Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 23 maja 2025 17:29
  • Data zakończenia: 23 maja 2025 18:03

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. organicznym i kruszywa drobnego
B. organicznym i kruszywa grubego
C. nieorganicznym i kruszywa grubego
D. nieorganicznego i kruszywa drobnego
Zaprawa murarska to tak naprawdę mieszanka kilku rzeczy – wody, spoiwa i czasami różnych dodatków. Kluczowe tutaj jest spoiwo nieorganiczne, na przykład cement albo wapno. Do tego dodajemy kruszywo drobne, przeważnie piasek, które działa jako wypełniacz – dzięki temu zaprawa ma lepsze właściwości mechaniczne. W budownictwie używamy zaprawy murarskiej głównie do łączenia cegieł czy bloczków betonowych. Ważne, żeby dobrać odpowiednią klasę zaprawy, bo to zależy od obciążeń i warunków, w jakich będzie używana. Są normy, jak PN-EN 998-1, które wskazują, jakie zaprawy można stosować w konkretnych sytuacjach, a to wpływa na ich trwałość i odporność na różne warunki atmosferyczne. Na przykład, jeśli budynek będzie miał dużo wilgoci, lepiej sięgnąć po zaprawy o wyższej klasie wytrzymałości. Dobrze dobrana zaprawa to naprawdę podstawa, bo wpływa na stabilność i bezpieczeństwo całej budowli.

Pytanie 2

Aby mechanicznie przygotować zaprawę murarską z objętościowym dozowaniem składników na budowie, jakie narzędzia są konieczne?

A. wiadro, betoniarka, łopata
B. betoniarka, łopata, sito
C. betoniarka, taczka, sito
D. wiadro, kasta na zaprawę, łopata
Odpowiedź 'wiadro, betoniarka, łopata' jest prawidłowa, ponieważ każda z tych trzech pozycji odgrywa kluczową rolę w procesie przygotowania zaprawy murarskiej na placu budowy. Betoniarka służy do mechanicznego mieszania zaprawy, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. Użycie betoniarki jest zgodne z najlepszymi praktykami, ponieważ ręczne mieszanie często prowadzi do nierównomiernego rozkładu składników. Wiadro jest niezbędne do pomiaru objętości składników, co umożliwia precyzyjne dozowanie materiałów, takich jak cement, piasek i woda. Łopata natomiast jest używana do transportu oraz rozkładania zaprawy, co jest istotne w procesie budowy. Przy odpowiednim użyciu tych narzędzi można znacznie zwiększyć efektywność i jakość wykonania prac murarskich, a także zminimalizować ryzyko błędów związanych z proporcjami składników. W praktyce, na budowie, niezwykle istotne jest również przestrzeganie standardów jakości i bezpieczeństwa, co wymaga odpowiedniego wyposażenia w niezbędne narzędzia.

Pytanie 3

Aby uniknąć wilgoci na zewnętrznych ścianach parteru budynku z bloczków betonowych, pierwszą warstwę należy ułożyć na

A. zaprawie cementowej
B. papie asfaltowej
C. zaprawie cementowo-wapiennej
D. lepiku asfaltowym
No więc, zaprawa cementowo-wapienna, lepik asfaltowy i zaprawa cementowa to materiały, które nie będą do końca działać w kontekście przeciwwilgociowym, jeśli mówimy o fundamentach i ścianach. Zaprawa cementowo-wapienna jest spoko do murowania i tynkowania, ale nie ma tych właściwości, które by skutecznie blokowały wodę. Woda może sobie wchodzić przez pory, co może prowadzić do wilgoci w ścianach. Lepik asfaltowy ma jakieś tam właściwości wodoodporne, ale właściwie używa się go głównie do uszczelniania innych rzeczy, a nie jako podkład pod bloczki. Podobnie, zaprawa cementowa nie zdziała cudów, jeśli chodzi o przenikanie wody. Standardy budowlane mówią, że lepiej używać materiałów, które są dedykowane do izolacji wilgoci, przez co papa asfaltowa jest jednym z tych podstawowych rozwiązań w budownictwie. Jeśli tego nie weźmiemy pod uwagę, mogą się pojawić poważne problemy jak pleśń, korozja i ogólne osłabienie budynku. Warto to wszystko przemyśleć, żeby budowla była solidna i bezpieczna.

Pytanie 4

Jakie kruszywo wykorzystuje się do produkcji betonów lekkich?

A. Żwir
B. Keramzyt
C. Baryt
D. Pospółkę
Pospółka, baryt oraz żwir to kruszywa, które nie są odpowiednie do produkcji betonów lekkich. Pospółka, będąca mieszaniną różnych frakcji kruszywa, jest zbyt ciężka, aby mogła być uznana za materiał do betonu lekkiego. Użycie pospółki w mieszance betonowej prowadzi do uzyskania dużych gęstości, co jest sprzeczne z definicją betonu lekkiego. Z kolei baryt jest kruszywem ciężkim, stosowanym głównie w zastosowaniach, gdzie wymagana jest wysoka masa, na przykład w budownictwie ochronnym lub w przemysłowych zastosowaniach wiertniczych. Jego gęstość znacznie przewyższa normy dla materiałów lekkich, co czyni go nieodpowiednim do wytwarzania betonów lekkich. Żwir, choć jest powszechnie stosowany w budownictwie, również nie spełnia kryteriów dla kruszywa lekkiego, gdyż jego gęstość również jest zbyt wysoka. W praktyce, błędne wybory kruszywa mogą prowadzić do obniżenia jakości betonu, co w efekcie wpływa na trwałość oraz bezpieczeństwo konstrukcji. Dlatego tak ważne jest zrozumienie właściwości różnych materiałów, aby podejmować świadome decyzje w procesie projektowania i budowy.

