Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 maja 2025 15:30
  • Data zakończenia: 15 maja 2025 15:57

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. młotka
B. wiertarki udarowej
C. młota pneumatycznego
D. wkrętarki
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.

Pytanie 2

Którego rodzaju kabel dotyczy termin STP?

A. Skrętki nieekranowanej
B. Skrętki ekranowanej
C. Koncentrycznego
D. Światłowodowego
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 3

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
B. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
C. Częstościomierzem o maksymalnym zakresie 50 MHz
D. Oscyloskopem o podstawie czasu 100 ns/cm
Odpowiedź dotycząca oscyloskopu o podstawie czasu 100 ns/cm jest prawidłowa, ponieważ oscyloskop jest urządzeniem zaprojektowanym do analizy sygnałów czasowych i ich amplitudy w bardzo wysokich częstotliwościach. W przypadku sygnału o częstotliwości 25 MHz, czas trwania jednego okresu wynosi 40 ns. Podstawa czasu 100 ns/cm pozwala na uchwycenie co najmniej dwóch pełnych cykli sygnału, co jest niezbędne do dokładnej analizy jego kształtu oraz amplitudy. Oscyloskopy umożliwiają również pomiar parametrów takich jak pik-pik, co jest kluczowe przy badaniu sygnałów cyfrowych. W praktyce, oscyloskop jest często używany w laboratoriach elektronicznych i podczas testowania układów cyfrowych, co czyni go standardowym narzędziem w branży. Zastosowanie oscyloskopu przy pomiarze sygnałów o wysokiej częstotliwości jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniając precyzyjny i wiarygodny pomiar, który jest nieoceniony w procesie projektowania i diagnozowania układów elektronicznych. Warto również zaznaczyć, że oscyloskopy są wyposażone w różne tryby analizy, co pozwala na monitorowanie sygnałów w czasie rzeczywistym oraz ich zapisanie do późniejszej analizy.

Pytanie 4

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć podręczna cache procesora jest uszkodzona.
B. wystąpił problem z sumą kontrolną BIOS-u.
C. pamięć CMOS nie została ustawiona.
D. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 5

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym ujemnym napięciem na wyjściu
B. regulowanym ujemnym napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. nieregulowanym dodatnim napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 6

Najlepiej połączyć bierne kolumny głośnikowe z akustycznym wzmacniaczem przy użyciu przewodu

A. symetrycznym o małym przekroju żył
B. koncentrycznym ekranowanym
C. koncentrycznym nieekranowanym
D. symetrycznym o dużym przekroju żył
Wybór niewłaściwego rodzaju przewodu do połączenia kolumn głośnikowych z wzmacniaczem akustycznym może prowadzić do znacznych strat jakości sygnału oraz zwiększenia poziomu zakłóceń. Przewody koncentryczne nieekranowane są szczególnie narażone na wpływ zakłóceń elektromagnetycznych, co w praktyce oznacza, że sygnał audio może być zniekształcony przez różnorodne źródła zakłóceń, takie jak inne urządzenia elektroniczne. Użycie przewodów o małym przekroju żył może z kolei prowadzić do zwiększenia oporu, co skutkuje dodatkowymi stratami mocy oraz obniżeniem jakości dźwięku. W kontekście połączeń głośnikowych, zastosowanie przewodu koncentrycznego ekranowanego również nie jest optymalne, ponieważ choć ekranowanie może pomóc w redukcji zakłóceń, to nie zapewnia ono takiej samej ochrony przed interferencjami jak przewody symetryczne. Często błędnie zakłada się, że jakiekolwiek ekranowanie wystarczy do ochrony sygnału, co jest mylnym podejściem, szczególnie w profesjonalnym nagłośnieniu, gdzie jakość sygnału jest kluczowa. Właściwy dobór przewodów do systemów audio jest zgodny z najlepszymi praktykami branżowymi, które promują stosowanie odpowiednich typów kabli w zależności od ich zastosowania, co jest niezbędne do zapewnienia optymalnej wydajności systemów akustycznych.

Pytanie 7

Termin PDP odnosi się do typów wyświetlaczy

A. ciekłokrystalicznych
B. fluorescencyjnych
C. plazmowych
D. diodowych
PDP, czyli Plazma Display Panel, odnosi się do technologii wyświetlaczy plazmowych, które wykorzystują gazy szlachetne do generowania obrazu. W plazmowych wyświetlaczach, dwa cienkie szkła są pokryte warstwą fosforu i wypełnione gazem, takim jak argon czy neon. Kiedy na te gazy działa wysoka energia elektryczna, powstają cząstki plazmy, które emitują światło. Wyświetlacze plazmowe oferują szeroki kąt widzenia, żywe kolory i doskonały kontrast, co czyni je idealnym rozwiązaniem dla dużych ekranów telewizyjnych i projektorów. W praktyce, plazmy były popularne w telewizorach wysokiej rozdzielczości, szczególnie w dużych formatach. Choć technologia OLED zyskała na popularności, plazmowe wyświetlacze wciąż pozostają istotnym elementem w kontekście technologii wizualnych, dostarczając wyjątkową jakość obrazu przy odpowiednim oświetleniu pomieszczenia.

Pytanie 8

Jakim przyrządem dokonuje się pomiaru ciągłości połączeń w instalacjach urządzeń elektronicznych?

