Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 23:16
  • Data zakończenia: 29 maja 2025 23:25

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości poziomej i kąta pionowego
B. odległości pionowej i kąta pionowego
C. odległości poziomej i kąta poziomego
D. odległości pionowej i kąta poziomego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 2

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 100 m
B. 150 m
C. 50 m
D. 200 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 3

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. celownikiem
B. limbusem
C. alidadą
D. spodarką
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 4

Wyniki pomiarów należy skorygować przed ich użyciem w obliczeniach, uwzględniając poprawki związane z błędami

A. systematyczne.
B. pozorne.
C. średnie.
D. grube.
Odpowiedź "systematyczne" jest prawidłowa, ponieważ odnosi się do błędów systematycznych, które są stałymi odchyleniami wyników pomiarów spowodowanymi przez określone czynniki, takie jak nieprawidłowości w użytym sprzęcie, błędy w metodzie pomiarowej czy wpływ otoczenia. Korygowanie wyników pomiarów w celu eliminacji tych błędów jest kluczowe dla uzyskania dokładnych i wiarygodnych danych. Przykładem może być pomiar temperatury, gdzie błędy systematyczne mogą wynikać z nieprawidłowo skalibrowanego termometru. Poprawki wprowadzane na etapie analizy danych, takie jak kalibracja sprzętu przed pomiarem lub stosowanie kompensacji wpływu temperatury otoczenia, są zgodne z najlepszymi praktykami w naukach przyrodniczych i inżynieryjnych. Eliminowanie błędów systematycznych jest również zgodne z normami ISO, które podkreślają znaczenie dokładności i precyzji w procesach pomiarowych, co jest kluczowe dla zapewnienia wysokiej jakości wyników badań oraz ich rzetelności.

Pytanie 5

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 + α - 200g
B. Az2-3 = Az2-1 + α - 200g
C. Az2-3 = Az1-2 – α + 200g
D. Az2-3 = Az2-1 – α + 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 6

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. wysokościowych pomiarów terenowych
B. materiału wyjściowego, na podstawie którego powstała mapa
C. deformacji papieru
D. przeniesienia punktów z materiału wyjściowego na oryginał mapy
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.

Pytanie 7

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 7,60 m
B. 76,04 m
C. 64,94 m
D. 6,49 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 8

Długość odcinka zmierzonego na mapie w skali 1:500 to 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,5 m
B. 2,22 m
C. 5,55 m
D. 22,2 m
Skala 1:500 oznacza, że 1 cm na mapie odpowiada 500 cm w rzeczywistości. Jak chcesz obliczyć rzeczywistą długość, to wystarczy, że pomnożysz długość odcinka na mapie przez wartość skali. W tym przypadku: 11,1 cm x 500 to 5550 cm. A jak to przeliczymy na metry, to wychodzi 55,5 m. To typowe zadanie w geodezji. Widać, jak ważne jest zrozumienie skali mapy, szczególnie w pomiarach terenowych. Przykładowo, jak inżynierowie planują budowę, to muszą dobrze przeliczać długości, żeby wszystko pasowało do rzeczywistości. Moim zdaniem, zrozumienie skali jest kluczowe w każdej pracy z pomiarami przestrzennymi, w kartografii czy nawigacji.

Pytanie 9

Na podstawie tabeli określ dopuszczalną długość domiaru prostokątnego do budynku przy pomiarze sytuacyjnym metodą ortogonalną.

Grupa
szczegółów terenowych
Dopuszczalna
długość rzędnej
Dopuszczalny błąd pomiaru
długości rzędnej i odciętej
I25 m0,05 m
II50 m0,05 m
III70 m0,10 m

A. 50 m
B. 0,05 m
C. 25 m
D. 0,10 m
Poprawna odpowiedź to 25 m, ponieważ zgodnie z tabelą dopuszczalnych długości rzędnej dla różnych grup szczegółów terenowych, grupa I posiada maksymalną długość domiaru prostokątnego do budynku wynoszącą 25 m. W kontekście pomiaru sytuacyjnego metodą ortogonalną, długość ta ma kluczowe znaczenie dla precyzyjności oraz dokładności wykonania pomiarów. Ustalanie odpowiednich długości domiaru jest fundamentalnym elementem w pracach geodezyjnych, ponieważ bezpośrednio wpływa na jakość i wiarygodność danych pomiarowych. W praktyce, stosowanie tej długości pozwala na skuteczne odwzorowanie elementów terenowych oraz minimalizuje błędy wynikające z nieprawidłowych odległości. Należy pamiętać, że w geodezji istnieją określone standardy, które regulują wymagania dotyczące pomiarów sytuacyjnych, a ich przestrzeganie ma na celu zapewnienie zgodności z obowiązującymi normami oraz najlepszymi praktykami w branży.