Pytanie 5

Aby naprawić pęknięcie zwykłego tynku o głębokości przekraczającej 0,5 cm, należy poszerzyć rysę i nawilżyć ją wodą, a następnie

A. wypełnić dwiema warstwami gipsowego zaczynu
B. zatarć gęstoplastyczną zaprawą gipsową
C. zatarć gęstoplastyczną zaprawą cementową
D. wypełnić dwiema warstwami zaprawy, z której tynk został wykonany
Odpowiedź dotycząca wypełnienia pęknięcia dwiema warstwami zaprawy, z której wykonano tynk, jest prawidłowa, ponieważ zapewnia ona najlepszą zgodność z istniejącą strukturalną i estetyczną charakterystyką tynku. Proces naprawy pęknięcia powinien rozpocząć się od starannego poszerzenia rysy, co umożliwia lepszą przyczepność materiałów naprawczych. Następnie, po zwilżeniu rysy wodą, ważne jest, aby zastosować zaprawę, która jest zgodna z oryginalnym materiałem tynku. Wypełniając pęknięcie dwiema warstwami zaprawy, która była użyta do wykonania tynku, zapewniamy jednolitość w składzie chemicznym oraz w strukturze materiału, co zmniejsza ryzyko wystąpienia dalszych pęknięć. Praktyka ta jest szeroko stosowana w budownictwie, gdyż umożliwia uzyskanie lepszej trwałości i estetyki naprawy. Ponadto, przy użyciu odpowiednich technik aplikacji, takich jak zatarcie, można uzyskać równą powierzchnię, co jest istotne dla zachowania estetyki i funkcjonalności ściany.

Pytanie 6

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. warszawskiego
B. stojakowego
C. stolikowego
D. kozłowego
Wybór nieodpowiedniego typu rusztowania może prowadzić do poważnych problemów podczas wykonywania tynków zewnętrznych. Rusztowanie kozłowe, mimo że może być użyteczne w niektórych sytuacjach, nie jest przeznaczone do pracy na większych wysokościach. Jego konstrukcja ogranicza stabilność i może stwarzać realne zagrożenie dla pracowników, zwłaszcza w przypadku 5-kondygnacyjnego budynku. Podobnie, rusztowanie stolikowe jest dostosowane do prac na poziomie podłogi, a jego zastosowanie w kontekście elewacji budynku nie tylko ogranicza mobilność, ale także nie zapewnia odpowiedniego wsparcia dla materiałów i narzędzi. Co więcej, rusztowanie warszawskie, choć popularne w niektórych aplikacjach, nie spełnia wymagań dla złożonych prac budowlanych, zwłaszcza na wysokości, gdzie kluczowe jest zapewnienie bezpieczeństwa. W praktyce, decyzja o wyborze rusztowania powinna być oparta na analizie jego przeznaczenia oraz zgodności z normami i regulacjami. Wybranie niewłaściwego rozwiązania nie tylko zwiększa ryzyko wypadków, ale również może prowadzić do opóźnień w realizacji projektu z powodu konieczności wprowadzenia zmian w organizacji pracy. W związku z tym kluczowe jest, aby osoby odpowiedzialne za organizację tynkowania miały jasną wiedzę na temat specyfiki różnych typów rusztowań oraz ich zastosowania, co jest niezbędne do zapewnienia efektywności i bezpieczeństwa pracy na budowie.

Pytanie 7

Jak powinno się zregenerować stare, odpryskujące tynki?

A. Pokryć je warstwą zaczynu wapiennego
B. Nałożyć na nie warstwę gładzi
C. Pomalować je farbą silikatową
D. Skuć je i uzupełnić nowym tynkiem
Skuwanie starych tynków i ich uzupełnianie nowym tynkiem jest kluczowym krokiem w przywracaniu estetyki oraz funkcjonalności ścian. Stare tynki, które łuszczą się, mogą być wynikiem wielu czynników, takich jak wilgoć, nieodpowiednia aplikacja, a także naturalne procesy starzenia się materiałów budowlanych. Skuwanie pozwala na usunięcie uszkodzonego tynku oraz zapewnia lepszą przyczepność nowego materiału do podłoża. Po skuć, należy dokładnie oczyścić powierzchnię z resztek starego tynku, kurzu i innych zanieczyszczeń. Warto również zainstalować hydroizolację, jeśli problem wilgoci jest istotny, co jest zgodne z dobrą praktyką budowlaną. Po odpowiednim przygotowaniu podłoża, można nałożyć nowy tynk, dostosowany do konkretnej aplikacji, co zapewni trwałość i estetykę na długie lata. Dodatkowo, przed aplikacją, warto skonsultować się z ekspertami lub zapoznać się z lokalnymi normami budowlanymi, aby wybrać odpowiedni materiał i metodę aplikacji.

Pytanie 8

W kolejnych warstwach w wiązaniu kowadełkowym jakie powinno być przesunięcie spoin pionowych?

A. 2/3 cegły
B. 1/3 cegły
C. 1/4 cegły
D. 1/2 cegły
Przesunięcie spoin pionowych w wiązaniu kowadełkowym wynoszące 1/4 cegły jest zgodne z ogólnymi zasadami budownictwa, które mają na celu zapewnienie odpowiedniej wytrzymałości i stabilności konstrukcji. W tej metodzie, której celem jest zminimalizowanie powstawania szczelin i zapewnienie równomiernego rozkładu obciążeń, należy zachować właściwe przesunięcie pomiędzy poszczególnymi warstwami. Dzięki takiemu podejściu, możliwe jest zredukowanie ryzyka pęknięć i osiadania. Przykładowo, w przypadku zastosowania pustaków ceramicznych lub betonowych w murze, odpowiednie przesunięcie spoin wpływa również na właściwości akustyczne i cieplne budynku. W praktyce budowlanej, stosowanie się do zasad przesunięcia spoin jest kluczowe dla zachowania trwałości konstrukcji oraz zapewnienia estetyki zakładanych murów. Warto podkreślić, że normy budowlane, takie jak Eurokod 6, wskazują na potrzebę stosowania przemyślanych rozwiązań w wiązaniach murów, co podkreśla znaczenie odpowiednich przesunięć spoin.

Pytanie 9

Główne składniki mieszanki betonowej stosowanej do produkcji betonu zwykłego to

A. cement, wapno, piasek i woda
B. cement, piasek, żwir i woda
C. cement, piasek, keramzyt i woda
D. cement, popiół, keramzyt i woda
Wybierając odpowiedzi, które nie zaznaczają żwiru jako jednego z głównych składników betonu, można wpaść w różne nieporozumienia. Cement, wapno, piasek i woda mogą być w niektórych mieszankach, ale to nie jest to, co tworzy beton zwykły. Wapno jest bardziej do zapraw murarskich, a jego obecność może zmieniać właściwości betonu, co nie jest dobrze w przypadku betonu klasycznego. Zresztą, popiół czy keramzyt to też składniki, które można używać w betonie lekkim czy specjalnych mieszankach, ale nie w typowym betonie zwykłym, bo żwir jest tu kluczowy dla gęstości i wytrzymałości. Często ludzie mylą różne rodzaje betonu i przypisują im niewłaściwe składniki. Pamiętaj, nawet zmiana jednego składnika może mocno obniżyć jakość betonu. Gdy projektujesz różne typy betonu, musisz trzymać się norm, żeby konstrukcje były trwałe i bezpieczne.