A. omomierzem przy wyłączonym zasilaniu elektrycznym
B. woltomierzem przy aktywnym zasilaniu elektrycznym
C. amperomierzem przy aktywnym zasilaniu elektrycznym
D. omomierzem przy aktywnym zasilaniu elektrycznym
Pomiar ciągłości połączeń w instalacjach urządzeń elektronicznych powinien być wykonywany omomierzem przy wyłączonym zasilaniu elektrycznym. Omomierz to przyrząd, który mierzy opór elektryczny, a jego stosowanie w tym kontekście pozwala na dokładną ocenę, czy połączenia są prawidłowe i nie mają przerw. Przy wyłączonym zasilaniu można uniknąć potencjalnych uszkodzeń omomierza oraz zagrożeń związanych z porażeniem prądem. Dobre praktyki w branży zalecają przeprowadzanie takich pomiarów przed przystąpieniem do jakichkolwiek prac serwisowych lub diagnostycznych. Na przykład, w instalacjach elektrycznych, które wymagają regularnej konserwacji, pomiar ciągłości połączeń jest kluczowym krokiem w zapewnieniu bezpieczeństwa i sprawności działania urządzeń. Zgodnie z normami takimi jak PN-EN 60204-1, ciągłość przewodów ochronnych i połączeń jest kluczowym aspektem zapewnienia bezpieczeństwa użytkowania maszyn i urządzeń elektrycznych.

Pytanie 9

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 10 kΩ
B. 60 kΩ
C. 90 kΩ
D. 15 kΩ
Kiedy mamy rezystory połączone równolegle, całkowita rezystancja R obliczamy według wzoru: 1/R = 1/R1 + 1/R2 + 1/R3. Dla trzech rezystorów, każdy o rezystancji 30 kΩ, wygląda to tak: 1/R = 1/30k + 1/30k + 1/30k, co możemy uprościć do 1/R = 3/30k. Po przekształceniu dostajemy R = 30k/3, co daje nam 10kΩ. W praktyce, połączenie równoległe rezystorów jest często używane w układach, gdzie chcemy obniżyć całkowitą rezystancję, a więc zwiększyć przepływ prądu. Na przykład w układach audio, gdzie więcej rezystorów równolegle pomaga obniżyć impedancję, co jest super dla wzmocnienia sygnału. Dobrze jest też rozumieć, jak wartości rezystancji wpływają na charakterystykę całego obwodu, bo to kluczowa sprawa w projektowaniu systemów elektronicznych.

Pytanie 10

Luty miękkie obejmują luty

A. miedziano-fosforowe
B. mosiężne
C. srebrne
D. cynowo-ołowiowe i bezołowiowe
Odpowiedź dotycząca lutów cynowo-ołowiowych i bezołowiowych jako luty miękkie jest prawidłowa, ponieważ te materiały są powszechnie stosowane w procesach lutowania ze względu na swoje właściwości. Luty cynowo-ołowiowe zawierają stop cynku i ołowiu, co sprawia, że mają niską temperaturę topnienia, co czyni je łatwymi w użyciu w elektronice, gdzie precyzyjne połączenia są kluczowe. Luty bezołowiowe, stosowane w odpowiedzi na regulacje dotyczące ograniczenia użycia ołowiu, zyskały popularność w branży elektronicznej, a ich zastosowanie jest zgodne z normami RoHS. W praktyce, proces lutowania tymi materiałami wymaga odpowiednich technik, aby zapewnić trwałość i elektryczną ciągłość połączeń. Dodatkowo, w ramach standardów IPC, określono wytyczne dotyczące stosowania lutów, co zabezpiecza jakość komponentów elektronicznych oraz ich odporność na czynniki zewnętrzne. Zrozumienie typów lutów i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w obszarze elektroniki.

Pytanie 11

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na brzuchu i odchylenie głowy w bok
B. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
C. Położenie jej na plecach i poluzowanie odzieży na szyi
D. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.

Pytanie 12

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Zasilanie kamer za pomocą BNC
B. Rozpoznawanie twarzy
C. Kontrola kamer z obrotnicą PTZ
D. Sterowanie dodatkowymi źródłami światła dla kamer
Wielu użytkowników może mylnie sądzić, że rejestrator w systemach monitoringu pełni funkcje takie jak zasilanie kamer przez BNC, sterowanie dodatkowym oświetleniem kamer lub wykrywanie twarzy. Zasilanie kamer przez BNC nie jest możliwe, ponieważ ten typ złącza służy głównie do przesyłania sygnału wideo, a nie do zasilania. Kamery zazwyczaj są zasilane przez osobne złącza, takie jak złącze DC lub PoE (Power over Ethernet), co jest standardową praktyką w branży, zapewniającą odpowiednią moc bezprzewodowego przesyłania danych i zasilania. Jeśli chodzi o sterowanie oświetleniem, wiele kamer wyposażonych jest w funkcje nocnego widzenia, które automatycznie dostosowują się do warunków oświetleniowych, co czyni dodatkowe oświetlenie niepotrzebnym. Wykrywanie twarzy jest zaawansowaną funkcją, która zazwyczaj zależy od algorytmów w kamerach, a nie od rejestratora. Źle zrozumiane funkcje rejestratora mogą prowadzić do nieefektywnego wykorzystania systemów monitoringu, dlatego ważne jest, aby operatorzy posiadali rzetelną wiedzę na temat możliwości oraz ograniczeń sprzętu, którego używają.

