównej liście instrukcji
D. pełnej liście instrukcji
Procesor RISC (Reduced Instruction Set Computer) charakteryzuje się zredukowaną listą rozkazów, co oznacza, że implementuje mniejszą liczbę instrukcji w porównaniu do procesorów CISC (Complex Instruction Set Computer). Dzięki temu architektura RISC może oferować większą efektywność poprzez uproszczenie cyklu wykonania instrukcji, co prowadzi do zwiększenia wydajności. Zredukowana liczba rozkazów pozwala na łatwiejszą optymalizację kodu oraz szybsze dekodowanie i wykonywanie instrukcji, co jest kluczowe w nowoczesnych systemach komputerowych. W praktyce procesory RISC często mają jednolitą długość rozkazów, co ułatwia ich dekodowanie, a także umożliwia wykonanie wielu instrukcji w jednym cyklu zegara. Powszechnie stosowane architektury RISC obejmują takie procesory jak ARM, MIPS czy PowerPC, które znalazły zastosowanie w wielu urządzeniach mobilnych, wbudowanych systemach czy serwerach. Architektura ta jest często wykorzystywana w aplikacjach wymagających wysokiej wydajności oraz niskiego zużycia energii, co jest zgodne z aktualnymi trendami w projektowaniu układów scalonych.

Pytanie 14

Grupa protokołów, która charakteryzuje się wspólną metodą szyfrowania, to

A. SSH
B. SPX/IPX
C. PPP
D. UDP
Analizując dostępne odpowiedzi, można zauważyć, że PPP (Point-to-Point Protocol) jest protokołem używanym głównie do łączenia dwóch punktów w sieci, najczęściej w kontekście dial-up. PPP nie zapewnia wspólnego szyfrowania, a jego głównym celem jest ustanowienie połączenia, a nie zabezpieczanie danych. Z kolei UDP (User Datagram Protocol) to protokół transportowy, który działa na zasadzie przesyłania datagramów bez gwarancji ich dostarczenia. UDP nie implementuje mechanizmów szyfrowania ani kontroli błędów, co sprawia, że nie jest odpowiedni do zastosowań wymagających wysokiego poziomu bezpieczeństwa. SPX/IPX to zestaw protokołów opracowanych przez firmę Novell, który w praktyce był używany głównie w sieciach lokalnych. Te protokoły również nie koncentrują się na szyfrowaniu danych, a ich funkcjonalność jest ograniczona w porównaniu do nowoczesnych standardów bezpieczeństwa. Częstym błędem myślowym jest interpretacja protokołów jako zintegrowanych rozwiązań do bezpieczeństwa, podczas gdy wiele z nich, jak PPP czy UDP, jest zaprojektowanych bez tych funkcji. Właściwe zrozumienie, które protokoły oferują odpowiednie mechanizmy szyfrowania, jest kluczowe w kontekście ochrony danych, a SSH stanowi najlepszy wybór w obszarze zdalnego zarządzania i komunikacji.

Pytanie 15

Aby komputery mogły udostępniać dane w sieci, NIE powinny mieć tych samych

A. grup roboczych.
B. serwerów DNS.
C. masek podsieci.
D. adresów IP.
Adresy IP są unikalnymi identyfikatorami, które pozwalają na komunikację między urządzeniami w sieci. Każde urządzenie podłączone do sieci lokalnej lub Internetu musi mieć przypisany unikalny adres IP, aby mogło być zidentyfikowane i aby dane mogły być prawidłowo przesyłane. Jeśli dwa urządzenia miałyby ten sam adres IP, prowadziłoby to do konfliktów, ponieważ sieć nie byłaby w stanie określić, które urządzenie powinno odbierać dane adresowane do tego adresu. W praktyce, w sieciach lokalnych stosuje się różne metody przydzielania adresów IP, na przykład DHCP (Dynamic Host Configuration Protocol), który automatycznie przypisuje dostępne adresy IP urządzeniom w sieci. Zalecane jest również stosowanie standardów IPv4 i IPv6, które definiują zasady przydzielania adresów IP oraz zapewniają odpowiednią przestrzeń adresową. Wiedza na temat adresacji IP jest kluczowa w kontekście planowania sieci, konfiguracji routerów oraz zarządzania zasobami w sieci.

Pytanie 16

Jaki jest adres broadcastowy dla sieci posiadającej adres IP 192.168.10.0/24?

A. 192.168.0.255
B. 192.168.10.255
C. 192.168.0.0
D. 192.168.10.0
Adres rozgłoszeniowy sieci o adresie IP 192.168.10.0/24 to 192.168.10.255, ponieważ w przypadku adresu klasy C z maską /24 ostatni bajt (osiem bitów) jest używany do identyfikacji hostów w sieci. Maski sieciowe, takie jak /24, oznaczają, że pierwsze 24 bity adresu (czyli trzy pierwsze bajty) są stałe dla danej sieci, a ostatnie 8 bitów może być zmieniane, co oznacza, że mamy 2^8 = 256 możliwych adresów hostów w tej sieci, od 192.168.10.0 do 192.168.10.255. Adres 192.168.10.0 jest zarezerwowany jako adres identyfikujący sieć, a adres 192.168.10.255 jest używany jako adres rozgłoszeniowy, który pozwala na wysyłanie pakietów do wszystkich urządzeń w tej sieci. Użycie adresów rozgłoszeniowych jest istotne, gdyż umożliwia efektywne zarządzanie sieciami lokalnymi oraz komunikację między urządzeniami. Przykładem zastosowania adresów rozgłoszeniowych jest wysyłanie informacji o aktualizacjach do wszystkich komputerów w lokalnej sieci jednocześnie, co pozwala na oszczędność czasu i zasobów.