Pytanie 10

Masa asfaltowa dostępna jest w pojemnikach 10-litrowych w cenie 74,90 zł za pojemnik.
Oblicz koszt zakupu masy asfaltowej niezbędnej do przeprowadzenia dwuwarstwowej hydroizolacji na dwóch ścianach fundamentowych o powierzchni 25,0 m2 każda, jeśli zużycie masy w pierwszej warstwie wynosi 0,5 l/m2, a w drugiej 0,4 l/m2.

A. 299,60 zł
B. 224,70 zł
C. 374,50 zł
D. 149,80 zł
Analizując nieprawidłowe odpowiedzi, można zauważyć, że wielu ludzi myli się w obliczeniach dotyczących zużycia masy asfaltowej lub kosztów zakupu. Na przykład, jeśli ktoś obliczy łączną ilość masy asfaltowej na podstawie jedynie jednej warstwy, co prowadzi do zupełnie zaniżonej kalkulacji, może dojść do wniosku, że potrzebne będą tylko 2 lub 3 opakowania. To jest wynik nieuwzględnienia, że hydroizolacja wymaga co najmniej dwóch warstw, każda o różnym zużyciu. Ponadto, błędy mogą również wynikać z pomyłek w przeliczeniach jednostek, na przykład, nieprawidłowego przeliczenia litrów na metry kwadratowe. Często pomija się również fakt, że do obliczeń kosztów należy uwzględnić całkowitą ilość materiału, a nie tylko potrzebne litry. Należy również pamiętać, że nawet niewielkie różnice w zużyciu na m² mogą prowadzić do znacznych różnic w całkowitym koszcie, co jest istotne w kontekście zarządzania projektami budowlanymi. Używanie precyzyjnych obliczeń i poprawnych wartości jest kluczowe, aby uniknąć niepotrzebnych wydatków, które mogą zrujnować budżet projektu. Ważne jest, aby zwracać uwagę na szczegóły i stosować się do uznanych norm i praktyk branżowych, które pomagają w dokładnym planowaniu wydatków na materiały budowlane.

Pytanie 11

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Proporcje oraz urabialność
B. Nasiąkliwość oraz urabialność
C. Wytrzymałość na ściskanie i nasiąkliwość
D. Wytrzymałość na ściskanie i proporcje
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 12

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Piasku rzecznego
B. Miału marmurowego
C. Żużla wielkopiecowego
D. Piasku kwarcowego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 13

Sposób spoinowania zewnętrznej powierzchni muru, który nie będzie pokrywany tynkiem, powinien być przeprowadzony za pomocą

A. odbijaka dłutowego
B. gwoździa tynkarskiego
C. listwy tynkarskiej
D. żelazka do spoinowania
Wykorzystanie gwoździa tynkarskiego do spoinowania zewnętrznych powierzchni muru jest całkowicie nieodpowiednie, ponieważ gwoździe tynkarskie służą głównie do mocowania tynku do podłoża, a nie do formowania spoin. Mogą one jedynie przynieść niepożądane efekty, jak uszkodzenie struktury muru, czy też nierównomierne rozłożenie obciążenia. Z kolei odbijak dłutowy, narzędzie używane do obróbki materiałów budowlanych, jest bardziej odpowiednie do kucia lub formowania powierzchni, a nie do precyzyjnego formowania spoin, co jest kluczowe dla estetyki i trwałości. Listwa tynkarska, chociaż wykorzystywana w niektórych procesach tynkarskich, nie jest narzędziem przeznaczonym do spoinowania. Jej zastosowanie w tym kontekście prowadziłoby do błędnych technik i mniejszej efektywności pracy. W praktyce, brak odpowiedniego narzędzia do spoinowania może prowadzić do licznych problemów, takich jak nierówności, pęknięcia w spoinach czy też problemy z przyczepnością materiałów, co w dłuższej perspektywie wpływa na trwałość i estetykę całej konstrukcji. Dlatego ważne jest, aby przy wyborze narzędzi do spoinowania kierować się ich przeznaczeniem i standardami branżowymi, co pozwoli na uniknięcie tych typowych błędów.

Pytanie 14

Do budowy elementów konstrukcyjnych budynków przenoszących znaczne obciążenia, takich jak nadproża, słupy, filary oraz kominy, należy wykorzystywać zaprawę

A. gipsową
B. cementową
C. wapienno-gipsową
D. wapienną
Zaprawa cementowa jest właściwym materiałem do murowania elementów budowlanych przenoszących duże obciążenia, takich jak nadproża, słupy, filary oraz kominy. Charakteryzuje się wysoką wytrzymałością na ściskanie, co czyni ją idealnym rozwiązaniem w konstrukcjach, które muszą wytrzymać znaczne obciążenia statyczne oraz dynamiczne. Przykładem zastosowania zaprawy cementowej mogą być budynki użyteczności publicznej, gdzie nadproża muszą sprostać obciążeniom wynikającym z masy konstrukcji i dodatkowych obciążeń użytkowych. Ponadto, zaprawa cementowa jest odporna na działanie wody oraz warunków atmosferycznych, co zapewnia trwałość i stabilność konstrukcji w dłuższym okresie. W polskich normach budowlanych, takich jak PN-EN 1996, podkreśla się znaczenie właściwego doboru materiałów do konkretnych zastosowań konstrukcyjnych, a zaprawa cementowa jest rekomendowana do wszelkich elementów nośnych, gdzie bezpieczeństwo oraz trwałość są kluczowe.

Pytanie 15

Jakim preparatem powinno się pokryć powierzchnię tynku, który się osypuje i pyli, aby go wzmocnić?

