Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 30 maja 2025 17:58
  • Data zakończenia: 30 maja 2025 18:14

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oprogramowanie, które jest dodatkiem do systemu Windows i ma na celu ochronę przed oprogramowaniem szpiegującym oraz innymi niechcianymi elementami, to

A. Windows Defender
B. Windows Home Server
C. Windows Azure
D. Windows Embedded
Windows Defender jest wbudowanym programem zabezpieczającym w systemie Windows, który odgrywa kluczową rolę w ochronie komputerów przed oprogramowaniem szpiegującym oraz innymi zagrożeniami, takimi jak wirusy czy trojany. Jego zadaniem jest monitorowanie systemu w czasie rzeczywistym oraz skanowanie plików i aplikacji w poszukiwaniu potencjalnych zagrożeń. Windows Defender stosuje zaawansowane mechanizmy heurystyczne, co oznacza, że może identyfikować nowe, wcześniej nieznane zagrożenia poprzez analizę ich zachowania. Przykładowo, jeśli program próbuje uzyskać dostęp do poufnych danych bez odpowiednich uprawnień, Defender może zablokować jego działanie. Warto również wspomnieć, że Windows Defender regularnie aktualizuje swoją bazę sygnatur, co pozwala na skuteczną obronę przed najnowszymi zagrożeniami. Standardy branżowe, takie jak NIST SP 800-53, zalecają stosowanie rozwiązań zabezpieczających, które zapewniają ciągłą ochronę i aktualizację, co dokładnie spełnia Windows Defender, czyniąc go odpowiednim narzędziem do zabezpieczenia systemów operacyjnych Windows.

Pytanie 2

Na ilustracji przedstawiono złącze

Ilustracja do pytania
A. HDMI
B. D-SUB
C. DVI
D. FIRE WIRE
Odpowiedzi które wybrałeś nie są poprawne ponieważ dotyczą innych typów złączy stosowanych w różnych kontekstach elektronicznych i komputerowych. Złącze FIRE WIRE inaczej nazywane IEEE 1394 jest używane głównie do przesyłania danych cyfrowych z wysoką prędkością w urządzeniach takich jak kamery cyfrowe i dyski twarde. Technologie takie były popularne na przełomie XX i XXI wieku szczególnie w środowiskach profesjonalnych gdzie wymagana była szybka transmisja danych multimedialnych. Natomiast DVI czyli Digital Visual Interface to standard zaprojektowany do przesyłania wysokiej jakości sygnału wideo do monitorów cyfrowych. DVI zazwyczaj wykorzystuje się w kontekście połączeń między komputerem a monitorem co umożliwia przesyłanie obrazu o wysokiej rozdzielczości bez kompresji. Z kolei HDMI czyli High-Definition Multimedia Interface to złącze służące do przesyłania zarówno sygnału wideo jak i audio w formie cyfrowej. HDMI jest obecnie standardem w wielu urządzeniach konsumenckich takich jak telewizory monitory czy konsole do gier oferując wysoką jakość obrazu i dźwięku. Myślenie że jedno z tych złączy mogłoby być złączem D-SUB wynikać może z pomylenia ich ze względu na fizyczne podobieństwa w konstrukcji niektórych złączy szczególnie gdy pełnią one rolę portów komunikacyjnych. Warto jednak pamiętać że każde z tych złączy ma swoje specyficzne zastosowania i jest projektowane z myślą o różnych rodzajach transmisji danych oraz różnych środowiskach operacyjnych. Kluczowe jest rozumienie różnic funkcjonalnych aby prawidłowo identyfikować typ złącza i jego zastosowanie w praktyce. Wybór odpowiedniego złącza dla danego zastosowania jest istotny z punktu widzenia wydajności i niezawodności całego systemu elektronicznego.

Pytanie 3

Jakie narzędzie w systemie Windows służy do przeglądania informacji dotyczących problemów z systemem?