Pytanie 13

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. przegrzaniem rejestratora
B. zmianą parametrów działania kamer
C. zawieszeniem pracy systemu
D. obniżeniem efektywności rejestratora
Krótkotrwałe zaniki napięcia zasilającego system CCTV mogą prowadzić do "zawieszenia" pracy systemu, ponieważ urządzenia te wymagają stabilnego i ciągłego zasilania, aby prawidłowo funkcjonować. W przypadku spadków napięcia, rejestratory i kamery mogą utracić synchronizację, co skutkuje przerwą w rejestrowaniu obrazu lub brakiem możliwości przesyłania danych. W praktyce oznacza to, że podczas dużych wichur, gdy zasilanie może być niestabilne, system CCTV może całkowicie przestać działać. Dobrą praktyką w zabezpieczeniu systemów monitoringu przed takimi zdarzeniami jest zastosowanie zasilaczy UPS, które zapewniają ciągłość zasilania w przypadku zaniku prądu. Zgodnie z normami branżowymi, regularne testowanie tych systemów zasilania awaryjnego oraz ich odpowiednia konserwacja są kluczowe dla efektywności i niezawodności systemów CCTV.

Pytanie 14

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Kontroluje pracę siłownika
B. Przekształca sygnał z czujnika
C. Rejestruje działanie sieci
D. Wizualizuje procesy przemysłowe
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 15

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Wykorzystać przewód aluminiowy o identycznym przekroju
B. Połączyć dwie żyły (lub więcej) równolegle
C. Użyć przewodu o mniejszym przekroju
D. Zrezygnować z realizacji połączenia
Odpowiedź, którą zaznaczyłeś, jest jak najbardziej trafna! Połączenie dwóch żył równolegle to dobry sposób na zmniejszenie oporu elektrycznego. W praktyce, jak masz przewody o tym samym przekroju, to równoległe połączenie zwiększa zdolność przewodzenia prądu, co jest mega przydatne, zwłaszcza gdy potrzebujesz więcej energii. To wszystko jest zgodne z normami instalacyjnymi, które sugerują, że takie połączenie pozwala lepiej zarządzać spadkiem napięcia. To ważne, zwłaszcza przy urządzeniach, które wymagają sporo energii. Warto pamiętać, że projektując instalacje elektryczne, trzeba mieć na uwadze te rzeczy, co poprawia efektywność energetyczną i bezpieczeństwo. A tak na marginesie, dobrze jest też regularnie sprawdzać instalacje, żeby upewnić się, że wszystko działa jak należy w zgodzie z normami, takimi jak PN-IEC 60364.

Pytanie 16

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. okulary ochronne
B. fartuch bawełniany
C. buty na izolowanej podeszwie
D. rękawice ochronne
Fartuch bawełniany jest kluczowym elementem odzieży ochronnej podczas prac serwisowych w elektronice, w tym wylutowywaniu podzespołów elektronicznych. Jego główną funkcją jest ochrona użytkownika przed zanieczyszczeniem, odpadami chemicznymi oraz drobnymi elementami, które mogą być uwolnione podczas prac serwisowych. Fartuch bawełniany jest wykonany z materiału, który jest odporny na wysoką temperaturę, co jest istotne, gdy używamy lutownicy lub innych narzędzi wymagających wysokiej temperatury. Dodatkowo, bawełna jest materiałem przewiewnym, co zapewnia komfort podczas długotrwałej pracy. Ponadto, zgodnie z normami BHP, fartuch powinien być odpowiednio zapinany oraz wystarczająco długi, aby chronić ciało przed potencjalnymi uszkodzeniami. W praktyce stosowanie fartucha bawełnianego jest zgodne z zaleceniami dotyczącymi zasad bezpieczeństwa w miejscu pracy, co znacząco zmniejsza ryzyko wystąpienia urazów.

Pytanie 17

Nagłe zmiany temperatury (np. z powodu pieców czy otwartych okien) mogą powodować zakłócenia w działaniu detektora umieszczonego w jego pobliżu?

A. czadu
B. światła
C. dymu
D. ruchu
Wybór dymu, światła lub czadu jako odpowiedzi na pytanie o wpływ gwałtownych zmian temperatury na detektory nie oddaje rzeczywistego mechanizmu działania tych urządzeń. Detektory dymu działają na zupełnie innych zasadach, najczęściej polegających na wykrywaniu cząsteczek dymu w powietrzu, co czyni je mniej wrażliwymi na zmiany temperatury. Takie detektory mają swoje specyficzne wymagania dotyczące instalacji, które są bardziej związane z wentylacją i obecnością źródeł dymu, a nie z nagłymi skokami temperatury. Podobnie, detektory światła bazują na fotokomorze, która reaguje na natężenie światła, a więc ich działanie nie jest bezpośrednio związane z temperaturą otoczenia. W przypadku detektorów czadu, ich funkcjonalność opiera się na pomiarze stężenia tlenku węgla, a nie na zmianach temperatury. Typowym błędem myślowym jest mylenie różnych typów detektorów i ich zasad działania. Aby skutecznie zainstalować systemy alarmowe, kluczowe jest zrozumienie, jakie czynniki wpływają na ich działanie, co jest istotne nie tylko dla zapewnienia bezpieczeństwa, ale także dla efektywności operacyjnej całego systemu. Zarówno normy, jak i dobre praktyki w branży zabezpieczeń podkreślają znaczenie dobrego doboru i rozmieszczenia detektorów, aby maksymalizować ich skuteczność w odpowiednich warunkach.