Pytanie 10

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Współrzędnika
B. Nanośnika biegunowego
C. Koordynatografu
D. Nanośnika prostokątnego
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 11

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. trygonometrycznej
B. stałej prostej
C. wcięć kątowych
D. fotogrametrycznej
Odpowiedź wskazująca na metodę stałej prostej jako nieodpowiednią do badania pionowości komina przemysłowego jest poprawna, ponieważ ta technika nie jest w stanie precyzyjnie określić odchyleń od pionu. Metoda ta polega na wyznaczeniu linii prostych, które mogą być łatwo zakłócone przez zjawiska atmosferyczne, a także przez trudne warunki terenowe. W praktyce, do oceny pionowości kominów przemysłowych najczęściej wykorzystuje się metody takie jak wcięcia kątowe, trygonometryczne czy fotogrametryczne, które zapewniają większą dokładność i powtarzalność pomiarów. W przypadku pomiarów kominów, które mogą mieć znaczne wysokości, kluczowe jest zastosowanie technik, które uwzględniają zarówno perspektywiczne zniekształcenia, jak i ewentualne przesunięcia w poziomie, co czyni metody oparte na geodezji i fotogrametrii bardziej odpowiednimi. Przykłady zastosowania takich metod można znaleźć w dokumentacji projektowej budynków przemysłowych, gdzie dokładność pomiarów pionowości ma kluczowe znaczenie dla bezpieczeństwa konstrukcji.

Pytanie 12

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,02 m
B. 0,004 m
C. 0,01 m
D. 0,001 m
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 13

Która z metod nie jest przeznaczona do realizacji geodezyjnych sytuacyjnych pomiarów w terenie?

A. Punktów rozproszonych
B. Biegunowa
C. Domiarów prostokątnych
D. Wcięć kątowych
Odpowiedź "Punktów rozproszonych" jest prawidłowa, ponieważ metoda ta nie służy do geodezyjnych sytuacyjnych pomiarów terenowych. W geodezji sytuacyjnej wykorzystuje się techniki, które umożliwiają precyzyjne określenie położenia punktów w terenie, co jest kluczowe dla tworzenia map oraz dokumentacji geodezyjnej. Metody takie jak wcięcia kątowe, biegunowa czy domiary prostokątne są standardowymi technikami stosowanymi do precyzyjnego pomiaru kątów i odległości pomiędzy punktami. Przykładowo, metoda biegunowa polega na pomiarze kątów i odległości od jednego punktu do innych, co pozwala na tworzenie dokładnych rysunków sytuacyjnych. Z kolei domiary prostokątne wykorzystują współrzędne prostokątne, co jest szczególnie przydatne w obszarach miejskich. W przypadku punktów rozproszonych, metoda ta nie jest stosowana do pomiarów sytuacyjnych, lecz raczej do określenia lokalizacji punktów w kontekście pomiarów przestrzennych, co nie odpowiada wymaganiom geodezyjnym w analizie sytuacyjnej.

Pytanie 14

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks200
B. ksP200
C. ksB20
D. ks20
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 15

Jakim południkiem osiowym posługuje się odwzorowanie Gaussa-Krügera w systemie współrzędnych PL-2000?

A. 22º
B. 21º
C. 20º
D. 19º
Odpowiedź 21º jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkom osiowym odwzorowania Gaussa-Krügera przypisane są specyficzne wartości, które odpowiadają określonym strefom. Południk 21º jest kluczowy dla strefy 3 tego odwzorowania, która obejmuje centralną część Polski. W praktyce, wiedza o południkach osiowych jest niezbędna przy tworzeniu map oraz w systemach informacji geograficznej (GIS), gdzie precyzyjne określenie lokalizacji jest kluczowe. Standardy kartograficzne, takie jak PN-EN ISO 19111, podkreślają znaczenie dokładnych odwzorowań i stosownych współrzędnych w procesie mapowania, co sprawia, że umiejętność ich wykorzystania jest niezbędna w pracy geodetów i kartografów. Ponadto, w kontekście planowania przestrzennego i analizy danych geograficznych, znajomość stref odwzorowania pozwala na lepsze zrozumienie i analizę zjawisk przestrzennych.