A. Antyadhezyjnym
B. Penetrującym
C. Gruntującym
D. Barwiącym
Preparat gruntujący jest kluczowym elementem w procesie wzmocnienia osypującego się i pylącego tynku. Jego podstawową funkcją jest poprawa przyczepności materiałów wykończeniowych, co jest szczególnie istotne w przypadku powierzchni, które wykazują tendencję do kruszenia się lub osypywania. Gruntowanie powierzchni tynku zmniejsza chłonność podłoża, co pozwala na równomierne wchłanianie farby lub innego materiału wykończeniowego, co z kolei prowadzi do uzyskania lepszego efektu estetycznego i trwałości powłoki. Przykładem praktycznego zastosowania gruntów może być ich użycie przed malowaniem ścian z tynku, gdzie gruntowanie pozwala na uniknięcie powstawania smug czy różnic kolorystycznych. Dodatkowo, preparaty gruntujące często zawierają składniki, które wzmacniają strukturę tynku i zabezpieczają go przed działaniem wilgoci, co jest zgodne z dobrą praktyką budowlaną. Zastosowanie gruntów zgodnie z zaleceniami producentów na etykietach może znacznie wydłużyć żywotność powierzchni oraz zredukować potrzebę częstych napraw.

Pytanie 16

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 9 465,00 zł
B. 10 096,00 zł
C. 10 125,00 zł
D. 9 750,00 zł
Aby obliczyć koszty zakupu bloczków z betonu komórkowego w hurtowni 'Bud-kom', musimy najpierw ustalić, ile palet bloczków jest potrzebnych do zaspokojenia zapotrzebowania. Potrzebujemy 375 bloczków, a na jednej palecie mieszczą się 24 bloczki. Dlatego liczba potrzebnych palet wynosi: 375 podzielić przez 24, co daje 15,625. Ponieważ sprzedaż w hurtowni jest realizowana wyłącznie w pełnych paletach, zaokrąglamy tę liczbę w górę do 16 palet. Koszt jednej palety wynosi 631,00 zł, więc całkowity koszt zakupu będzie wynosił 16 palet pomnożone przez 631,00 zł, co daje 10 096,00 zł. Dzięki tej metodzie można szybko ocenić koszty materiałów budowlanych, co jest kluczowe dla harmonogramu i budżetu projektu budowlanego. W praktyce wiedza ta jest niezbędna do planowania zakupów i zarządzania finansami projektu budowlanego, a także do wspierania negocjacji z dostawcami, co może pozwolić na uzyskanie korzystniejszych warunków handlowych.

Pytanie 17

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Zarysowując powierzchnię przy pomocy gwoździa
B. Uderzając w powierzchnię delikatnym młotkiem
C. Przesuwając gąbką po tynku
D. Pocierając powierzchnię tynku dłonią
Wszystkie pozostałe metody sprawdzania gładkości tynków nie są właściwe z kilku powodów. Opukiwanie powierzchni lekkim młotkiem może wydawać się sensowne, ale nie dostarcza informacji o rzeczywistej gładkości tynku. Ta metoda raczej ocenia dźwięk i ewentualne puste przestrzenie pod powierzchnią, co nie jest bezpośrednio związane z jakością wykończenia. Z kolei pocieranie tynku gąbką jest również błędne, ponieważ gąbka, ze względu na swoją strukturę, nie jest w stanie precyzyjnie ocenić gładkości. Może jedynie zmywać zanieczyszczenia, ale nie dostarcza informacji o wyrównaniu powierzchni. Zarysowywanie powierzchni gwoździem to technika, która może prowadzić do uszkodzenia tynku oraz nie jest zgodna z dobrymi praktykami budowlanymi. Może również wprowadzać w błąd, sugerując, że tynk jest niewłaściwie wykonany, podczas gdy rzeczywista jakość może być wystarczająca. Typowym błędem myślowym w podejściu do oceny gładkości tynków jest skupienie się na metodach, które nie są zaprojektowane do oceny estetyki, co prowadzi do błędnych wniosków i nieodpowiednich decyzji w procesie odbioru robót.

Pytanie 18

Jakiej zaprawy nie wykorzystuje się w miejscach, gdzie styka się z elementami stalowymi, z powodu ryzyka pojawienia się korozji stali?

A. Cementowo-wapiennej
B. Gipsowo-wapiennej
C. Cementowej
D. Szamotowej
Wybór zaprawy cementowej, szamotowej lub cementowo-wapiennej w miejscach styku z elementami stalowymi może wydawać się odpowiedni, jednakże każda z tych zapraw ma swoje specyficzne właściwości, które niekoniecznie są optymalne w kontekście ochrony stali przed korozją. Zaprawa cementowa, będąca jedną z najczęściej stosowanych, zapewnia solidne wiązanie i odpowiednią wytrzymałość mechaniczną, ale w obecności wilgoci również może przyczyniać się do korozji, chociaż w mniejszym stopniu niż gipsowo-wapienna. W warunkach wysokiej wilgotności, zaprawy cementowe mogą wchodzić w reakcje z tlenem i wodą, co prowadzi do powstawania rdzy na powierzchni stali. Dodatkowo, zaprawy szamotowe, które są stosowane głównie w piecach opalanych drewnem czy kotłach, są projektowane tak, aby wytrzymywać wysokie temperatury, ale także nie są zalecane w miejscach o dużej wilgotności. Właściwy dobór zaprawy powinien uwzględniać nie tylko jej wytrzymałość, ale również odporność chemiczną oraz funkcję, jaką ma spełniać w kontekście ochrony stalowych elementów konstrukcyjnych. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwej zaprawy, często wynikają z braku zrozumienia różnic w składzie chemicznym i właściwościach materiałowych, co podkreśla znaczenie edukacji i znajomości standardów budowlanych.

Pytanie 19

Oblicz wydatki na demontaż kamiennej ławy fundamentowej o wymiarach 1,2 × 0,6 m oraz długości 15 m, jeżeli koszt rozbiórki 1 m3 takich fundamentów wynosi 400,00 zł?

A. 240,00 zł
B. 6 000,00 zł
C. 4 320,00 zł
D. 480,00 zł
Aby obliczyć koszt rozbiórki kamiennej ławy fundamentowej, najpierw musimy ustalić objętość fundamentu. Ława ma przekrój 1,2 m × 0,6 m i długość 15 m, więc objętość V można obliczyć ze wzoru: V = długość × szerokość × wysokość. W naszym przypadku: V = 15 m × 1,2 m × 0,6 m = 10,8 m³. Koszt rozbiórki 1 m³ wynosi 400,00 zł, więc całkowity koszt rozbiórki to: 10,8 m³ × 400,00 zł/m³ = 4 320,00 zł. Tego typu obliczenia są kluczowe w branży budowlanej, szczególnie przy planowaniu budżetów na projekty budowlane i demontażowe. Znajomość jednostkowych kosztów robocizny oraz materiałów budowlanych pozwala na efektywne zarządzanie kosztami oraz optymalizację wydatków. W praktyce, takie obliczenia powinny być zawsze weryfikowane w kontekście aktualnych cen i stawek rynkowych, które mogą się różnić w zależności od lokalizacji i specyfiki projektu.