Pytanie 18

MAN to termin odnoszący się do typu sieci komputerowej

A. miejskiej
B. lokalnej
C. masowej
D. rozległej
MAN (Metropolitan Area Network) to rodzaj sieci komputerowej, która obejmuje obszar miejskiej aglomeracji. Głównym celem takiej sieci jest zapewnienie szybkiej komunikacji między różnymi lokalizacjami w obrębie miasta, co może obejmować zarówno biura, instytucje edukacyjne, jak i inne obiekty użyteczności publicznej. W praktyce MAN-y są często wykorzystywane do łączenia lokalnych sieci (LAN) w większe struktury, umożliwiając efektywne zarządzanie zasobami oraz dostęp do Internetu. Standardy techniczne, takie jak Ethernet, są często stosowane w MAN-ach, co pozwala na uzyskanie dużej przepustowości przy stosunkowo niskich kosztach. Dzięki ich elastyczności, MAN-y umożliwiają również implementację różnych technologii komunikacyjnych, co czyni je atrakcyjnym rozwiązaniem dla organizacji miejskich. Przykładowo, wiele miast korzysta z MAN-ów do integracji systemów transportowych, monitoringu czy inteligentnych rozwiązań miejskich. W ten sposób MAN przyczynia się do efektywnego zarządzania zasobami miejskimi oraz podniesienia jakości życia mieszkańców.

Pytanie 19

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Skrócenie przewodu oraz obniżenie jego rezystancji
B. Wydłużenie przewodu oraz podwyższenie jego rezystancji
C. Wydłużenie przewodu oraz obniżenie jego rezystancji
D. Skrócenie przewodu oraz podwyższenie jego rezystancji
Wzrost temperatury naprawdę ma duży wpływ na przewody miedziane. Jak wiadomo, materiały się rozszerzają, więc przewody miedziane też się wydłużają, kiedy robi się cieplej. To jest ważne, bo w instalacjach elektrycznych to może wpłynąć na ich działanie. Jeśli temperatura przewodów wzrasta, to niestety ich rezystancja też rośnie. Przykładowo, w temperaturze 20°C miedź ma swoją rezystancję, ale gdy podgrzejesz ją do 100°C, ta wartość wzrasta o jakieś 40%. W praktyce oznacza to, że projektując instalacje, musimy myśleć o tym, jak te zmiany wpłyną na naszą pracę. Warto zwracać uwagę na normy, jak IEC 60228, bo one pomagają w zapewnieniu bezpieczeństwa i funkcjonalności naszych instalacji. Po prostu trzeba o tym pamiętać przy tworzeniu projektów.

Pytanie 20

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 300 mV
B. 150 mV
C. 100 mV
D. 1000 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 21

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 750 zł
B. 150 zł
C. 500 zł
D. 2 500 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 22

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. skrętką komputerową i symetryzatorem
B. skrętką komputerową z transformatorami pasywnymi
C. linką miedzianą o dużej średnicy
D. kablem antenowym o impedancji 300 Ω
Zastosowanie kabla antenowego o impedancji 300 Ω w systemie dozorowym jest nieodpowiednie, ponieważ przewody te zostały zaprojektowane głównie do aplikacji radiowych i telewizyjnych, gdzie impedancja 300 Ω jest standardem. W systemach dozorowych najczęściej stosuje się przewody koncentryczne z impedancją 75 Ω, co oznacza, że użycie przewodu antenowego w tym kontekście prowadziłoby do znacznych strat sygnału i degradacji jakości obrazu. Alternatywnie, propozycja użycia skrętki komputerowej bez transformatorów pasywnych również jest błędna. Skrętka komputerowa sama w sobie nie jest wystarczająca do przesyłania sygnału wideo bez odpowiedniej konwersji, co może skutkować zakłóceniami i zniekształceniami sygnału. Takie podejście jest rezultatem nieprawidłowego zrozumienia zależności między typami kabli a ich zastosowaniami. Linka miedziana o dużej średnicy również nie jest właściwym rozwiązaniem, ponieważ nie odpowiada standardom przesyłu sygnałów w systemach dozorowych. Właściwe dobieranie materiałów w takich systemach wymaga głębszej wiedzy na temat impedancji, charakterystyk sygnału oraz norm branżowych, a ignorowanie tych aspektów prowadzi do błędnych wniosków i, w konsekwencji, do awarii systemu.