Pytanie 17

Emisja przez BIOS firmy AMI jednego długiego oraz dwóch krótkich sygnałów dźwiękowych oznacza

A. błąd parzystości pamięci
B. uszkodzenie zegara systemowego
C. uszkodzenie pamięci
D. błąd karty graficznej
Zrozumienie diod LED i sygnałów dźwiękowych z BIOS-u jest mega ważne, jak chodzi o diagnozowanie sprzętu. Wiele osób może się pomylić w interpretacji tych dźwięków, co prowadzi do złych wniosków i nieefektywnych napraw. Na przykład, błąd parzystości pamięci może dawać różne sekwencje, które ludzie mylą z problemami z kartą graficzną. Choć błędy pamięci mogą spowolnić system, to standardy BIOS AMI nie przypisują im konkretnej sekwencji dźwięków z jednym długim i dwoma krótkimi tonami. Tak samo uszkodzona pamięć, która zazwyczaj powoduje, że system się nie uruchamia, też nie daje takich sygnałów. Co więcej, problemy z zegarem systemowym, chociaż poważne, nie są bezpośrednio związane z kartą graficzną i nie dają wyraźnych sygnałów w BIOS AMI. Osoby, które nie wiedzą, jakie są różnice między tymi błędami, mogą szukać rozwiązania problemu w złych miejscach, co tylko wydłuża diagnozę i naprawę. Ważne jest, żeby zrozumieć, że każdy dźwięk ma swoje konkretne przypisanie do danej usterki, a to pozwala na skuteczniejsze rozwiązywanie problemów.

Pytanie 18

Jaką długość w bitach ma adres logiczny IPv6?

A. 32
B. 16
C. 128
D. 64
Adres logiczny IPv6 składa się z 128 bitów, co pozwala na ogromną liczbę unikalnych adresów. W porównaniu do IPv4, który ma tylko 32 bity, IPv6 w znaczący sposób zwiększa przestrzeń adresową, co jest szczególnie istotne w kontekście rosnącej liczby urządzeń podłączonych do Internetu. Adresy IPv6 są zapisywane w postaci szesnastkowej i składają się z ośmiu grup po cztery cyfry szesnastkowe. Dzięki temu, w IPv6 możliwe jest przydzielenie około 340 undecylionów (3.4 x 10^38) unikalnych adresów. Ta właściwość jest kluczowa dla rozwoju nowoczesnych aplikacji internetowych oraz Internetu rzeczy (IoT), gdzie wiele urządzeń wymaga indywidualnych adresów IP. Warto również zauważyć, że IPv6 wspiera nowoczesne protokoły bezpieczeństwa i funkcje, takie jak automatyczna konfiguracja i lepsze wsparcie dla mobilności. Dlatego znajomość i zrozumienie struktury adresu IPv6 jest niezbędne dla specjalistów zajmujących się sieciami i inżynierią oprogramowania.

Pytanie 19

Jakie adresy mieszczą się w zakresie klasy C?

A. 192.0.0.0 ÷ 223.255.255.255
B. 128.0.0.1 ÷ 191.255.255.254
C. 1.0.0.1 ÷ 126.255.255.254
D. 224.0.0.1 ÷ 239.255.255.0
Adresy klasy C to zakres od 192.0.0.0 do 223.255.255.255, co jest zgodne z definicją klasy C w protokole IP. Adresy te są powszechnie używane w małych sieciach lokalnych, co sprawia, że są niezwykle praktyczne. W klasycznej konfiguracji sieci, adres klasy C pozwala na posiadanie do 256 różnych adresów (od 192.0.0.0 do 192.0.0.255), z czego 254 mogą być przypisane urządzeniom końcowym, ponieważ jeden adres jest zarezerwowany jako adres sieciowy, a drugi jako adres rozgłoszeniowy. Klasa C umożliwia również sieciowanie w sposób umożliwiający efektywne zarządzanie dużymi grupami urządzeń, co jest kluczowe w dzisiejszym świecie, gdzie złożoność sieci wzrasta. Dodatkowo, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), adresy klasy C mogą być elastycznie podzielone na mniejsze podsieci, co pozwala na lepsze wykorzystanie dostępnych zasobów IP. W praktyce, adresy klasy C są często używane w biurach i małych firmach, gdzie liczba urządzeń końcowych nie przekracza 254.

Pytanie 20

Jakie jest oznaczenie sieci, w której funkcjonuje host o IP 10.10.10.6 klasy A?

A. 10.0.0.0
B. 10.10.0.0
C. 10.255.255.255
D. 10.10.10.255
Adres 10.0.0.0 jest prawidłowym adresem sieci dla hosta o adresie IP 10.10.10.6, ponieważ ten adres IP należy do klasy A. W klasie A, adresy IP są zdefiniowane w taki sposób, że pierwsze 8 bitów (czyli pierwszy oktet) służy do identyfikacji sieci, a pozostałe 24 bity do identyfikacji hostów w tej sieci. W przypadku adresu 10.10.10.6, pierwszym oktetem jest 10, co oznacza, że sieć rozpoczyna się od 10.0.0.0, a wszystkie adresy w tej sieci zaczynają się od 10.x.x.x. W praktyce, adres 10.0.0.0 jest adresem sieci, a zakres adresów hostów w tej sieci wynosi od 10.0.0.1 do 10.255.255.254. Zgodnie z zasadami klasyfikacji adresów IP, adresy w klasie A mają dużą pojemność, co czyni je idealnymi dla dużych organizacji. Ważne jest, aby pamiętać, że adresy takie jak 10.10.0.0 czy 10.10.10.255 nie są poprawnymi adresami sieci dla danego hosta. Standardy takie jak RFC 1918 definiują zakresy adresów prywatnych, do których należy również adres 10.0.0.0, co czyni go idealnym do użytku wewnętrznego w sieciach korporacyjnych.