Pytanie 20

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3

A. 4 600,00 zł
B. 2 975,00 zł
C. 3 400,00 zł
D. 4 450,00 zł
Aby obliczyć łączny koszt zakupu zapraw, niezbędne jest przemnożenie ilości zaprawy przez ich cenę jednostkową, co stanowi standardową praktykę w zarządzaniu kosztami budowy. W opisywanym przypadku mamy 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12. Każdy z tych typów zapraw ma różne ceny, które powinny być znane z cennika. Pomnożenie objętości zaprawy przez jednostkową cenę daje koszt dla każdej z zapraw. Następnie, poprzez zsumowanie tych dwóch wartości, uzyskujemy łączny koszt zakupu. Przykładowo, jeżeli cena jednostkowa zaprawy M 7 wynosi 300 zł/m3, a zaprawy M 12 550 zł/m3, to koszt wynosi odpowiednio 1800 zł dla M 7 oraz 9350 zł dla M 12, co daje łączny koszt 11150 zł. Poprawne podejście do obliczeń kosztów materiałowych jest kluczowe w procesie budowlanym, ponieważ wpływa na ostateczny budżet projektu oraz jego rentowność. Dobrą praktyką jest również uwzględnienie ewentualnych zniżek lub kosztów dodatkowych, co może pomóc w dokładniejszym szacowaniu.

Pytanie 21

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. szczelinówki
B. pełnej
C. kratówki
D. dziurawki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 22

Jakie działania powinny być podjęte jako pierwsze przed nałożeniem suchego tynku na nierównomierne podłoże ściany z cegły kratówki?

A. Wykonać na ścianie placki "marki"
B. Uformować pasy kierunkowe z zaprawy cementowo-wapiennej
C. Zastosować na ścianie warstwę gładzi gipsowej
D. Nałożyć zaprawę gipsową na płyty suchego tynku i mocno je przycisnąć do podłoża
Wykonanie placków 'marki' na nierównym podłożu ściany z cegły kratówki to kluczowy krok przed montażem płyt suchego tynku. Placki te służą jako punkty odniesienia, które ułatwiają wyrównanie powierzchni oraz zapewniają odpowiednią przyczepność dla kolejnych warstw. Ustanowienie placków jest zgodne z zaleceniami zawartymi w normach budowlanych, które podkreślają znaczenie przygotowania podłoża pod każde prace wykończeniowe. Przykładowo, przygotowanie podłoża w ten sposób pozwala na zminimalizowanie ryzyka pęknięć i odspojenia tynku od ściany, co jest szczególnie istotne w przypadku materiałów porowatych, jak cegła. Zastosowanie placków 'marki' w praktyce jest często realizowane przy użyciu zaprawy cementowej, co zwiększa stabilność i trwałość wykończenia. Dobrą praktyką jest także weryfikacja pionu i poziomu placków przed nałożeniem kolejnych warstw, co zapewnia długotrwałe efekty wykończeniowe.

Pytanie 23

Jaka jest proporcja objętościowa gipsu i piasku w zaprawie gipsowej M 4?

Marka zaprawyZaprawa gipsowa
gips : piasek
Zaprawa gipsowo-wapienna
gips : wapno : piasek
M11: 41: 1,5: 4,5
M21: 31: 1: 3
M31: 21: 0,5: 2
M41: 11: 0,5: 1

A. 1:4
B. 1:0,5
C. 1:1
D. 1:2
Proporcja objętościowa gipsu i piasku w zaprawie gipsowej M4 wynosi 1:1, co oznacza, że na jedną jednostkę objętości gipsu przypada jedna jednostka objętości piasku. Taki dobór składników jest kluczowy dla uzyskania optymalnych właściwości zaprawy, w tym jej wytrzymałości i elastyczności. W praktyce, równomierne połączenie tych dwóch materiałów pozwala na uzyskanie jednorodnej masy, która dobrze przylega do powierzchni oraz zapewnia odpowiednią trwałość. Zgodnie z normami budowlanymi, szczególnie tymi związanymi z wykończeniem wnętrz, zachowanie tej proporcji jest istotne dla efektywności procesu aplikacji oraz trwałości powłok gipsowych. Przykładowo, stosując tę proporcję w renowacji starych budynków, można uzyskać lepsze rezultaty estetyczne i funkcjonalne, niż w przypadku stosowania innych proporcji, co potwierdzają liczne badania i doświadczenia specjalistów w dziedzinie budownictwa.

Pytanie 24

Jakie składniki mieszanki betonowej można podgrzać w trakcie jej przygotowywania w temperaturze poniżej +5 °C?

A. Cement oraz wodę
B. Cement i wapno
C. Piasek i wodę
D. Wapno oraz piasek
Odpowiedź "Piasek i wodę" jest prawidłowa, ponieważ te składniki mieszanki betonowej można podgrzewać, aby zminimalizować ryzyko zamarzania podczas prac w niskich temperaturach. Zgodnie z zaleceniami zawartymi w normach branżowych, takich jak PN-EN 206, temperatura mieszanki betonowej powinna być utrzymywana powyżej 0 °C, aby zapewnić odpowiednie procesy hydratacji cementu. Podgrzewanie piasku oraz wody pozwala na uzyskanie mieszanki o wyższej temperaturze, co sprzyja właściwej reakcji chemicznej i redukuje ryzyko wystąpienia problemów związanych z zamarzaniem. Przykładem praktycznego zastosowania tej metody jest przygotowywanie betonu w zimowych warunkach budowlanych, gdzie podgrzewanie wody do około +20 °C oraz użycie ciepłego piasku może znacząco poprawić jakość i trwałość betonowych konstrukcji. Ważne jest, aby zawsze stosować się do wytycznych dotyczących temperatury składników oraz czasu ich mieszania, aby zapewnić optymalne warunki pracy.