A. Foldery udostępnione
B. Harmonogram zadań
C. Podgląd zdarzeń
D. Zasady grupy
Podgląd zdarzeń to narzędzie w systemie Windows, które pozwala na monitorowanie i analizowanie różnych zdarzeń systemowych, co czyni je nieocenionym w procesie diagnozowania problemów. Dzięki temu narzędziu administratorzy mogą przeglądać logi systemowe, aplikacyjne i zabezpieczeń. Przykładowo, w przypadku awarii aplikacji, można w Podglądzie zdarzeń znaleźć szczegółowe informacje na temat błędów, które wystąpiły przed awarią, co pozwala na szybszą identyfikację przyczyny problemu. Dobre praktyki zalecają regularne przeglądanie logów, aby wcześnie wychwytywać potencjalne problemy i nieprawidłowości, co może znacząco poprawić stabilność i bezpieczeństwo systemu. W kontekście zarządzania IT, Podgląd zdarzeń jest kluczowym elementem zapewnienia ciągłości działania systemów, a jego wykorzystanie w codziennej pracy administracyjnej jest zgodne z najlepszymi standardami branżowymi.

Pytanie 4

Jakie polecenie należy wykorzystać, aby zmienić właściciela pliku w systemie Linux?

A. ps
B. pwd
C. chown
D. chmod
Polecenia 'ps', 'pwd' i 'chmod' mają zupełnie różne przeznaczenia i nie mogą być używane do zmiany właściciela pliku. 'ps' jest poleceniem służącym do wyświetlania informacji o bieżących procesach działających w systemie. Często mylone jest z administracją systemu, jednak nie ma związku z zarządzaniem plikami. 'pwd' to skrót od 'print working directory' i wyświetla bieżący katalog roboczy użytkownika, co również nie ma związku z modyfikowaniem własności plików. W kontekście uprawnień, błędne może być sądzenie, że 'chmod' może pełnić tę funkcję, ponieważ 'chmod' służy do zmiany uprawnień dostępu do plików, a nie ich właściciela. Użytkownicy często popełniają błąd, myśląc, że zmieniając uprawnienia plików, automatycznie dostosowują także ich właściciela. To błędne rozumienie prowadzi do potencjalnych luk w zabezpieczeniach oraz nieautoryzowanego dostępu do danych. Zrozumienie różnicy między tymi poleceniami jest kluczowe dla efektywnego zarządzania systemem Linux oraz zapewnienia odpowiedniego poziomu bezpieczeństwa.

Pytanie 5

Koprocesor arytmetyczny, który pełni funkcję wykonywania obliczeń na liczbach zmiennoprzecinkowych w mikroprocesorze, został na schemacie oznaczony cyfrą

Ilustracja do pytania
A. 3
B. 4
C. 2
D. 1
Koprocesor arytmetyczny, czyli FPU (Floating Point Unit), to jeden z ważniejszych elementów nowoczesnych mikroprocesorów. Dzięki niemu można bez problemu wykonywać operacje na liczbach zmiennoprzecinkowych. Jak wiadomo, w architekturze komputerowej FPU zajmuje się bardziej precyzyjnymi obliczeniami, które ALU (Arithmetic Logic Unit) może zrobić, ale nie tak dokładnie. W schemacie znajdziesz go jako cyfrę 4. Przykłady zastosowań? W grach czy programach do analizy danych trzeba mieć dużą dokładność, więc FPU bardzo sobie radzi z takimi rzeczami jak mnożenie czy dzielenie. W inżynierii, na przykład w programach CAD, kluczowe jest modelowanie złożonych struktur, a bez precyzyjnych obliczeń byłoby ciężko. Warto również pamiętać, że koprocesory arytmetyczne muszą spełniać pewne standardy, jak te od IEEE 754, żeby wszystko działało płynnie i niezawodnie. Dzięki nim programiści mogą pisać lepsze i bardziej zaawansowane aplikacje, które w pełni wykorzystują moc dzisiejszych procesorów.