Pytanie 21

Partycja, na której zainstalowany jest system operacyjny, określana jest jako partycja

A. systemowa
B. wymiany
C. folderowa
D. rozszerzona
Odpowiedź 'systemową' jest poprawna, ponieważ partycja systemowa to ta, na której zainstalowany jest system operacyjny. Jest to kluczowy element struktury dysku twardego, ponieważ zawiera wszystkie niezbędne pliki, które umożliwiają uruchomienie i działanie systemu. W praktyce, partycja systemowa jest zazwyczaj oznaczona literą (np. C: w systemie Windows) i jest to miejsce, gdzie przechowywane są także pliki programów oraz dane użytkownika. Dobra praktyka wskazuje, że partycja systemowa powinna mieć odpowiednią przestrzeń, aby pomieścić zarówno system operacyjny, jak i aplikacje oraz aktualizacje. Ponadto, w kontekście zarządzania systemami informatycznymi, ważne jest, aby regularnie tworzyć kopie zapasowe danych znajdujących się na partycji systemowej. W przypadku awarii systemu, możliwość szybkiego przywrócenia stanu sprzed problemu może być kluczowa dla minimalizacji przestojów i strat danych. Warto również zaznaczyć, że w nowoczesnych systemach operacyjnych, takich jak Windows 10 czy Linux, partycje systemowe są konfigurowane z uwzględnieniem zasad efektywności i bezpieczeństwa, co może obejmować między innymi ich szyfrowanie czy tworzenie dodatkowych partycji pomocniczych do odzyskiwania danych.

Pytanie 22

Licencja Office 365 PL Personal (jedno stanowisko, subskrypcja na rok) ESD jest przypisana do

A. dowolnej liczby użytkowników, jedynie na jednym komputerze do celów komercyjnych i niekomercyjnych
B. wyłącznie jednego użytkownika, na jednym komputerze, jednym tablecie i jednym telefonie, tylko do celów niekomercyjnych
C. wyłącznie jednego użytkownika na jednym komputerze oraz jednym urządzeniu mobilnym do celów komercyjnych i niekomercyjnych
D. dowolnej liczby użytkowników, jedynie na jednym komputerze do celów komercyjnych
Licencja na Office 365 PL Personal jest przypisana wyłącznie jednemu użytkownikowi, co oznacza, że tylko ta osoba ma dostęp do zainstalowanych aplikacji oraz usług w chmurze. Subskrypcja obejmuje możliwość korzystania z aplikacji na jednym komputerze, jednym tablecie oraz jednym telefonie, co zapewnia użytkownikowi elastyczność w pracy. Ważnym aspektem jest to, że licencja ta jest przeznaczona wyłącznie do celów niekomercyjnych. Przykładem praktycznego zastosowania tej licencji może być sytuacja, w której osoba korzysta z programów takich jak Word, Excel czy PowerPoint do tworzenia dokumentów i prezentacji w codziennym życiu, na przykład do przygotowywania materiałów szkoleniowych lub prac domowych. Zgodnie z dobrymi praktykami, użytkownicy powinni być świadomi, że korzystanie z licencji na cele komercyjne wymaga innego rodzaju subskrypcji, co podkreśla znaczenie znajomości warunków licencjonowania w kontekście zakupu oprogramowania.

Pytanie 23

Jaki protokół warstwy aplikacji jest wykorzystywany do zarządzania urządzeniami sieciowymi poprzez sieć?

A. FTP
B. NTP
C. MIME
D. SNMP
Wybór innych protokołów, takich jak FTP, NTP i MIME, nie jest odpowiedni w kontekście zarządzania urządzeniami sieciowymi. Protokół FTP (File Transfer Protocol) służy przede wszystkim do transferu plików między komputerami w sieci, co oznacza, że jego główną funkcją jest wymiana danych, a nie zarządzanie urządzeniami. Z kolei NTP (Network Time Protocol) jest protokołem służącym do synchronizacji czasu w sieci komputerowej. Choć jest kluczowy dla utrzymania dokładności czasowej w systemach, nie ma on funkcji zarządzania samymi urządzeniami sieciowymi. Natomiast MIME (Multipurpose Internet Mail Extensions) to standard stosowany w przesyłaniu różnorodnych typów danych w wiadomościach e-mail, a jego zastosowanie również nie odnosi się do zarządzania infrastrukturą sieciową. Wybór tych protokołów może wynikać z błędnego zrozumienia ich funkcji i zastosowania. W praktyce ważne jest, aby znać różnice między różnymi protokołami i ich specyfiką, co pozwala na właściwe zarządzanie infrastrukturą sieciową oraz wykorzystanie odpowiednich narzędzi do monitorowania i zarządzania urządzeniami. Niezrozumienie ról poszczególnych protokołów może prowadzić do nieefektywnego zarządzania siecią oraz problemów z utrzymaniem jej sprawności.