Pytanie 25

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 2 520 zł
B. 3 600 zł
C. 1 680 zł
D. 1 800 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 26

Masa używana do tynków cienkowarstwowych powinna być wolna od

A. pigmentów
B. zbryleń
C. wody i spoiwa
D. drobnego kruszywa
Gotowa zaprawa do tynków cienkowarstwowych musi być gładka i bez zbryleń. To ważne, bo jak są zbrylenia, to potem na ścianie wychodzą nierówności i ogólnie tynk wygląda słabo. Z własnego doświadczenia wiem, że dobre wymieszanie składników to klucz do sukcesu. Jeśli dobrze się przygotujesz, to unikniesz tych zbryleń. Normy branżowe, jak PN-EN 998-1, mówią, że ważny jest też dobór surowców, takich jak piaski o właściwej granulacji. One razem z odpowiednimi spoiwami dadzą jednorodność mieszanki. Jeśli zaprawa będzie dobrze przygotowana, to nie tylko ładniej wygląda, ale też będzie trwała na różne warunki atmosferyczne. Dlatego warto zwracać uwagę na instrukcje producentów oraz normy, bo to daje pewność, że tynki będą wysokiej jakości.

Pytanie 27

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-gliniana
B. Wapienna
C. Gipsowa
D. Cementowo-wapienna
Zaprawa wapienna jest uznawana za jedną z najlepszych pod względem właściwości plastycznych. Jej zdolność do łatwego formowania i wytrzymywania deformacji sprawia, że jest idealnym materiałem w zastosowaniach budowlanych, gdzie wymagana jest elastyczność i łatwość w aplikacji. Wapno wykazuje doskonałe właściwości wiążące, co pozwala na osiągnięcie wysokiej przyczepności do różnych podłoży. Dodatkowo, zaprawy wapienne charakteryzują się dużą paroprzepuszczalnością, co zapobiega gromadzeniu się wilgoci w strukturze budynku, a także wspiera naturalne procesy wentylacyjne. W praktyce, zaprawy wapienne są powszechnie używane do tynkowania ścian, zarówno wewnętrznych, jak i zewnętrznych, oraz do murowania cegieł i bloczków. W kontekście norm budowlanych, stosowanie zapraw wapiennych jest zgodne z zaleceniami wielu krajowych i międzynarodowych standardów, które podkreślają ich ekologiczność i trwałość. Warto zauważyć, że ich zastosowanie w renowacji zabytków budowlanych jest szczególnie cenione, ponieważ wapno nie tylko dobrze współpracuje z tradycyjnymi materiałami, ale także wspiera długoterminową ochronę architektury.

Pytanie 28

Stosunek objętościowy 1:3:12 określa składniki zaprawy cementowo-glinianej M 0,6:

A. cement: zawiesina gliniana: woda
B. cement: zawiesina gliniana: piasek
C. cement: woda: zawiesina gliniana
D. cement: piasek: zawiesina gliniana
Wszystkie zaproponowane odpowiedzi, z wyjątkiem poprawnej, wykazują fundamentalne błędy dotyczące składników zaprawy cementowo-glinianej. W pierwszej odpowiedzi, 'cement: zawiesina gliniana: woda', następuje błędne przypisanie miejsca wody w proporcjach. Woda nie jest głównym składnikiem w omawianej proporcji, a jej rola ogranicza się do aktywacji reakcji chemicznych w zaprawie. Zbyt duża ilość wody może prowadzić do obniżenia wytrzymałości i trwałości zaprawy, co jest sprzeczne z normami budowlanymi. Kolejna odpowiedź, 'cement: piasek: zawiesina gliniana', pomija kluczowy element, jakim jest zawiesina gliniana, która ma istotne znaczenie dla właściwości zaprawy, takich jak plastyczność czy zdolność do wiązania. Dodatkowo, piasek w tej odpowiedzi został uwzględniony w niewłaściwej ilości, co negatywnie wpływa na stosunek masowy. Wreszcie, odpowiedź 'cement: woda: zawiesina gliniana' nie odzwierciedla rzeczywistego zastosowania składników w zaprawie, co może prowadzić do nieodpowiednich rezultatów w praktyce budowlanej. Te błędy myślowe wynikają z niedostatecznego zrozumienia roli każdego składnika w zaprawie, co jest kluczowe dla zapewnienia trwałości i funkcjonalności konstrukcji.

Pytanie 29

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. wiertarki z mieszadłem
B. agregatu tynkarskiego
C. węzła betoniarskiego
D. betoniarki wolnospadowej
Wykorzystanie wiertarki z mieszadłem do sporządzania zapraw murarskich na małej budowie nie jest optymalnym rozwiązaniem. Tego typu narzędzia są przeznaczone głównie do mieszania mniejszych ilości materiałów, co może prowadzić do niedostatecznej jednorodności mieszanki. Mieszadła w wiertarkach mają ograniczone możliwości, a ich konstrukcja nie zapewnia tak efektywnego mieszania jak betoniarka. Mieszanie dużych ilości składników przy użyciu wiertarki jest czasochłonne i wymaga dużej precyzji, co w praktyce jest trudne do osiągnięcia. Agregat tynkarski, chociaż użyteczny w pracach tynkarskich, nie jest dedykowany do produkcji zapraw murarskich. Jego funkcje skupiają się na aplikacji tynku, a nie na mieszaniu zapraw. Węzeł betoniarski, z kolei, to urządzenie przeznaczone do produkcji betonu w dużych ilościach, co przekracza potrzeby małych budów, gdzie zazwyczaj wymagana jest niewielka ilość zaprawy. Dlatego korzystanie z tych narzędzi może prowadzić do niedostatecznej jakości zaprawy, co wpłynie na trwałość i stabilność konstrukcji. Optymalne podejście to wybór betoniarki wolnospadowej, która gwarantuje odpowiednią jakość i wydajność mieszania, zgodnie z branżowymi standardami.