Pytanie 16

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby przyspieszyć proces wykonywania pomiarów.
B. Aby zredukować zużycie materiałów pomiarowych.
C. Aby ułatwić transport sprzętu na miejsce pomiaru.
D. Aby zapewnić dokładność i wiarygodność pomiarów.
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.

Pytanie 17

Na precyzję pomiarów niwelacyjnych nie wpływa

A. kolejność dokonywanych pomiarów
B. odległość między niwelatorem a łatami
C. poziomowanie libelli niwelacyjnej
D. wyważenie łat niwelacyjnych
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 18

Jakie informacje są konieczne do zlokalizowania w terenie punktu geodezyjnego?

A. Opis topograficzny punktu
B. Godło odpowiedniego arkusza mapy zasadniczej
C. Szkic polowy wykonania osnowy
D. Zestawienie szkiców terenowych
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 19

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. dalmiarze elektromagnetyczne
B. węgielnice pryzmatyczne
C. piony optyczne
D. łaty niwelacyjne
Węgielnice pryzmatyczne to narzędzia wykorzystywane w geodezji i budownictwie do precyzyjnego rzutowania punktów na określoną prostą. Działają one na zasadzie wykorzystania właściwości optycznych pryzmatu, co pozwala na dokładne odwzorowanie zdefiniowanej linii na terenie. Dzięki swojej konstrukcji, węgielnice te umożliwiają wytyczanie osi budynków oraz elementów infrastruktury, co jest kluczowe w procesie budowlanym. W praktyce, węgielnice pryzmatyczne są często używane w połączeniu z dalmierzami, co zwiększa dokładność pomiarów. Standardy branżowe, takie jak normy geodezyjne, zalecają stosowanie węgielnic pryzmatycznych w pracach wymagających dużej precyzji. Ich właściwe użycie pozwala na minimalizację błędów rzutowania, co jest niezbędne dla prawidłowego funkcjonowania całego projektu budowlanego.

Pytanie 20

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. C-Geo
B. Mikro-Map
C. Winkalk
D. Microstation
Winkalk to program, który nie jest przeznaczony do wykreślania mapy zasadniczej, ponieważ jego funkcjonalność jest ukierunkowana głównie na obliczenia inżynieryjne i kosztorysowanie, a nie na tworzenie map. Mapy zasadnicze są opracowywane na podstawie danych geodezyjnych, a ich tworzenie wymaga specjalistycznych narzędzi do analizy i wizualizacji tych danych. Programy takie jak C-Geo, Mikro-Map i Microstation są odpowiednie do takich zadań, ponieważ oferują zaawansowane funkcje geodezyjne, w tym integrację z systemami GPS, obsługę plików CAD oraz możliwość generowania map w standardach obowiązujących w geodezji. Przykładowo, C-Geo jest często stosowany przez geodetów do przygotowywania map do celów prawnych i budowlanych, co czyni go odpowiednim wyborem do wykreślania mapy zasadniczej.

Pytanie 21

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. szacunkowego
B. pomiarowego
C. katastralnego
D. technicznego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 22

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji geometrycznej
B. Biegunową oraz niwelacji trygonometrycznej
C. Ortogonalną oraz niwelacji trygonometrycznej
D. Biegunową oraz niwelacji geometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 23

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n+2)∙200g
B. [β] = Ap − Ak + n∙200g
C. [β] = (n−2)∙200g
D. [β] = Ak − Ap + n∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 24

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +20cc
B. +15cc
C. +5cc
D. +10cc
Aby obliczyć błąd indeksu lunety, należy wykorzystać różnicę kątów pomierzonych w dwóch położeniach. W tym przypadku mamy kąt pionowy KL równy 95,0030g oraz kąt pionowy KP równy 304,9980g. Obliczamy różnicę pomiędzy tymi kątami: 304,9980g - 95,0030g = 209,9950g. Teoretycznie, w idealnych warunkach kąt ten powinien wynosić 200g, ponieważ luneta powinna mierzyć pełny obrót. W związku z tym, błąd indeksu wynosi: 209,9950g - 200g = 9,9950g. Ten błąd jest bliski wartości 10cc, co sugeruje, że zmierzone kąty mogą być zniekształcone przez błąd w ustawieniu lunety. Przyjmuje się, że w praktycznych zastosowaniach geodezyjnych zaleca się staranne kalibracje instrumentów, aby zminimalizować takie błędy i zapewnić wysoką dokładność pomiarów.