Pytanie 24

Urządzenie sieciowe nazywane mostem (ang. bridge) to:

A. działa w zerowej warstwie modelu OSI
B. funkcjonuje w ósmej warstwie modelu OSI
C. jest klasą urządzenia typu store and forward
D. nie przeprowadza analizy ramki w odniesieniu do adresu MAC
Analizując niepoprawne odpowiedzi, warto zwrócić uwagę na kilka kluczowych aspektów dotyczących funkcji i działania mostów w sieciach komputerowych. Pierwsza z błędnych koncepcji sugeruje, że most nie analizuje ramki pod kątem adresu MAC. Jest to nieprawda, ponieważ jednym z głównych zadań mostu jest właśnie monitorowanie adresów MAC, co pozwala mu podejmować decyzje o przekazywaniu lub blokowaniu ruchu. Analiza ta jest kluczowa dla prawidłowego filtrowania ruchu i efektywnego zarządzania pasmem. Kolejna fałszywa teza dotyczy poziomu modelu OSI, na którym działa most. Mosty pracują na drugiej warstwie modelu OSI, a nie na zerowej czy ósmej, co jest fundamentalnym błędem w zrozumieniu architektury sieci. Warstwa zerowa odnosi się do warstwy fizycznej, odpowiedzialnej za przesył sygnałów, podczas gdy ósma warstwa nie istnieje w modelu OSI; model ten ma jedynie siedem warstw. Ostatnia nieprawidłowa odpowiedź sugeruje, że mosty nie są urządzeniami typu store and forward. W rzeczywistości, wiele mostów wykorzystuje tę metodę do efektywnego zarządzania ruchem w sieci, co oznacza, że przechowują dane do momentu ich analizy przed podjęciem decyzji o dalszym przesyłaniu. Typowe błędy myślowe, które prowadzą do tych niepoprawnych wniosków, to brak zrozumienia podstawowych zasad działania urządzeń sieciowych oraz pomylenie różnych warstw modelu OSI, co może prowadzić do mylnych interpretacji funkcji mostów w kontekście architektury sieci.

Pytanie 25

Która z konfiguracji RAID opiera się na replikacji danych pomiędzy dwoma lub większą liczbą dysków fizycznych?

A. RAID 5
B. RAID 0
C. RAID 1
D. RAID 3
RAID 1 to popularny poziom macierzy RAID, który opiera się na replikacji danych na dwóch lub więcej dyskach fizycznych. W tej konfiguracji każdy zapisany na jednym dysku blok danych jest natychmiastowo kopiowany na drugi dysk, co zapewnia wysoką dostępność danych oraz ich ochronę przed awarią jednego z dysków. Przykładem zastosowania RAID 1 może być serwer plików, w którym dane są krytyczne — w przypadku awarii jednego z dysków, system może natychmiast przełączyć się na zapasowy dysk bez utraty danych. W praktyce, macierz RAID 1 oferuje zalety w zakresie redundancji i niezawodności, co jest zgodne z najlepszymi praktykami w obszarze przechowywania danych. Wysoka dostępność danych jest kluczowym atutem dla firm, które nie mogą sobie pozwolić na przestoje związane z utratą danych. Należy jednak pamiętać, że RAID 1 nie zwiększa wydajności, a także wymaga pojemności dysków równającej się pojemności największego dysku w macierzy, co może być ograniczeniem dla niektórych zastosowań.

Pytanie 26

Do jakiego celu służy program fsck w systemie Linux?

A. do przeprowadzania testów wydajności serwera WWW poprzez generowanie dużej liczby żądań
B. do nadzorowania parametrów pracy i efektywności komponentów komputera
C. do identyfikacji struktury sieci oraz analizy przepustowości sieci lokalnej
D. do oceny kondycji systemu plików oraz lokalizacji uszkodzonych sektorów
Program fsck (File System Consistency Check) jest narzędziem w systemie Linux, które służy do oceny stanu systemu plików oraz identyfikacji uszkodzeń w strukturze danych. Działa on na poziomie niskim, analizując metadane systemu plików, takie jak inode'y, bloki danych oraz struktury katalogów. W przypadku uszkodzeń, fsck potrafi wprowadzać odpowiednie korekty, co jest kluczowe dla zachowania integralności danych. Przykładowo, jeśli system plików został niepoprawnie zamknięty z powodu awarii zasilania, uruchomienie fsck przy następnym starcie systemu umożliwia skanowanie i naprawę potencjalnych uszkodzeń, co zapobiega dalszym problemom z dostępem do danych. Zgodność z dobrymi praktykami branżowymi zaleca regularne wykonywanie operacji fsck w celu monitorowania stanu systemu plików, szczególnie na serwerach oraz w systemach, które przechowują krytyczne dane. Warto również pamiętać, że przed przeprowadzeniem operacji fsck na zamontowanym systemie plików, należy go odmontować, aby uniknąć ryzyka naruszenia jego integralności.

Pytanie 27

Na podstawie załączonego obrazu, który adres powinien zostać zmieniony w ustawieniach klienta lub serwera, aby umożliwić podłączenie komputera do domeny?

Konfiguracja serwera

Physical Address. . . . . . . . : 08-00-27-07-E1-8E
DHCP Enabled. . . . . . . . . . : No
Autoconfiguration Enabled . . . : Yes
Link-local IPv6 Address . . . . : fe80::646e:47a6:1d9:91d1%12(Preferred)
IPv4 Address. . . . . . . . . . : 10.0.0.1(Preferred)
Subnet Mask . . . . . . . . . . : 255.0.0.0
Default Gateway . . . . . . . . : 10.0.0.5
DHCPv6 IAID . . . . . . . . . . : 302514215
DHCPv6 Client DUID. . . . . . . : 00-01-00-01-1E-D7-23-14-08-00-27-07-E1-8E
DNS Servers . . . . . . . . . . : ::1
                                : 127.0.0.1
NetBIOS over Tcpip. . . . . . . : Enabled