Pytanie 30

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. wełnę mineralną, masy bitumiczne
B. styropian, wełnę mineralną
C. styropian, papę
D. wełnę mineralną, emulsję asfaltową
Izolacja cieplna budynków jest niezwykle istotna dla zapewnienia efektywności energetycznej, a wybór odpowiednich materiałów ma kluczowe znaczenie. Stosowanie tylko mas bitumicznych lub emulsji asfaltowych jako izolacji cieplnej, jak sugerują niektóre z odpowiedzi, jest błędem. Masy bitumiczne są stosowane głównie do hydroizolacji i zabezpieczenia przed wilgocią, a nie do izolacji termicznej. Choć mogą one chronić przed wodą, nie mają właściwości izolacyjnych, które są niezbędne, aby zmniejszyć straty ciepła. Z kolei papy, pomimo że mogą być używane w budownictwie, również nie są właściwym wyborem do izolacji cieplnej, gdyż ich głównym przeznaczeniem jest ochrona przed wodą. Niezrozumienie różnicy między zabezpieczeniem przed wilgocią a izolacją termiczną prowadzi do niewłaściwego stosowania tych materiałów. Użytkownicy często mylą te pojęcia, co skutkuje niską efektywnością energetyczną budynków oraz wyższymi kosztami eksploatacyjnymi. Właściwie dobrane materiały izolacyjne powinny przede wszystkim cechować się niskim współczynnikiem przewodzenia ciepła oraz odpowiednią odpornością na działanie ognia i wilgoci, co sprawia, że styropian i wełna mineralna są najlepszym rozwiązaniem. Użycie tych materiałów w izolacji ścian pozwala na znaczną poprawę efektywności energetycznej budynku oraz komfortu jego użytkowników.

Pytanie 31

Jakiego rodzaju spoiwa używa się do produkcji betonów zwykłych?

A. Akrylowy.
B. Wapienny.
C. Cementowy.
D. Gipsowy.
Cement jest podstawowym spoiwem stosowanym do produkcji betonów zwykłych, które są szeroko wykorzystywane w budownictwie. Cement, jako składnik betonów, zapewnia im odpowiednią wytrzymałość i trwałość, co jest kluczowe w przypadku konstrukcji narażonych na obciążenia mechaniczne. Proces wiązania cementu, znany jako hydratacja, prowadzi do powstania silnej struktury, która z czasem osiąga swoje pełne właściwości wytrzymałościowe. W praktyce beton cementowy znajduje zastosowanie w budowli infrastrukturalnych, takich jak mosty, budynki, drogi czy chodniki. Przy projektowaniu betonu uwzględnia się różne klasy i gatunki cementu, co pozwala na dostosowanie jego właściwości do specyficznych wymagań konstrukcyjnych. Warto również znać normy PN-EN 197-1, które regulują wymagania dotyczące rodzajów cementów i ich zastosowania w budownictwie, podkreślając istotność właściwego doboru tego materiału w celu zapewnienia bezpieczeństwa i trwałości budowli.

Pytanie 32

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
B. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
C. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
D. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 33

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. ¼ cegły
B. 1 cegły
C. 1½ cegły
D. ½ cegły
Minimalna grubość przegród oddzielających przewody spalinowe od dymowych wynosząca ½ cegły jest zgodna z regulacjami dotyczącymi bezpieczeństwa budowlanego. Tego rodzaju przegrody są kluczowe w zapobieganiu rozprzestrzenieniu się dymu oraz szkodliwych substancji w budynkach, co ma istotne znaczenie dla ochrony zdrowia i życia ludzi. Przegrody te powinny być projektowane zgodnie z wytycznymi zawartymi w normach budowlanych, takich jak PN-EN 13501-2, które określają wymagania dla klasyfikacji ogniowej materiałów budowlanych. W praktyce, zapewnienie odpowiedniej grubości przegrody wpływa na skuteczność ochrony przed pożarem, a także na trwałość konstrukcji. W sytuacjach, gdy przewody są umieszczane w bliskiej odległości od siebie, grubość ½ cegły stanowi minimalny standard, który można zastosować, aby zachować właściwe warunki bezpieczeństwa. Na przykład w budynkach użyteczności publicznej, gdzie istnieje większe ryzyko wystąpienia pożaru, zastosowanie takich przegrody jest nie tylko zalecane, ale może być wymagane przez lokalne przepisy budowlane.

Pytanie 34

Na podstawie danych zawartych w tabeli oblicz całkowity koszt wykonania 1 m2 tynku mozaikowego drobnoziarnistego wraz z gruntowaniem podłoża.

Tynk mozaikowy drobnoziarnisty:
cena opakowania 25 kg:187,50 zł
zużycie:4 kg/m²
Preparat gruntujący:
cena opakowania 12 l:90,00 zł
zużycie:0,4 l/m²
Robocizna (wykonanie tynku wraz z gruntowaniem):55,00 zł/m²

A. 85,00 zł
B. 88,00 zł
C. 58,00 zł
D. 82,00 zł
Wybór innych odpowiedzi, jak 82,00 zł, 58,00 zł czy 85,00 zł, często wynika z błędnego oszacowania kosztów materiałów i robocizny przy tynku mozaikowym. Możliwe, że w takich przypadkach pomijasz ważne elementy, jak przygotowanie podłoża, które ma duże znaczenie dla przyczepności tynku. Koszt gruntowania, które jest często konieczne przed nałożeniem tynku, mógł nie zostać wzięty pod uwagę w niektórych obliczeniach, co prowadzi do zaniżenia całości. Zdarza się też, że błędne wyniki wynikają z pomyłek w jednostkowych kosztach materiałów lub robocizny. Często nie uwzględnia się również dodatkowych wydatków na narzędzia, transport czy straty materiałów. Niedostateczna znajomość standardów i praktyk w branży też może przyczyniać się do błędnych oszacowań. Dlatego przed zaczęciem kalkulacji dobrze jest przemyśleć wszystkie składniki kosztów, żeby wyjść z rzetelnymi obliczeniami.

Pytanie 35

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 25 200,00 zł
B. 24 000,00 zł
C. 24 200,00 zł
D. 25 000,00 zł
Aby obliczyć całkowite koszty zakupu bloczków gazobetonowych, należy najpierw ustalić, ile palet będzie potrzebnych, a następnie pomnożyć liczbę palet przez koszt jednej palety. W przedstawionym przypadku, mamy 500 bloczków i każdy paleta zawiera 24 bloczki. Dlatego liczba potrzebnych palet wynosi 500 / 24 = 20,83, co oznacza, że musimy zakupić 21 pełnych palet, ponieważ sprzedaż odbywa się wyłącznie w kompletnych paletach. Koszt jednej palety wynosi 1200,00 zł, więc całkowity koszt zakupu wynosi 21 * 1200,00 zł = 25 200,00 zł. Ustalając zapotrzebowanie materiałowe w budownictwie, ważne jest uwzględnienie takich parametrów jak pojemność transportowa materiałów oraz zasady zakupu hurtowego, co pozwala na optymalizację kosztów i efektywność logistyczną. W praktyce, wiele przedsiębiorstw budowlanych korzysta z tego typu kalkulacji, aby precyzyjnie planować budżet oraz harmonogram dostaw, co jest zgodne z dobrymi praktykami zarządzania projektem budowlanym.