Pytanie 23

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. ADD
B. X-Y
C. SINGLE
D. DUAL
Jak przełączysz oscyloskop w tryb DUAL, ADD albo SINGLE, to w zasadzie nie wykorzystasz krzywych Lissajous do analizy częstotliwości sygnału, co jest trochę szkoda. W trybie DUAL możesz wprawdzie pokazać dwa sygnały naraz, ale na osobnych osiach czasu, więc nie zobaczysz, jak się one do siebie mają pod względem fazy czy amplitudy. W tym trybie nie uzyskasz tych fajnych krzywych Lissajous, bo sygnały nie są w odpowiednich osiach X i Y. Z kolei tryb ADD po prostu zsumuje sygnały i wszystko zniekształci, więc porównanie ich w kontekście analizy fazowej w ogóle nie wyjdzie. A w trybie SINGLE to tylko jeden sygnał pokażesz, więc całkiem odpadasz z porównania dwóch sygnałów na tym samym wykresie. Czasem ludzie myślą, że jak mają tryb DUAL to wystarczy, ale zapominają, że wtedy krzywych Lissajous się nie da uzyskać. To pewnie wynika z tego, że nie do końca rozumieją, o co chodzi w analizie sygnałów i jak je można zobrazować na wykresie. Żeby dobrze wykorzystać oscyloskop do określenia częstotliwości sygnałów, trzeba zrozumieć, że kluczowe jest przedstawienie ich w odpowiednich osiach, co tylko w trybie X-Y działa.

Pytanie 24

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. pęknięciu ścieżek łączących.
B. braku kontaktu w złączach typu wysuwanego.
C. utracie z pamięci danych.
D. zimnych lub przegrzanych lutach.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 25

Jakie urządzenie należy zastosować do mierzenia natężenia prądu w obwodzie elektrycznym?

A. watomierz
B. omomierz
C. amperomierz
D. woltomierz
Amperomierz to przyrząd pomiarowy, który służy do pomiaru natężenia prądu elektrycznego w obwodzie. Zasada jego działania opiera się na wykorzystaniu efektu elektromagnetycznego. Amperomierze są podstawowymi narzędziami w elektrotechnice, które pozwalają na monitorowanie przepływu prądu, co jest kluczowe dla analizy i diagnozowania pracy obwodów elektrycznych. Przykład zastosowania to pomiar natężenia prądu w obwodzie zasilającym silnik elektryczny, co pozwala na określenie, czy silnik pracuje w normie i czy nie jest przeciążony. W standardowych praktykach przemysłowych stosuje się amperomierze cyfrowe, które oferują większą precyzję i dodatkowe funkcje, takie jak pomiar średniego i maksymalnego natężenia prądu oraz rejestrowanie zmian w czasie. Dobrą praktyką jest także stosowanie amperomierzy z odpowiednimi zakresami pomiarowymi, aby uniknąć uszkodzenia urządzenia oraz zapewnić dokładność pomiarów. Znajomość działania amperomierza i jego zastosowań jest niezbędna dla każdego technika czy inżyniera zajmującego się elektrycznością.

Pytanie 26

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wyjściowa
B. Selektywność
C. Czułość
D. Moc wejściowa
Czułość, selektywność oraz moc wyjściowa to parametry, które są kluczowe w ocenie jakości odbiorników radiowych. Czułość odbiornika definiuje minimalny poziom sygnału, przy którym urządzenie jest w stanie zidentyfikować i przetworzyć sygnał. W praktyce, oznacza to, że im niższa wartość czułości, tym lepiej odbiornik poradzi sobie z odbieraniem słabych sygnałów, co jest szczególnie istotne w obszarach o niskiej mocy sygnału. Selektywność natomiast, określa zdolność urządzenia do oddzielania sygnałów znajdujących się blisko siebie w spektrum częstotliwości. Wartość ta jest niezwykle ważna, gdyż pozwala na odbiór wybranych stacji bez zakłóceń spowodowanych przez inne nadajniki działające w sąsiedztwie. Moc wyjściowa to parametr, który wskazuje na siłę sygnału dostarczanego do końcowego urządzenia, co ma bezpośredni wpływ na jakość dźwięku. Błędne zrozumienie mocy wejściowej i jej roli w kontekście odbiorników radiowych może prowadzić do mylnego wniosku, że jest ona istotnym parametrem dla tych urządzeń. W rzeczywistości moc wejściowa dotyczy źródła sygnału, a nie samego odbiornika, co jest kluczowym aspektem, który powinien być uwzględniany przy analizie parametrów radiowych. Zrozumienie tych różnic jest niezbędne dla prawidłowej oceny i porównania odbiorników radiowych w różnych zastosowaniach.

Pytanie 27

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Wzmacniacz mocy
B. Układ odchylania w pionie
C. Zintegrowana głowica w.cz.
D. Powielacz wysokiego napięcia
Powielacz wysokiego napięcia jest kluczowym elementem w odbiornikach telewizyjnych, odpowiadającym za generowanie wysokiego napięcia potrzebnego do zasilania kineskopu. Iskrzenie oraz zapach ozonu wskazują na występowanie łuku elektrycznego, co zazwyczaj oznacza, że element ten uległ uszkodzeniu. W praktyce, awarie powielacza mogą prowadzić do całkowitego braku obrazu, ponieważ nie dostarcza on odpowiedniego napięcia do katody kineskopu. W takich przypadkach, serwisanci często sprawdzają powielacz jako pierwszy krok diagnostyczny. Ponadto, powielacze wysokiego napięcia są projektowane zgodnie z rygorystycznymi standardami bezpieczeństwa, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić stabilne działanie telewizora. Zrozumienie funkcji tego elementu jest kluczowe nie tylko dla właściwej diagnostyki, ale także dla późniejszych napraw i konserwacji sprzętu elektronicznego.