Konfiguracja klienta

Adres fizyczny. . . . . . . . . : 08-00-27-74-46-56
DHCP włączone . . . . . . . . . : Nie
Autokonfiguracja włączona . . . : Tak
Adres IPv6 połączenia lokalnego : fe80::56b:c9ae:a01d:7e32%11(Preferowane)
Adres IPv4. . . . . . . . . . . : 10.0.0.10(Preferowane)
Maska podsieci. . . . . . . . . : 255.0.0.0
Brama domyślna. . . . . . . . . : 10.0.0.5
Identyfikator IAID DHCPv6 . . . : 235405351
Identyfikator DUID klienta DHCPv6 : 00-01-00-01-1A-68-0C-FD-08-00-27-0F-E6-F8
Serwery DNS . . . . . . . . . . : fec0:0:0:ffff::1%1
                                : fec0:0:0:ffff::2%1
                                : fec0:0:0:ffff::3%1
NetBIOS przez Tcpip . . . . . . : Włączony

A. Adres DNS w ustawieniach klienta na 10.0.0.1
B. Adres DNS w ustawieniach serwera na 10.0.0.1
C. Adres IPv4 w ustawieniach klienta na 10.0.0.1
D. Adres IPv4 w ustawieniach serwera na 10.0.0.10
Adres DNS jest kluczowym elementem konfiguracji sieciowej, ponieważ pozwala na tłumaczenie nazw domenowych na adresy IP, które są zrozumiałe dla urządzeń w sieci. W przypadku potrzeby podłączenia komputera do domeny, poprawna konfiguracja DNS jest niezbędna do odnalezienia odpowiednich serwerów domenowych. Ustawienie adresu DNS na 10.0.0.1 w konfiguracji klienta sugeruje, że jest to adres serwera DNS, który powinien być dostępny z tej samej podsieci. To podejście jest zgodne z dobrymi praktykami, gdzie serwer DNS znajduje się w tej samej sieci lub jest dostępny poprzez trasę bramy domyślnej, co minimalizuje opóźnienia i zapewnia szybszy czas odpowiedzi na zapytania DNS. W wielu organizacjach praktykuje się, że serwer DNS jest również kontrolerem domeny, co umożliwia zarządzanie politykami sieciowymi i użytkownikami. Takie centralne podejście ułatwia zarządzanie infrastrukturą sieciową i zapewnia spójność w dostępie do zasobów sieciowych oraz ich bezpieczeństwo.

Pytanie 28

Złącze widoczne na obrazku pozwala na podłączenie

Ilustracja do pytania
A. myszy
B. modemu
C. drukarki
D. monitora
Złącze przedstawione na zdjęciu to złącze VGA (Video Graphics Array), które jest standardem w przesyłaniu analogowego sygnału wideo z komputera do monitora. Złącze VGA jest łatwo rozpoznawalne dzięki 15-pinowemu układowi w trzech rzędach. Wprowadzony w 1987 roku przez firmę IBM, VGA stał się podstawowym standardem w urządzeniach komputerowych przez wiele lat, zapewniając jakość obrazu na poziomie rozdzielczości 640x480 pikseli. Dziś, mimo że technologia cyfrowa, jak HDMI i DisplayPort, zyskuje na popularności, VGA nadal znajduje zastosowanie w starszych urządzeniach oraz w sytuacjach, gdzie prostota i kompatybilność są kluczowe. W kontekście podłączenia monitora, złącze VGA jest często spotykane w projektorach i monitorach starszych generacji, co pozwala na wykorzystanie istniejącej infrastruktury oraz sprzętu. Warto zauważyć, że korzystanie ze złączy VGA wymaga również kabli o odpowiedniej jakości, by zminimalizować zakłócenia sygnału i zapewnić możliwie najlepszą jakość obrazu. Dobrym podejściem jest również unikanie zbyt długich przewodów, co może prowadzić do degradacji sygnału.

Pytanie 29

Adres IP przydzielony komputerowi pozwala odbiorcy pakietu IP na odróżnienie identyfikatorów

A. hosta i rutera
B. sieci i hosta
C. sieci i bramy
D. hosta i bramy
Odpowiedź 'sieci i hosta' jest poprawna, ponieważ numer IP przypisany do komputera działa jako unikalny identyfikator, który pozwala na rozróżnienie urządzeń w sieci. W kontekście modelu OSI, adres IP jest kluczowy na warstwie trzeciej, czyli warstwie sieci, gdzie umożliwia routing danych pomiędzy różnymi sieciami. Każdy host w danej sieci powinien posiadać unikalny adres IP, co umożliwia efektywną komunikację. Przykładem może być sytuacja, w której komputer korzysta z protokołu TCP/IP, aby wysłać dane do innego hosta w tej samej sieci lokalnej lub przez Internet. Unikalność adresacji IP pozwala routerom na prawidłowe przesyłanie pakietów danych do odpowiednich hostów. Rozumienie roli adresów IP w kontekście sieci komputerowych jest kluczowe w pracy z infrastrukturą IT, zwłaszcza przy konfiguracji sieci oraz zapewnieniu bezpieczeństwa systemów poprzez odpowiednią segmentację ruchu sieciowego. Dobrą praktyką jest również stosowanie standardów takich jak IPv4 oraz IPv6, które definiują sposób adresacji w sieciach komputerowych.

Pytanie 30

Ile minimalnie pamięci RAM powinien mieć komputer, aby możliwe było uruchomienie 32-bitowego systemu operacyjnego Windows 7 w trybie graficznym?