Pytanie 36

Oblicz, ile cegieł dziurawek trzeba przygotować do budowy dwóch ścianek działowych o wymiarach 2,4×6,0 m i grubości 25 cm każda, jeśli norma zużycia tych cegieł to 93,40 szt./m2?

A. 2690 sztuk
B. 2801 sztuk
C. 1345 sztuk
D. 1401 sztuk
Aby obliczyć liczbę cegieł dziurawek potrzebnych do wykonania dwóch ścianek działowych o wymiarach 2,4 × 6,0 m, musimy najpierw policzyć powierzchnię jednej ścianki. Powierzchnia jednej ścianki wynosi 2,4 m × 6,0 m = 14,4 m². Skoro mamy dwie ścianki, całkowita powierzchnia wynosi 2 × 14,4 m² = 28,8 m². Następnie, korzystając z normy zużycia cegieł wynoszącej 93,40 szt./m², obliczamy potrzebną liczbę cegieł: 28,8 m² × 93,40 szt./m² ≈ 2690 sztuk. Taki sposób kalkulacji jest zgodny z dobrymi praktykami w budownictwie, które zalecają dokładne obliczenia materiałowe, aby uniknąć niepotrzebnych opóźnień i kosztów związanych z niedoborem materiałów. Warto również zwrócić uwagę na dokładność pomiarów, ponieważ każdy błąd w wymiarowaniu może prowadzić do znacznych różnic w ilości materiałów, co jest kluczowe w planowaniu budowy.

Pytanie 37

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. pustaków ceramicznych na deskowaniu
B. belek nośnych na ścianach
C. zbrojenia żeber rozdzielczych
D. zbrojenia belek monolitycznych
Rozpoczęcie wykonania stropu Fert od ułożenia pustaków ceramicznych na deskowaniu jest niezgodne z zasadami konstrukcyjnymi. Pustaki ceramiczne są elementami wypełniającymi, które pełnią funkcję izolacyjną oraz zwiększają masę stropu, ale ich układanie powinno następować dopiero po zamocowaniu belek nośnych. Zbrojenie żeber rozdzielczych, choć istotne w kontekście zwiększenia nośności i sztywności stropu, również należy umieszczać po ułożeniu belek nośnych. Niezależnie od tego, jak ważne jest zapewnienie odpowiedniego zbrojenia, cała konstrukcja bazuje na prawidłowo zamocowanych belkach nośnych. Kolejnym błędnym podejściem jest rozpoczęcie od zbrojenia belek monolitycznych, które w kontekście stropu Fert nie znajduje zastosowania, ponieważ strop ten bazuje na prefabrykowanych elementach, a nie monolitycznej konstrukcji. Zrozumienie sekwencji prac budowlanych oraz znaczenia każdego z elementów jest kluczowe dla prawidłowego wykonania stropu. Na tym etapie często popełnia się błąd, myśląc, że można pominąć fundamentalne elementy konstrukcyjne na rzecz detali, co w konsekwencji prowadzi do osłabienia całej struktury i zwiększa ryzyko awarii. W praktyce budowlanej zawsze należy dbać o kolejność i sposób wykonania, aby zapewnić stabilność i bezpieczeństwo budynku.

Pytanie 38

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100

A. ok. 1200 kg
B. ok. 400 kg
C. ok. 4800 kg
D. ok. 1920 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 39

Aby przeprowadzać ocieplanie dachów z drewna, należy używać

A. płyty gipsowo-włóknowej
B. wełny mineralnej
C. włókna celulozowego
D. płyty wiórowo-cementowej
Wełna mineralna to materiał o doskonałych właściwościach izolacyjnych, który jest często stosowany do ociepleń dachów o konstrukcji drewnianej. Jej główne zalety to wysoka odporność na ogień, niska przewodność cieplna oraz dobra akustyka. Wełna mineralna jest również odporna na wilgoć, co czyni ją idealnym rozwiązaniem w przypadku dachów, gdzie może występować kondensacja pary wodnej. Zgodnie z normą PN-EN ISO 6946, wełna mineralna przyczynia się do zwiększenia efektywności energetycznej budynków, a jej użycie w konstrukcjach drewnianych jest zgodne z dobrymi praktykami w budownictwie. Przykładem zastosowania wełny mineralnej może być ocieplanie poddaszy, gdzie materiał ten jest umieszczany między krokwiami. Dodatkowo, wełna mineralna jest łatwa w obróbce, co ułatwia montaż oraz minimalizuje straty materiałowe, co jest istotne w kontekście zrównoważonego budownictwa. Jej chropowata struktura sprzyja również poprawie jakości powietrza wewnętrznego, co jest istotnym aspektem nowoczesnych standardów budowlanych.

Pytanie 40

Izolację przeciwwilgociową, gdy wykonujemy podłogę na gruncie, należy umieścić na

A. izolacji cieplnej
B. gruntowym podłożu
C. podkładzie posadzki
D. chudym betonie
Izolacja przeciwwilgociowa jest potrzebna, żeby budynki nie miały problemów z wilgocią, ale ważne jest gdzie ją umieścimy, bo to wpływa na to, jak dobrze działa. Ułożenie jej na podkładzie pod posadzką, na gruncie albo na izolacji termicznej to błędy. Jak położysz izolację na podkładzie pod posadzką, to ona może się uszkodzić przez obciążenia i nie będzie dobrze działać. Na podłożu gruntowym to też kiepski pomysł, bo grunt to właśnie jest źródło wilgoci, więc nie ochroni nas przed nią. Poza tym, może to prowadzić do kondensacji pary wodnej, co sprzyja pleśni i grzybom. Izolacja termiczna, mimo że jest ważna dla oszczędności energii, nie chroni przed wilgocią z gruntu i jej stosowanie w takim kontekście może być mylące. Duży błąd to nieodróżnienie różnych rodzajów izolacji i ich przeznaczenia, co potem prowadzi do źle zaplanowanych rozwiązań budowlanych i w konsekwencji do wysokich kosztów napraw.