Pytanie 28

Którą z czynności serwisowych w instalacji sieciowej można zignorować?

A. Ocena stanu zewnętrznej powłoki przewodów
B. Sprawdzenie przewodów sieciowych omomierzem
C. Wymiana luźnych złączy RJ
D. Testowanie przewodów sieciowych za pomocą testera
Sprawdzanie przewodów sieciowych testerem, wymiana obluzowanych złącz RJ oraz kontrola stanu powłoki zewnętrznej przewodów to wszystkie kluczowe czynności konserwacyjne, które nie powinny być pomijane przy utrzymaniu infrastruktury sieciowej. Tester kablowy jest niezbędnym narzędziem do diagnozowania problemów w okablowaniu. Umożliwia on wykrycie błędów w połączeniach, takich jak zwarcia, przerwy lub zamiany żył, co ma bezpośredni wpływ na jakość i stabilność połączenia sieciowego. Ignorowanie tej czynności może prowadzić do poważnych problemów z wydajnością sieci, co w efekcie może wpływać na całą organizację. Z kolei wymiana obluzowanych złącz RJ jest kluczowa, ponieważ takie złącza mogą prowadzić do utraty sygnału, co skutkuje przerwami w transmisji danych. Stabilne i dobrze zainstalowane złącza są fundamentem niezawodności całej sieci. Kontrola stanu powłoki zewnętrznej przewodów jest również niezbędna, ponieważ uszkodzenia mechaniczne mogą prowadzić do awarii przewodów, a także narażać je na działanie czynników atmosferycznych, co może wpłynąć na ich działanie. W kontekście standardów branżowych, takie jak ISO/IEC 11801, zaleca się regularne przeprowadzanie tych czynności konserwacyjnych, aby zapewnić wysoką jakość usług sieciowych oraz minimalizować ryzyko awarii.

Pytanie 29

Który z parametrów nie dotyczy monitorów LCD?

A. Napięcie katody kineskopu
B. Luminancja
C. Czas reakcji piksela
D. Kąt widzenia
Napięcie katody kineskopu jest parametrem związanym z technologią CRT (Cathode Ray Tube), a nie z monitorami LCD (Liquid Crystal Display). Monitory LCD operują na zupełnie innej zasadzie działania, która nie wymaga katody ani kineskopu. W technologii LCD światło generowane jest przez diody LED lub świetlówki, które podświetlają ciekłe kryształy. Czas reakcji piksela, kąt widzenia oraz luminancja to kluczowe parametry dla monitorów LCD, które wpływają na jakość obrazu. Czas reakcji piksela określa, jak szybko piksel może zmieniać swoją barwę, co jest istotne w kontekście dynamicznych obrazów, np. w grach komputerowych. Kąt widzenia odnosi się do maksymalnego kąta, pod jakim obraz zachowuje swoją jakość, a luminancja mierzy jasność wyświetlanego obrazu. Zrozumienie tych parametrów jest kluczowe dla wyboru odpowiedniego monitora do konkretnego zastosowania, czy to do pracy biurowej, gier, czy obróbki grafiki.

Pytanie 30

THT to metoda

A. montowania elementów elektronicznych na płytkach drukowanych
B. realizacji instalacji podtynkowej
C. umieszczania kabli w rurkach instalacyjnych
D. prowadzenia przewodów przez otwory w ścianach
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 31

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. światłowodu
B. kabla koncentrycznego
C. skrętki nieekranowanej
D. skrętki ekranowanej
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 32

Podczas serwisowania urządzeń elektronicznych w stanie pod napięciem, stosowane narzędzia muszą mieć

A. odpowiednią izolację napięciową
B. metalowe uchwyty
C. wysoką wytrzymałość mechaniczną
D. utwardzone końcówki
Odpowiednia izolacja napięciowa narzędzi używanych w czasie prac serwisowych przy urządzeniach elektronicznych pod napięciem jest kluczowym elementem zapewnienia bezpieczeństwa. Izolacja ta minimalizuje ryzyko porażenia prądem elektrycznym, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia z odpowiednią izolacją są zaprojektowane tak, aby wytrzymać określone napięcia, co jest zgodne z normami takimi jak IEC 60900, które określają wymagania dotyczące narzędzi izolowanych dla pracowników elektrotechnicznych. Przykładowo, przy użyciu wkrętaka z izolowaną rękojeścią, technik może bezpiecznie pracować przy urządzeniach pod napięciem do 1000V, co jest fundamentalne dla zachowania bezpieczeństwa. W praktyce stosowanie narzędzi z odpowiednią izolacją jest standardem w każdym warsztacie zajmującym się serwisem urządzeń elektrycznych, co podkreśla znaczenie przestrzegania zasad BHP w tej dziedzinie. Właściwa izolacja jest nie tylko wymaganiem prawnym, ale także praktycznym środkiem ochrony zdrowia pracowników.