A. 256 MB
B. 512 MB
C. 2 GB
D. 1 GB
Minimalna ilość pamięci RAM, która jest wymagana dla 32-bitowego systemu operacyjnego Windows 7 w trybie graficznym, wynosi 1 GB. Taki stan wymaga, aby system mógł efektywnie zarządzać zasobami oraz zaspokoić podstawowe potrzeby użytkownika, takie jak uruchamianie aplikacji i obsługa graficznego interfejsu użytkownika. W praktyce, posiadanie 1 GB pamięci RAM pozwala na uruchomienie standardowych programów, przeglądanie internetu, a także korzystanie z podstawowych aplikacji biurowych. Warto zaznaczyć, że chociaż system będzie działał na 1 GB RAM, to jego wydajność może być ograniczona, co prowadzi do opóźnień przy intensywnym użytkowaniu. W branży IT i w dokumentacji technicznej Microsoftu, 1 GB RAM jest uznawane za minimalny standard dla komfortowego korzystania z tego systemu operacyjnego. Dlatego, aby zapewnić optymalną wydajność i komfort pracy, zaleca się posiadanie przynajmniej 2 GB RAM.

Pytanie 31

Karta sieciowa przedstawiona na ilustracji ma zdolność przesyłania danych z maksymalną prędkością

Ilustracja do pytania
A. 11 Mb/s
B. 108 Mb/s
C. 300 Mb/s
D. 54 Mb/s
Karta sieciowa przedstawiona na obrazku działa w standardzie IEEE 802.11g który został opracowany jako rozwinięcie wcześniejszego standardu 802.11b. Standard 802.11g pozwala na przesyłanie danych z maksymalną prędkością 54 Mb/s co czyni go wydajniejszym rozwiązaniem w porównaniu do 802.11b który oferuje tylko 11 Mb/s. Dzięki zastosowaniu technologii OFDM (Orthogonal Frequency Division Multiplexing) 802.11g zapewnia lepszą przepustowość i stabilność połączenia w środowiskach o dużym zagęszczeniu urządzeń. Praktyczne zastosowania kart sieciowych w standardzie 802.11g obejmują sieci domowe oraz biurowe gdzie wymagana jest umiarkowana prędkość transmisji danych wystarczająca do przeglądania Internetu przesyłania plików czy oglądania multimediów w standardowej jakości. Warto również podkreślić że 802.11g jest wstecznie kompatybilny z 802.11b co umożliwia integrację z istniejącymi urządzeniami bez konieczności wymiany całej infrastruktury sieciowej. W latach gdy 802.11g był dominującym standardem stanowił istotny krok w kierunku rozwoju technologii bezprzewodowych dzięki czemu zyskał szeroką akceptację w branży IT.

Pytanie 32

Jakie narzędzie wykorzystuje się do połączenia pigtaila z włóknami światłowodowymi?

A. narzędzie do zaciskania wtyków RJ45, posiadające odpowiednie gniazdo dla kabla
B. stacja lutownicza, która stosuje mikroprocesor do kontrolowania temperatury
C. przedłużacz kategorii 5e z zestawem pasywnych kabli obsługujących prędkość 100 Mb/s
D. spawarka światłowodowa, łącząca włókna przy użyciu łuku elektrycznego
Spawarka światłowodowa jest narzędziem dedykowanym do łączenia pigtaili z włóknami kabli światłowodowych. Proces spawania polega na łączeniu włókien optycznych za pomocą łuku elektrycznego, co zapewnia bardzo niską stratę sygnału oraz wysoką jakość połączenia. Jest to kluczowy element instalacji światłowodowych, ponieważ odpowiednie połączenie włókien ma zasadnicze znaczenie dla efektywności przesyłania danych. W praktyce spawarki światłowodowe są wykorzystywane zarówno w instalacjach telekomunikacyjnych, jak i w sieciach lokalnych (LAN). Dobre praktyki w branży wskazują, że spawanie powinno być przeprowadzane przez wyspecjalizowany personel, który jest przeszkolony w tym zakresie, aby zminimalizować ryzyko błędów i strat sygnału. Ponadto, zgodnie z normami branżowymi, połączenia światłowodowe powinny być regularnie testowane pod kątem jakości sygnału, co pozwala upewnić się, że instalacja działa zgodnie z oczekiwaniami. Warto również wspomnieć, że spawarki światłowodowe są często wyposażone w funkcje automatycznej analizy włókien, co dodatkowo zwiększa ich dokładność i niezawodność.

Pytanie 33

Elementem, który jest odpowiedzialny za utrwalanie tonera na kartce podczas drukowania z drukarki laserowej, jest

A. bęben światłoczuły
B. elektroda ładująca
C. listwa czyszcząca
D. wałek grzewczy
Bęben światłoczuły nie jest elementem, który odpowiada za utrwalanie tonera, lecz za jego naniesienie na papier w procesie drukowania. To on jest odpowiedzialny za naświetlanie i ładowanie elektryczne, które przyciąga toner do odpowiednich miejsc na papierze. Zrozumienie roli bębna jest kluczowe, ponieważ niewłaściwe przypisanie mu funkcji utwardzania może prowadzić do poważnych nieporozumień w zakresie funkcjonowania drukarek laserowych. Elektroda ładująca to kolejny element, który ma na celu naładowanie bębna, aby toner mógł być prawidłowo przyciągany. Ostatnim z wymienionych elementów, listwa czyszcząca, jest z kolei odpowiedzialna za usuwanie resztek tonera z bębna, co jest niezbędne do zapewnienia jakości kolejnych wydruków. Wiele osób myli te elementy, co prowadzi do błędnych wniosków na temat działania drukarek laserowych. Kluczowe jest, aby pamiętać, że każdy z tych komponentów ma swoją specyficzną rolę w całym procesie drukowania, a ich właściwe funkcjonowanie jest niezbędne do uzyskania najwyższej jakości wydruków. Znajomość tych zasady pozwala uniknąć frustracji związanej z problemami w druku oraz zapewnia długotrwałe użytkowanie urządzeń.