Pytanie 25

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. mapie zasadniczej
B. mapie ewidencyjnej
C. szkicu inwentaryzacyjnym
D. szkicu dokumentacyjnym
Szkic inwentaryzacyjny, mapa ewidencyjna i mapa zasadnicza to dokumenty, które mają różne role w geodezji i kartografii, ale nie nadają się do nanoszenia współrzędnych punktów osnowy realizacyjnej tak, jak szkic dokumentacyjny. Szkic inwentaryzacyjny pokazuje stan obiektów budowlanych i infrastruktury, a jego głównym celem jest odzwierciedlenie stanu fizycznego obiektów. Mapa ewidencyjna zajmuje się rejestracją danych o gruntach i ich użytkowaniu, a nie tak dokładnym przedstawieniem współrzędnych punktów osnowy. Mapa zasadnicza w ogóle dostarcza ogólnych informacji o terenie, pokazując cechy topograficzne i administracyjne, ale nie sprawdzi się przy dokumentacji dokładnych pomiarów. Dużo ludzi myśli, że te mapy i szkice można używać zamiennie, co wprowadza w błąd i może prowadzić do problemów przy późniejszych pracach geodezyjnych. Ważne, żeby rozumieć różnice między tymi dokumentami i ich zastosowaniem, bo to klucz do wiarygodnych wyników w geodezji i zgodności ze standardami w branży.

Pytanie 26

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Sytuacyjnej
B. Wysokościowej
C. Ewidencyjnej
D. Topograficznej
Właściwym miejscem do wykreślenia włązu studzienki kanalizacyjnej na mapie zasadniczej jest nakładka sytuacyjna. Nakładka ta ma za zadanie przedstawienie układu obiektów na danym terenie, w tym również infrastruktury technicznej, takiej jak sieci kanalizacyjne. W przypadku studzienek kanalizacyjnych, ich lokalizacja jest kluczowa, ponieważ wpływa na zarządzanie infrastrukturą miejską, w tym na prace konserwacyjne, inspekcję oraz ewentualne awarie. W praktyce, włązy studzienek powinny być oznaczone w sposób umożliwiający ich łatwe zlokalizowanie na mapach i w terenie, co jest zgodne z obowiązującymi normami, takimi jak PN-EN ISO 19110, dotycząca opisu obiektów geograficznych. Dzięki temu, pracownicy odpowiedzialni za obsługę sieci kanalizacyjnych będą mogli szybko reagować na potrzebne interwencje, co jest niezwykle istotne dla zapewnienia sprawności systemu odprowadzania ścieków i minimalizowania ryzyka związanego z ich awariami.

Pytanie 27

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. zdigitalizowane mapy
B. zdjęcia fotogrametryczne
C. wywiady branżowe
D. bezpośrednie pomiary geodezyjne
Wywiady branżowe to nie to samo co dane numeryczne, które są potrzebne do robienia mapy numerycznej. Te mapy potrzebują danych, które da się zmierzyć, zarejestrować albo sfotografować. Na przykład, zdjęcia fotogrametryczne pozwalają zbudować model terenu na podstawie zdjęć robionych z góry. Do tego dochodzą zdigitalizowane mapy, które przenoszą papierowe mapy do komputera. Pomiary geodezyjne dają nam informacje o konkretnych punktach w terenie, co jest mega ważne, żeby wszystko dobrze odwzorować. Wywiady mogą dostarczyć ciekawe konteksty, ale nie dają konkretnej liczby, więc nie nadają się do map numerycznych.

Pytanie 28

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. geodezyjnej ewidencji sieci uzbrojenia terenu
B. szczegółowych osnów geodezyjnych
C. obiektów topograficznych
D. ewidencji gruntów i budynków
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.