Pytanie 33

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Brak powiązania prądu spoczynkowego z temperaturą
B. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
C. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
D. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
Zrozumienie zależności prądu spoczynkowego od temperatury w tranzystorach mocy jest kluczowe dla prawidłowego projektowania układów elektronicznych. Odpowiedzi sugerujące brak zależności prądu spoczynkowego od temperatury są nieprawidłowe, ponieważ tranzystory, takie jak BJT, wykazują wyraźny wzrost prądu przy wzroście temperatury. Ignorowanie tego zjawiska prowadzi do poważnych problemów w działaniu urządzeń elektronicznych. Zmniejszenie prądu spoczynkowego w odpowiedzi na wzrost temperatury jest również błędne, ponieważ efektywnie obniżyłoby to wydajność tranzystora, co mogłoby prowadzić do zniekształceń sygnału. Istotnym błędem myślowym jest założenie, że różne rodzaje tranzystorów mogą działać w ten sposób, jednak w praktyce wszystkie tranzystory typu BJT mają podobne właściwości temperaturowe, co powoduje, że prąd spoczynkowy wzrasta wraz z temperaturą. Użytkownicy powinni być świadomi, że bez odpowiedniego zarządzania termicznego i kompensacji, wzrastający prąd spoczynkowy może prowadzić do nieodwracalnych szkód w komponentach. Dobrą praktyką w projektowaniu układów elektronicznych jest przewidywanie tych zmian i implementacja układów zabezpieczających, które dostosowują parametry pracy do zmieniających się warunków, co jest istotnym elementem w zapewnieniu długotrwałej i niezawodnej pracy urządzeń.

Pytanie 34

Jakie urządzenie cyfrowe powinno być użyte do porównania dwóch liczb zapisanych w określonym kodzie?

A. Converter.
B. Decoder.
C. Adder.
D. Comparator.
Komparator to układ cyfrowy służący do porównywania dwóch liczb zapisanych w danym kodzie, co czyni go idealnym narzędziem w zastosowaniach, gdzie istotna jest analiza relacji między dwoma wartościami, takich jak równość, większa lub mniejsza liczba. Komparatory są wykorzystywane w wielu dziedzinach, w tym w systemach cyfrowych, mikroprocesorach oraz w algorytmach przetwarzania sygnałów. Standardowe zastosowanie komparatorów obejmuje porównywanie wyników działań arytmetycznych, co może być kluczowe w aplikacjach takich jak kontrola jakości produkcji, systemy alarmowe oraz w automatyzacji procesów przemysłowych. Komparatory mogą działać na różnych poziomach, w tym jako prosty komparator bitowy, który porównuje pojedyncze bity, lub jako bardziej złożone układy, które analizują całe słowa binarne. Użycie komparatora w projektach cyfrowych pozwala na efektywną realizację operacji logicznych, co jest zgodne z najlepszymi praktykami inżynierii oprogramowania i projektowania systemów cyfrowych.

Pytanie 35

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. obudowę metalową
B. obiektyw szerokokątny
C. oświetlacz IR
D. obudowę z plastiku
Oświetlacz IR to naprawdę ważny element w kamerach do monitoringu, zwłaszcza tych na zewnątrz. Dzięki niemu możemy nagrywać obrazy nawet w ciemnościach, bo chociaż to światło jest niewidoczne dla nas, kamery to widzą. To jest mega przydatne, szczególnie na parkingach czy w ogrodach, gdzie czasami jest naprawdę ciemno. Takie oświetlacze pomagają kamerom działać dobrze w różnych warunkach i są uwzględnione w normach branżowych, jak EN 50132. Dzięki nim monitoring może być efektywny przez całą dobę, co ratuje nas w różnych sytuacjach, poprawiając bezpieczeństwo na terenie, który obserwujemy. Można powiedzieć, że to kluczowy element w całym systemie.

Pytanie 36

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
B. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
C. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
D. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
Przy analizie objawów, jakie mogą wystąpić podczas pojawienia się przepięcia w niezabezpieczonej sieci energetycznej, istnieje pewne mylne rozumienie funkcji wyłączników nadprądowych oraz różnicowoprądowych. Wyłącznik nadprądowy działa głównie w sytuacjach, gdy następuje przeciążenie lub zwarcie, co może prowadzić do znacznego wzrostu prądu, jednak nie jest on przeznaczony do ochrony przed przepięciami. Przepięcie może występować bez wzrostu prądu do poziomów, które spowodowałyby zadziałanie tego typu wyłącznika. Wyłącznik różnicowoprądowy z kolei ma na celu wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co jest ważne w przypadku wykrywania uszkodzonych izolacji i ryzyka porażenia prądem elektrycznym. Niemniej jednak, nie zareaguje on na przepięcia, a jego zastosowanie w kontekście przepięć jest zatem nieadekwatne. Zwiększenie poboru energii przez urządzenia elektroniczne w odpowiedzi na przepięcie to kolejny błąd myślowy. W rzeczywistości przepięcia prowadzą do uszkodzenia lub wyłączenia sprzętu, a nie do jego intensyfikacji. Właściwe zrozumienie mechanizmów zabezpieczeń elektrycznych jest kluczowe dla projektowania systemów, które minimalizują ryzyko uszkodzeń i zapewniają ich niezawodność w warunkach zmiennych obciążeń i zjawisk atmosferycznych.