Pytanie 6

Jakim akronimem oznacza się przenikanie bliskie skrętki teleinformatycznej?

A. ANEXT
B. NEXT
C. AFEXT
D. FEXT
Afekty takie jak ANEXT (Alien Near-End Crosstalk) i AFEXT (Alien Far-End Crosstalk) również dotyczą problemów z zakłóceniami sygnału, jednak odnoszą się do innych kontekstów. ANEXT dotyczy zakłóceń z innych kabli, które znajdują się w bliskim sąsiedztwie, co może wystąpić w instalacjach wielokablowych, gdzie wiele torów przesyłowych jest ułożonych blisko siebie. Z kolei AFEXT odnosi się do zakłóceń, które występują w punkcie końcowym kabla, a nie w jego bliskim sąsiedztwie. Wybierając jedną z tych odpowiedzi, można pomylić charakterystykę zakłóceń z innym typem przenikania sygnału, co prowadzi do nieprawidłowego zrozumienia tematu. Zrozumienie różnicy między tymi akronimami jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i wdrażaniem sieci teleinformatycznych. Typowym błędem jest myślenie, że wszystkie rodzaje zakłóceń są sobie równe, podczas gdy każde z nich ma swoje własne źródło oraz wpływ na jakość sygnału. W praktyce, ignorowanie różnic między NEXT, ANEXT i AFEXT może prowadzić do niewłaściwego doboru sprzętu i technologii, co z kolei wpływa na stabilność i wydajność całej sieci.

Pytanie 7

Zidentyfikuj urządzenie przedstawione na ilustracji

Ilustracja do pytania
A. jest przeznaczone do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
B. umożliwia konwersję sygnału z okablowania miedzianego na okablowanie optyczne
C. odpowiada za transmisję ramki pomiędzy segmentami sieci z wyborem portu, do którego jest przesyłana
D. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który jest wzmocnionym sygnałem wejściowym, kosztem energii pobieranej z zasilania
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery mediów są kluczowe w nowoczesnych sieciach komputerowych, gdzie konieczne jest łączenie różnych typów mediów transmisyjnych. Przykładowo, jeśli posiadamy infrastrukturę opartą na kablu miedzianym (Ethernet) i chcemy połączyć segmenty sieci na dużą odległość, możemy użyć światłowodu, który zapewnia mniejsze tłumienie i większą odporność na zakłócenia elektromagnetyczne. Urządzenie to pozwala na konwersję sygnałów z miedzianego interfejsu na światłowodowy, często wspierając różne standardy jak 1000Base-T dla miedzi i 1000Base-SX/LX dla światłowodów. Konwertery mogą być wyposażone w gniazda SFP, co umożliwia łatwą wymianę modułów optycznych dostosowanych do wymagań sieci. Dobór odpowiedniego konwertera bazuje na wymaganiach dotyczących prędkości transmisji, odległości przesyłu i rodzaju używanego kabla. Dzięki temu, konwertery mediów pozwalają na elastyczne zarządzanie infrastrukturą sieciową, co jest zgodne z najlepszymi praktykami projektowania sieci, które rekomendują adaptacyjność i skalowalność.

Pytanie 8

Który adres stacji roboczej należy do klasy C?

A. 127.0.0.1
B. 172.0.0.1
C. 232.0.0.1
D. 223.0.0.1
Adres 223.0.0.1 jest adresem klasy C, co wynika z jego pierwszego oktetu, który mieści się w zakresie od 192 do 223. Adresy klasowe w IPv4 są klasyfikowane na podstawie pierwszego oktetu, a klasy C są przeznaczone dla małych sieci, w których można mieć do 254 hostów. Adresy klasy C są powszechnie stosowane w organizacjach, które potrzebują mniejszych podsieci. Przykładowo, firma z 50 komputerami może przypisać im zakres adresów zaczynający się od 223.0.0.1 do 223.0.0.50, co skutkuje efektywnym zarządzaniem adresacją. Warto również znać, że adresy klasy C korzystają z maski podsieci 255.255.255.0, co pozwala na wydzielenie 256 adresów IP w danej podsieci (z czego 254 są użyteczne dla hostów). Znajomość klas adresowych i ich zastosowania jest istotna w kontekście projektowania sieci oraz ich efektywnego zarządzania, a także w kontekście bezpieczeństwa i optymalizacji ruchu sieciowego.