Pytanie 29

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. rysunek instalacji wewnętrznej w budynku.
B. kąt nachylenia przewodu.
C. materiał, z którego wykonano przewód.
D. średnicę przewodu.
Szkic polowy inwentaryzacji powykonawczej przyłącza kanalizacyjnego powinien zawierać kilka istotnych informacji, które są kluczowe dla sprawnego działania całego systemu. Średnica przewodu to jedna z tych najważniejszych rzeczy, bo to ona decyduje o tym, ile ścieków może przejść przez instalację. Według norm, średnica rury musi być dobrana do tego, ile ścieków będzie odprowadzane oraz do specyfiki budynku. Na przykład, w domach mieszkalnych zazwyczaj używa się rur o średnicy 100 mm, co powinno wystarczyć dla typowego gospodarstwa domowego. Warto to rozumieć, szczególnie przy planowaniu przyszłych prac budowlanych czy modernizacji, bo źle dobrana średnica może spowodować zatory i inne problemy w systemie. A znajomość średnicy pomoże też w odpowiednim doborze materiałów i nasadek do przewodów – to ważne, żeby wszystko było zgodne ze standardami jakości. Z moich doświadczeń wynika, że błędne określenie średnicy może prowadzić do poważnych awarii, co z kolei zwiększa koszty późniejszych napraw.

Pytanie 30

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. ciepłownicze
B. kanalizacyjne
C. elektroenergetyczne
D. gazowe
Brązowy kolor na mapach zasadniczych jest standardowym oznaczeniem dla sieci kanalizacyjnych. Oznacza to, że wszelkie elementy związane z systemami odprowadzania ścieków oraz ich infrastrukturą są reprezentowane tą barwą. W praktyce, oznaczenie to jest istotne dla planowania przestrzennego oraz realizacji projektów budowlanych, ponieważ umożliwia inżynierom i projektantom łatwe zidentyfikowanie istniejących sieci kanalizacyjnych, co jest kluczowe przy wykopach i innych pracach ziemnych. Ponadto, zgodnie z normą PN-ISO 19115, stosowanie kolorów na mapach powinno być spójne i odzwierciedlać powszechnie przyjęte praktyki, co pozwala uniknąć nieporozumień w interpretacji danych przestrzennych. Zrozumienie systemów kanalizacyjnych jest niezbędne w kontekście zarządzania wodami oraz ochrony środowiska, co podkreśla ich znaczenie w infrastrukturze miejskiej.

Pytanie 31

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:500
B. 1:10 000
C. 1:1 000
D. 1:5 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 32

Jakie informacje można uzyskać z mapy zasadniczej?

A. Informacje o rozmieszczeniu fauny w okolicy (mapy zasadnicze nie obejmują takich danych).
B. Informacje o gatunkach roślin występujących w regionie (to nie jest zakres map zasadniczych).
C. Informacje o przebiegu infrastruktury technicznej i granicach nieruchomości.
D. Informacje o strefach klimatycznych (takie informacje nie są zawarte na mapach zasadniczych).
Mapa zasadnicza to kluczowe narzędzie w geodezji i planowaniu przestrzennym, które dostarcza szczegółowych informacji o terenie. Zawiera dane o granicach działek, lokalizacji budynków, sieci uzbrojenia terenu jak kanalizacja, gazociągi, linie energetyczne oraz inne elementy infrastruktury technicznej. Z mojego doświadczenia, szczególnie w projektowaniu urbanistycznym, mapa zasadnicza jest nieocenionym źródłem informacji. Dzięki niej można dokładnie zidentyfikować ograniczenia terenu, co jest niezbędne przy planowaniu nowych inwestycji. Ponadto, mapa zasadnicza często zawiera informacje o ukształtowaniu terenu, co jest kluczowe przy analizie możliwości zagospodarowania przestrzeni. W praktyce zawodowej niejednokrotnie spotkałem się z przypadkami, gdzie błędna interpretacja danych z mapy zasadniczej prowadziła do problemów prawnych lub technicznych. Dlatego tak ważne jest, by umiejętnie korzystać z tego narzędzia i rozumieć, jakie informacje są na niej zawarte. Współczesne mapy zasadnicze są również zintegrowane z systemami informacji przestrzennej (GIS), co umożliwia ich łatwiejszą aktualizację i analizę danych w kontekście większej skali urbanistycznej.