Pytanie 34

Ile elektronów jest zgromadzonych w matrycy LCD?

A. 2
B. 3
C. 1
D. 0
Zrozumienie, iż matryca LCD nie posiada dział elektronowych, jest kluczowe dla prawidłowego pojmowania jej działania. W odpowiedziach sugerujących, że matryca LCD ma przynajmniej jedno działko elektronowe, występuje mylne przekonanie, że technologia LCD operuje na zasadzie tradycyjnych systemów elektronicznych, które rzeczywiście wykorzystują takie elementy jak katody czy anody, by emitować elektryczność i wytwarzać obraz. Jednak w rzeczywistości matryce LCD opierają się na działaniu ciekłych kryształów, które zmieniają swoje właściwości optyczne w odpowiedzi na przyłożone pole elektryczne. To prowadzi do błędnych koncepcji, iż jeden czy więcej dział elektronowych miałoby bezpośredni wpływ na działanie wyświetlaczy LCD. Takie założenia mogą wynikać z nieznajomości podstawowych zasad funkcjonowania urządzeń opartych na ciekłych kryształach. W rzeczywistości, zamiast dział elektronowych, w matrycach LCD używane są cienkowarstwowe tranzystory (TFT), które zamiast emitować elektrony, kontrolują przepływ sygnału w pikselach. To podejście jest bardziej efektywne i umożliwia bardziej precyzyjne sterowanie obrazem. Warto zauważyć, że w kontekście wyświetlaczy, kluczowym aspektem jest również ich zdolność do wyświetlania obrazów o wysokiej jakości, co jest osiągane dzięki technologii TFT, a nie poprzez jakiekolwiek działka elektronowe. Takie nieporozumienia mogą prowadzić do fundamentalnych błędów w zrozumieniu nowoczesnych technologii wyświetlania, a ich znajomość jest niezbędna, aby skutecznie projektować i rozwijać innowacyjne rozwiązania w tej dziedzinie.

Pytanie 35

Trzech użytkowników komputera z systemem operacyjnym Windows XP Pro posiada swoje foldery z dokumentami w głównym katalogu dysku C:. Na dysku znajduje się system plików NTFS. Użytkownicy mają utworzone konta z ograniczonymi uprawnieniami. Jak można zabezpieczyć folder każdego z użytkowników, aby inni nie mieli możliwości modyfikacji jego zawartości?

A. Przydzielić uprawnienia NTFS do edytowania folderu jedynie odpowiedniemu użytkownikowi
B. Ustawić dla dokumentów atrybut Ukryty w ustawieniach folderów
C. Nie udostępniać dokumentów w sekcji Udostępnianie w ustawieniach folderu
D. Zmierzyć każdemu z użytkowników typ konta na konto z ograniczeniami
Przypisanie odpowiednich uprawnień NTFS do folderów użytkowników jest kluczowym krokiem w zabezpieczaniu danych w systemie Windows XP. NTFS, jako nowoczesny system plików, oferuje zaawansowane możliwości zarządzania uprawnieniami, które pozwalają kontrolować, kto może modyfikować, odczytywać lub wykonywać pliki i foldery. W przypadku, gdy każdy z trzech użytkowników ma swój własny folder z dokumentami, należy skonfigurować uprawnienia tak, aby tylko dany użytkownik miał możliwość ich edytowania. Przykładowo, jeśli użytkownik A ma folder 'Dokumenty użytkownika A', to tylko on powinien mieć przyznane uprawnienia do zapisu, natomiast użytkownicy B i C powinni mieć te uprawnienia odrzucone. Dzięki temu, nawet jeśli inni użytkownicy mają dostęp do systemu, nie będą w stanie zmieniać zawartości folderów innych osób. Tego rodzaju praktyka jest zgodna z zasadą minimalnych uprawnień, która jest jedną z podstawowych zasad bezpieczeństwa IT, pomagając w ochronie danych przed nieautoryzowanym dostępem i modyfikacjami.

Pytanie 36

Jak nazywa się licencja oprogramowania pozwalająca na bezpłatne dystrybucję aplikacji?

A. OEM
B. freware
C. shareware
D. MOLP
Odpowiedź 'freware' jest poprawna, ponieważ odnosi się do kategorii oprogramowania, które jest udostępniane użytkownikom za darmo, co pozwala na jego swobodne rozpowszechnianie. W praktyce, użytkownicy mogą pobierać, instalować i używać tego oprogramowania bez konieczności ponoszenia żadnych kosztów. Przykłady oprogramowania freeware obejmują popularne narzędzia, takie jak GIMP, które jest darmową alternatywą dla Photoshopa, czy VLC Media Player, który pozwala na odtwarzanie różnorodnych formatów multimedialnych. Ważne jest, aby pamiętać, że freeware różni się od oprogramowania open source, które nie tylko jest darmowe, ale także umożliwia użytkownikom dostęp do kodu źródłowego i jego modyfikację. Standardy branżowe podkreślają znaczenie transparentności oraz dostępności oprogramowania, co jest zgodne z ideą freeware, która promuje innowacyjność i współpracę w społeczności technologicznej.