Pytanie 9

Który z poniższych adresów IPv4 należy do klasy C?

A. 191.168.0.2
B. 220.191.0.3
C. 240.220.0.4
D. 168.192.0.1
Adres IPv4 220.191.0.3 należy do klasy C, ponieważ jego pierwszy oktet mieści się w przedziale od 192 do 223. Klasa C jest szczególnie istotna w kontekście routingu w Internecie, ponieważ pozwala na wykorzystanie dużej liczby adresów IP dla mniejszych sieci. Klasyfikacja adresów IP opiera się na pierwszym oktetcie, co jest zgodne z konwencjami ustalonymi przez IANA (Internet Assigned Numbers Authority). W praktyce, sieci klasy C są często wykorzystywane przez małe i średnie przedsiębiorstwa oraz w sytuacjach, gdy organizacje potrzebują odrębnych podsieci dla różnych działów. Warto zauważyć, że adresy klasy C są zwykle przypisywane w formacie CIDR (Classless Inter-Domain Routing), co pozwala na bardziej elastyczne zarządzanie przestrzenią adresową. Przykładem praktycznego zastosowania adresu klasy C może być budowanie lokalnej sieci komputerowej w firmie, gdzie router jest skonfigurowany do obsługi sieci 192.168.1.0/24, co pozwala na przydzielenie 254 unikalnych adresów IP. Zrozumienie klasyfikacji adresów IP jest kluczowe dla każdego, kto pracuje z sieciami komputerowymi.

Pytanie 10

Jakiego typu dane są przesyłane przez interfejs komputera osobistego, jak pokazano na ilustracji?

Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
stopu

A. Równoległy asynchroniczny
B. Równoległy synchroniczny
C. Szeregowy asynchroniczny
D. Szeregowy synchroniczny
Interfejs szeregowy asynchroniczny przesyła dane bit po bicie w sekwencji zawierającej bity startu bity danych i bity stopu Jest to jeden z najczęściej używanych protokołów transmisji danych w komputerach osobistych szczególnie w starszych systemach komunikacyjnych takich jak RS-232 Dzięki swojej prostocie i niewielkim wymaganiom sprzętowym jest powszechnie stosowany w komunikacji między mikroprocesorami i urządzeniami peryferyjnymi W szeregowej transmisji asynchronicznej dane są przesyłane bez synchronizacji zegara co oznacza że urządzenia nie muszą mieć wspólnego sygnału zegara Zamiast tego używane są bity startu i stopu które określają początek i koniec każdego znaku co pozwala odbiorcy na dokładne odczytanie danych nawet jeśli występują niewielkie różnice w tempie przesyłania danych Praktycznym przykładem zastosowania transmisji szeregowej asynchronicznej jest połączenie komputera z modemem lub innym urządzeniem sieciowym za pomocą portu COM Transmisja szeregowa asynchroniczna jest również stosowana w komunikacji urządzeń takich jak GPS czy niektóre urządzenia medyczne ponieważ jest niezawodna i łatwa do implementacji Odwołując się do standardów należy zauważyć że asynchroniczna transmisja szeregowa zgodna z RS-232 pozwala na przesyłanie danych z prędkościami do 115200 bps co czyni ją wystarczającą do wielu zastosowań branżowych

Pytanie 11

Jakie znaczenie mają zwory na dyskach z interfejsem IDE?