Pytanie 33

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. podcentra
B. kierunkowe
C. poboczniki
D. przeniesienia
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 34

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. w obszarze wpływu monitorowanego obiektu
B. w sąsiedztwie monitorowanego obiektu
C. poza obszarem wpływu monitorowanego obiektu
D. na monitorowanym obiekcie
Prawidłowa odpowiedź, czyli lokalizacja punktów odniesienia poza strefą oddziaływania monitorowanego obiektu, jest kluczowa dla poprawności pomiarów przemieszczeń pionowych. Punkty odniesienia powinny być umiejscowione w obszarze, który nie jest narażony na wpływ czynników wywołujących ruch monitorowanego obiektu, takich jak drgania, osiadanie lub przemieszczenia. Dzięki temu uzyskujemy stabilne i wiarygodne dane, które można wykorzystać do analizy zmian w długim okresie. Na przykład, w inżynierii lądowej, standardy takie jak Eurokod 7 zalecają, aby punkty odniesienia były umieszczone w lokalizacjach, które są z dala od wszelkich potencjalnych zakłóceń. Przykładem może być monitorowanie osiadania budynków; jeśli punkty referencyjne znajdują się w pobliżu, mogą być poddawane tym samym wpływom co obiekt, co zafałszuje wyniki pomiarów. W kontekście geodezji, takie podejście jest kluczowe do uzyskania precyzyjnych wyników, które są podstawą do podejmowania decyzji inżynieryjnych.

Pytanie 35

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:300
B. 1:30000
C. 1:30
D. 1:3000
Analizując dostępne odpowiedzi, ważne jest, aby zrozumieć, jak oblicza się błąd względny oraz dlaczego wybrane metody mogą prowadzić do mylnych wyników. Wiele osób może mylnie zakładać, że błąd względny można określić w sposób prosty, traktując błąd pomiaru jako jedynie procent od całkowitej długości. Na przykład, odpowiedzi takie jak 1:30000 mogą wynikać z błędnego zrozumienia, że im mniejszy błąd pomiarowy, tym lepsza jakość pomiaru, co jest uproszczeniem. Taka interpretacja ignoruje rzeczywisty kontekst pomiaru, który w tym przypadku jest określony przez stosunek błędu do długości zmierzonego odcinka. Ponadto, podejście do 1:30 może sugerować, że błąd pomiarowy jest znacznie większy niż rzeczywiście, co może wynikać z niewłaściwego oszacowania wielkości błędu w kontekście stosunków, jakie są typowe dla tej długości. Kolejna odpowiedź, 1:300, może być oparta na błędnej kalkulacji wartości błędu, zniekształcając rzeczywisty wpływ błędu na pomiar. Aby efektywnie unikać takich błędów, kluczowe jest zrozumienie metodyki pomiarowej oraz odpowiedniego stosowania wzorów do obliczeń. W profesjonalnym środowisku, jak inżynieria lądowa czy geodezja, błąd względny jest stosowany do oceny precyzji i dokładności, co jest niezbędne do uzyskania wiarygodnych wyników.

Pytanie 36

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to jego pole na mapie w skali 1:1000 będzie wynosić

A. 100,0 cm2
B. 0,1 cm2
C. 1,0 cm2
D. 10,0 cm2
W przypadku niepoprawnych odpowiedzi, warto zauważyć, że wiele osób może mylić jednostki miary lub źle interpretować skalę. Na przykład, odpowiedzi wskazujące na 0,1 cm² lub 100,0 cm² mogą nasunąć błędne wnioski z niepoprawnych obliczeń. Przy skali 1:1000, istotne jest zrozumienie, że każdy 1 cm na mapie odpowiada 1000 cm w terenie, co prowadzi do problemów z proporcjonalnością. Typowym błędem jest także nieprzeliczenie jednostek, co może skutkować niewłaściwym obliczeniem pola powierzchni. Często zapomina się o tym, że pola na mapie są reprezentowane w znacznie mniejszych jednostkach, co przyczynia się do dezorientacji. Ponadto, niektóre osoby mogą próbować bezpośrednio przekładać wartości z metra na centymetry, nie uwzględniając, że skala wymaga przeliczenia zarówno długości, jak i pola powierzchni. Właściwe podejście wymaga pełnego zrozumienia koncepcji skali oraz sposobu przeliczania jednostek, co jest kluczowe w wielu dziedzinach, takich jak geodezja, architektura czy inżynieria lądowa. Bez tego zrozumienia, ryzyko błędnych wyników znacznie wzrasta, co może prowadzić do poważnych błędów w praktyce.