Pytanie 37

Aby aktywować tryb awaryjny w systemach z rodziny Windows, w trakcie uruchamiania komputera trzeba nacisnąć klawisz

A. F7
B. F10
C. F1
D. F8
Klawisz F8 jest odpowiedzialny za uruchamianie trybu awaryjnego w systemach operacyjnych Windows, szczególnie w wersjach do Windows 7. Umożliwia on użytkownikom załadowanie minimalnej wersji systemu, co jest szczególnie pomocne w diagnostyce i naprawie problemów z systemem. Tryb awaryjny uruchamia system z ograniczoną liczbą sterowników i funkcji, co pozwala na łatwiejsze zidentyfikowanie problemów, takich jak konflikty oprogramowania czy błędy sterowników. Użytkownicy mogą w nim również uruchomić narzędzia takie jak 'Przywracanie systemu' lub 'Zarządzanie urządzeniami', co zwiększa szansę na skuteczne naprawienie problemów. Warto zaznaczyć, że w systemach nowszych, takich jak Windows 8 i 10, dostęp do trybu awaryjnego uzyskuje się nieco inaczej, głównie poprzez menu rozruchowe. Niemniej jednak, znajomość klawisza F8 jest istotna dla użytkowników starszych systemów, którzy mogą napotkać problemy z działaniem systemu.

Pytanie 38

Oprogramowanie, które często przerywa działanie przez wyświetlanie komunikatu o konieczności dokonania zapłaty, a które spowoduje zniknięcie tego komunikatu, jest dystrybuowane na podstawie licencji

A. careware
B. nagware
C. crippleware
D. greenware
Nagware to termin odnoszący się do oprogramowania, które regularnie przerywa działanie, wyświetlając komunikaty żądające zapłaty za licencję. Oprogramowanie to może w pewnym momencie zablokować dostęp do pełnej funkcjonalności, jeśli użytkownik nie zdecyduje się na uiszczenie opłaty. Przykłady nagware to aplikacje, które oferują pełne funkcje przez ograniczony czas, a następnie wprowadzają ograniczenia, dopóki użytkownik nie wykupi pełnej wersji. Warto zauważyć, że nagware różni się od innych typów oprogramowania, takich jak crippleware, które ogranicza funkcjonalność bez wyświetlania komunikatów o płatności. W branży technologicznej nagware jest często wykorzystywane w modelach freemium, gdzie użytkownik ma możliwość przetestowania produktu przed podjęciem decyzji o zakupie. Praktyki te są zgodne z podejściem do maksymalizacji wartości dla klienta, co jest kluczowe w strategiach marketingowych wielu firm, w tym producentów oprogramowania. Ta forma licencjonowania może być korzystna dla obu stron, pod warunkiem, że jest stosowana w przejrzysty sposób, co odzwierciedla dobre praktyki branżowe w zakresie zasadności i etyki w sprzedaży oprogramowania.

Pytanie 39

Dokumentacja końcowa dla planowanej sieci LAN powinna między innymi zawierać

A. raport pomiarowy torów transmisyjnych
B. wykaz rysunków wykonawczych
C. założenia projektowe sieci lokalnej
D. kosztorys prac instalacyjnych
Wielu profesjonalistów w dziedzinie IT może błędnie interpretować znaczenie dokumentacji powykonawczej sieci LAN, co prowadzi do pominięcia kluczowych elementów. Na przykład, założenia projektowe sieci lokalnej mogą być istotnym dokumentem, jednak nie odzwierciedlają one powykonawczego aspektu instalacji. Zdefiniowanie założeń projektowych jest etapem wstępnym, zajmującym się planowaniem i nie dostarcza informacji o rzeczywistym stanie zrealizowanej infrastruktury. Podobnie, spis rysunków wykonawczych może być przydatny, jednak nie zastępuje rzeczywistych wyników pomiarowych, które są kluczowe dla potwierdzenia, że sieć działa zgodnie z wymaganiami. Kosztorys robót instalatorskich także nie jest dokumentem kluczowym w kontekście powykonawczym, ponieważ koncentruje się na aspektach finansowych projektu, a nie na jego realizacji. Właściwe podejście do dokumentacji powykonawczej powinno skupiać się na wynikach pomiarowych, które potwierdzają funkcjonalność oraz jakość instalacji, co jest zgodne z najlepszymi praktykami branżowymi. Bez dokładnych raportów pomiarowych, ryzykujemy wystąpienie problemów z wydajnością sieci, co może prowadzić do kosztownych przestojów i frustracji użytkowników końcowych.

Pytanie 40

Jakie urządzenie NIE powinno być serwisowane podczas korzystania z urządzeń antystatycznych?

A. Modem
B. Pamięć
C. Zasilacz
D. Dysk twardy
Dyski twarde, pamięci oraz modemy to urządzenia, które można naprawiać w trakcie używania antystatycznych metod ochrony. Często zakłada się, że wszelkie komponenty komputerowe są bezpieczne do naprawy, o ile stosuje się odpowiednie środki zapobiegawcze, co może prowadzić do błędnych wniosków. Dyski twarde, choć krytyczne dla przechowywania danych, nie mają takiej samej struktury niebezpieczeństwa jak zasilacze. W momencie, gdy można odłączyć zasilanie, ryzyko statyczne jest minimalizowane, a elementy takie jak talerze czy głowice nie są narażone na wysokie napięcie. Jednakże nieprawidłowe myślenie o dyskach twardych, jako o jednostkach w pełni bezpiecznych, ignoruje ryzyko uszkodzenia mechanicznego, które może wystąpić w trakcie naprawy. Pamięci RAM również są wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi, ale są znacznie mniej niebezpieczne w porównaniu do zasilaczy. Modemy, będące urządzeniami komunikacyjnymi, mogą być bezpiecznie naprawiane, choć ich eksploatacja powinna odbywać się z zachowaniem zasad BHP. W konkluzyjnych punktach, mylenie tych urządzeń pod względem ryzyka zasilania prowadzi do niedocenienia znaczenia odpowiednich procedur bezpieczeństwa oraz standardów branżowych.