A. napięcie zasilające silnik
B. tryb działania dysku
C. typ interfejsu dysku
D. tempo obrotowe dysku
Udzielenie odpowiedzi, która odnosi się do rodzaju interfejsu dyskowego, prędkości obrotowej dysku lub napięcia zasilania silnika, może wynikać z mylnego zrozumienia funkcji zworek w systemach dyskowych. Rodzaj interfejsu dyskowego, jak IDE, SCSI czy SATA, jest określany przez fizyczne połączenie oraz protokół komunikacyjny, a nie przez ustawienia zworek. Dla przykładu, jeśli ktoś sądzi, że zworki mogą zmieniać charakterystykę interfejsu, to jest to nieporozumienie, ponieważ są one jedynie mechanizmem konfiguracyjnym w obrębie już ustalonego interfejsu. Z kolei prędkość obrotowa dysku, która jest mierzona w RPM (obrotach na minutę), zależy od konstrukcji silnika i technologii użytej w produkcji dysku, a nie od ustawienia zworek. Dodatkowo, napięcie zasilania silnika jest stałym parametrem, który również nie jest regulowany przez zworki, ale przez specyfikację zasilania. Użytkownicy mogą mylić te pojęcia z powodu niepełnej wiedzy na temat architektury komputerowej i funkcjonalności poszczególnych komponentów. Właściwe zrozumienie, jak zwory wpływają na konfigurację dysków i ich tryb pracy, jest kluczowe dla efektywnego zarządzania systemami komputerowymi i unikania problemów z kompatybilnością oraz wydajnością.

Pytanie 12

Oblicz całkowity koszt materiałów potrzebnych do zbudowania sieci w topologii gwiazdy dla 3 komputerów z kartami sieciowymi, używając kabli o długości 2 m. Ceny materiałów są wskazane w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr

A. 92 zł
B. 249 zł
C. 252 zł
D. 89 zł
Nieprawidłowe odpowiedzi wynikają z niepoprawnej kalkulacji kosztów materiałów potrzebnych do zbudowania sieci w topologii gwiazdy. Kluczowym elementem jest zrozumienie, że w topologii gwiazdy każdy komputer jest podłączony do centralnego przełącznika, co wymaga odpowiedniej liczby przewodów i wtyków. Błędne obliczenia mogą wynikać z nieprawidłowego zrozumienia ilości potrzebnych materiałów lub niewłaściwego zastosowania ich cen. Przykładowo, koszt 249 zł mógłby sugerować włączenie dodatkowych niepotrzebnych urządzeń lub błędne mnożenie elementów. Podobnie, opcja 252 zł może wynikać z podwojenia lub potrojenia kosztów jednostkowych przełącznika, co jest niezgodne z rzeczywistymi potrzebami topologii gwiazdy dla zaledwie trzech komputerów. Podstawowym błędem w takich sytuacjach jest nieuwzględnienie zasady działania i kosztów elementów w kontekście praktycznym. Aby unikać takich pomyłek, ważne jest zrozumienie struktury sieci i właściwe przypisanie kosztów do rzeczywiście używanych komponentów. Takie podejście pozwala na efektywne zarządzanie budżetem i zasobami, co jest kluczowe w projektowaniu i wdrażaniu sieci komputerowych w środowiskach zawodowych.

Pytanie 13

Na diagramie przedstawiającym zasadę funkcjonowania monitora plazmowego numer 6 zaznaczono