Pytanie 37

Wysokości elementów infrastruktury terenu na mapach geodezyjnych podaje się z dokładnością

A. 0,1 m
B. 0,05 m
C. 0,01 m
D. 0,5 m
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podawane są z dokładnością do 0,01 m, co wynika z potrzeby zachowania precyzji w dokumentacji geodezyjnej. Taka dokładność jest szczególnie istotna w kontekście prac budowlanych, inżynieryjnych oraz planowania przestrzennego. Umożliwia to nie tylko dokładne odwzorowanie terenu, ale także wspiera podejmowanie decyzji na podstawie precyzyjnych danych. Na przykład, w przypadku budowy infrastruktury, umiejętność dokładnego określenia wysokości elementów terenu ma kluczowe znaczenie dla projektowania systemów odwodnienia czy układania dróg. Stosowanie się do tej normy jest zgodne z wytycznymi określonymi w Polskiej Normie PN-EN ISO 19100, która dotyczy geoinformatyki. Praktyka ta również podnosi jakość usług geodezyjnych, co jest kluczowe w kontekście zaufania do dokumentacji oraz jej wykorzystania w późniejszych etapach inwestycji.

Pytanie 38

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czarnym
B. czerwonym
C. żółtym
D. brązowym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 39

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta pionowego i odległości skośnej
B. kąta pionowego i odległości poziomej
C. kąta poziomego i odległości skośnej
D. kąta poziomego i odległości poziomej
Wybór kąta poziomego oraz odległości poziomej podczas pomiaru narożnika ogrodzenia metodą biegunową jest zgodny z praktycznymi zasadami geodezji. Obserwacja kąta poziomego pozwala na precyzyjne określenie kierunku, w którym znajduje się punkt, co jest kluczowe dla określenia granic działek i lokalizacji obiektów. Z kolei pomiar odległości poziomej jest istotny, ponieważ pozwala na dokładne wyznaczenie dystansu pomiędzy punktami w poziomie, co ma bezpośrednie zastosowanie w geodezyjnych mapach i planach. Zastosowanie tej metody jest szczególnie ważne w przypadku działek o nieregularnym kształcie, gdzie dokładność pomiarów wpływa na późniejsze decyzje dotyczące zagospodarowania przestrzennego. Warto również zauważyć, że zgodnie z normami ISO oraz krajowymi standardami geodezyjnymi, wykorzystanie pomiarów poziomych jest preferowane w wielu przypadkach, co podkreśla ich znaczenie w praktyce geodezyjnej.

Pytanie 40

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do II grupy
B. Do II i III grupy
C. Do I i II grupy
D. Tylko do I grupy
Wybór odpowiedzi, która ogranicza pomiary tylko do jednej z grup, na przykład stwierdzenie, że szczegóły terenowe należą tylko do I grupy, nie uwzględnia złożoności pomiarów geodezyjnych. Grupa I jest zarezerwowana dla pomiarów o wyjątkowo wysokiej precyzji, które są typowe dla skomplikowanych projektów wymagających dokładności na poziomie milimetra, co w kontekście terenowym i praktycznym nie zawsze jest konieczne. Z kolei skupienie się jedynie na II grupie pomija fakt, że w niektórych sytuacjach, szczegóły terenowe mogą również wypełniać kryteria III grupy, która obejmuje pomiary o niższej precyzji, co jest powszechnie akceptowane w praktyce geodezyjnej. Osoby odpowiadające w ten sposób mogą mylić się w kwestii hierarchii dokładności pomiarów oraz nie rozumieć, że w rzeczywistych warunkach pracy terenowej często stosuje się różne metody pomiarowe, które są dostosowane do specyfiki zadania. Ignorowanie różnych grup dokładnościowych prowadzi do uproszczeń, które mogą skutkować błędnymi wnioskami i nieefektywnym wykorzystaniem narzędzi pomiarowych, co jest sprzeczne z praktykami określonymi w normach geodezyjnych. Dobrą praktyką jest zrozumienie, że pomiary terenowe mogą być zróżnicowane, a ich klasyfikacja powinna uwzględniać nie tylko techniczne aspekty, ale również kontekst projektu i jego wymagania.