Pytanie 37

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. klucza płaskiego
B. szczypiec płaskich
C. wkrętaka płaskiego
D. cążków bocznych
Jak wybierzesz niewłaściwe narzędzie do montażu elementów na szynie DIN, to mogą się pojawić różne kłopoty, które rozwalają cały system. Cążki boczne są super w wielu sytuacjach, ale nie nadają się do precyzyjnego dokręcania śrub. Ich budowa nie pozwala na dobre przekazywanie momentu obrotowego, więc może być tak, że śruba nie będzie dokręcona jak należy, a to prowadzi do luźnych połączeń i ryzyka, że wszystko się popsuć. Klucz płaski też nie za bardzo tu pasuje, bo on głównie działa z nakrętkami i śrubami o innym kształcie, a nie z wkrętami, które są na szynach DIN. Szczypce płaskie, mimo że w niektórych sytuacjach mogą się przydać, to jednak nie są do precyzyjnego dokręcania. Ich używanie w tym kontekście może uszkodzić elementy i źle je osadzić. Jak już wybierasz narzędzie, to pamiętaj, że trzeba kierować się rodzajem pracy i standardami, jakie są w branży. Używanie odpowiednich narzędzi, jak wkrętaki płaskie, jest kluczowe, żeby wszystko było zrobione jak należy, co przekłada się na niezawodność instalacji elektrycznych.

Pytanie 38

Pasywny komponent wykorzystywany w telekomunikacyjnych oraz komputerowych sieciach, który na zewnątrz posiada gniazda, a wewnątrz styki do zamocowania kabla, określany jest jako

A. skrótką
B. panelem krosowniczym
C. kanałem kablowym
D. złączką
Panel krosowniczy to kluczowy element infrastruktury sieciowej, który umożliwia organizację i zarządzanie połączeniami kablowymi w sieciach telekomunikacyjnych oraz komputerowych. Zewnętrzne gniazda pozwalają na łatwe podłączanie kabli, natomiast wewnętrzne styki umożliwiają ich uporządkowanie i terminację. Dzięki takiej konstrukcji, inżynierowie sieciowi mogą szybko i efektywnie zmieniać konfigurację połączeń, co jest niezwykle ważne w dynamicznych środowiskach, takich jak centra danych czy biura. Przykładem zastosowania paneli krosowniczych jest możliwość łatwej reorganizacji sieci przy zmianach w infrastrukturze biurowej, co pozwala na elastyczność w zarządzaniu zasobami. Zgodnie z najlepszymi praktykami branżowymi, stosowanie paneli krosowniczych znacznie ułatwia diagnostykę i utrzymanie sieci, umożliwiając łatwe identyfikowanie problemów związanych z połączeniami kablowymi. Ponadto, panele krosownicze są zgodne z różnorodnymi standardami, takimi jak TIA/EIA, co zapewnia ich szeroką kompatybilność z innymi elementami infrastruktury sieciowej.

Pytanie 39

Jakie urządzenie powinno być użyte wraz z konwerterem satelitarnym typu Quattro do rozprowadzania sygnałów telewizji satelitarnej z jednej anteny do wielu odbiorników TV-SAT?

A. Wzmacniacz
B. Modulator
C. Tuner
D. Multiswitch
Multiswitch jest urządzeniem, które umożliwia dystrybucję sygnału telewizyjnego satelitarnego z jednej anteny do wielu odbiorników telewizyjnych. W przypadku konwerterów typu Quattro, które dostarczają sygnały w czterech pasmach (V/H i Częstotliwości Niskie/Wysokie), multiswitch rozdziela sygnały z konwertera na wiele wyjść, co umożliwia podłączenie kilku tunerów satelitarnych. Umożliwia to jednoczesne oglądanie różnych programów telewizyjnych przez różne odbiorniki. Przykładem zastosowania jest instalacja w budynku wielorodzinnym, gdzie jeden zestaw antenowy i multiswitch pozwalają na obsługę kilku mieszkań. Zgodnie z normami instalacji telewizyjnych, multiswitch powinien być wybierany zgodnie z liczbą odbiorników oraz typem konwertera, co zapewnia optymalne parametry jakości sygnału.

Pytanie 40

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 350 zł
B. 305 zł
C. 200 zł
D. 250 zł
Koszt instalacji wideofonowej dla pojedynczego lokatora można obliczyć tylko wtedy, gdy weźmiemy pod uwagę wszystkie istotne elementy składające się na całkowity wydatek. Wiele osób popełnia błąd, pomijając istotne koszty, takie jak wynagrodzenie monterów, co prowadzi do nieprecyzyjnych obliczeń. Jeśli ktoś przyjmuje tylko koszt materiałów wynoszący 2000 zł i dzieli go przez liczbę lokatorów, otrzymuje 200 zł na lokatora, co nie uwzględnia kosztów robocizny ani podatku VAT. Taki sposób myślenia jest powierzchowny i nieodpowiedzialny, ponieważ w praktyce całkowity koszt instalacji musi zawierać zarówno wynagrodzenie pracowników, jak i dodatkowe opłaty. Inna powszechna pomyłka to nieuwzględnienie podatku VAT w obliczeniach. W przypadku instalacji, które podlegają opodatkowaniu, pominięcie tej kwestii może prowadzić do znacznych różnic w finalnych kosztach dla klientów. Ponadto, zrozumienie podstaw prawnych związanych z kosztami robocizny i materiałów jest kluczowe dla prawidłowego kalkulowania wydatków w branży. Dlatego ważne jest, aby zawsze kalkulować całkowity koszt usługi, co odpowiada standardom praktyki w branży budowlanej, aby uniknąć nieporozumień i zapewnić przejrzystość w relacjach z klientami.