Ilustracja do pytania
A. powłokę dielektryczną
B. elektrody wyświetlacza
C. powłokę fosforową
D. elektrody adresujące
Elektrody adresujące w monitorze plazmowym są kluczowym elementem odpowiadającym za wyświetlanie obrazu. W technologii plazmowej, piksele obrazu są tworzone przez małe komórki zawierające gaz szlachetny, który pod wpływem napięcia elektrycznego przechodzi w stan plazmy. Elektrody adresujące, umieszczone za warstwą dielektryka, sterują tym procesem poprzez precyzyjne aplikowanie napięcia na odpowiednie komórki. To pozwala na selektywne wzbudzenie pikseli, co prowadzi do emisji światła w wyniku rekombinacji plazmy i pobudzenia warstwy fosforowej. W praktyce oznacza to, że elektrody adresujące pełnią rolę sterowników, które decydują o tym, które piksele mają być aktywne, a które nie. Technologia ta jest wykorzystywana w ekranach telewizyjnych oraz monitorach komputerowych, zapewniając wysoki kontrast i szeroką gamę kolorów. Dobre praktyki w projektowaniu i produkcji monitorów plazmowych wymagają precyzyjnego rozmieszczenia i wysokiej jakości materiałów użytych do skonstruowania elektrod, co bezpośrednio wpływa na jakość obrazu i trwałość urządzenia.

Pytanie 14

Okablowanie wertykalne w sieci strukturalnej łączy

A. główny punkt dystrybucji z gniazdem abonenta
B. dwa gniazda abonentów
C. pośredni punkt dystrybucji z gniazdem abonenta
D. główny punkt dystrybucji z pośrednimi punktami dystrybucji
Okablowanie pionowe w sieci strukturalnej, które łączy główny punkt rozdzielczy z pośrednimi punktami rozdzielczymi, jest kluczowym elementem architektury sieci. W praktyce oznacza to, że główny punkt rozdzielczy, często zlokalizowany w serwerowni, jest połączony z różnymi pośrednimi punktami rozdzielczymi rozmieszczonymi w budynku. Te pośrednie punkty zapewniają dostęp do różnych obszarów, umożliwiając podłączenie gniazd abonenckich. Zgodnie z normą ISO/IEC 11801, tak zaprojektowana struktura okablowania pozwala na efektywną organizację sieci, zwiększając jej elastyczność oraz skalowalność. Dzięki takiemu podejściu, w razie potrzeby można łatwo zainstalować dodatkowe gniazda abonenckie w różnych lokalizacjach bez konieczności zmiany całej infrastruktury. Tego typu okablowanie jest także kluczowe w kontekście modernizacji i rozbudowy systemów, ponieważ pozwala na łatwe aktualizacje technologii oraz dostosowywanie do rosnących wymagań użytkowników.

Pytanie 15

W celu kontrolowania przepustowości sieci, administrator powinien zastosować aplikację typu

A. quality manager
B. bandwidth manager
C. package manager
D. task manager
Wybierając odpowiedzi inne niż 'bandwidth manager', można wpaść w pułapkę nieporozumienia dotyczącego ról różnych narzędzi w zarządzaniu systemami informatycznymi. Programy takie jak 'package manager' są używane do zarządzania oprogramowaniem, umożliwiając instalację, aktualizacje i usuwanie pakietów oprogramowania w systemach operacyjnych i nie mają związku z kontrolowaniem transferu danych w sieci. Podobnie, 'quality manager' nie jest narzędziem do zarządzania przepustowością, lecz odnosi się raczej do zarządzania jakością w szerszym kontekście, co może obejmować różne aspekty jakości produktów i usług, ale nie odnosi się bezpośrednio do technik zarządzania ruchem sieciowym. Ostatecznie 'task manager' jest narzędziem do monitorowania i zarządzania procesami działającymi w systemie operacyjnym, co również nie ma zastosowania w kontekście zarządzania przepustowością sieci. Kluczowym błędem w myśleniu jest zrozumienie, że każde z tych narzędzi ma swoje specyficzne funkcje i zastosowania, a ich mylenie może prowadzić do niewłaściwego zarządzania zasobami sieciowymi, co z kolei może skutkować obniżeniem wydajności i jakości usług sieciowych.

Pytanie 16

Co może być przyczyną problemów z wydrukiem z drukarki laserowej przedstawionych na ilustracji?

Ilustracja do pytania
A. sprawny podajnik
B. wyschnięty tusz
C. brak tonera w kartridżu
D. uszkodzony bęben światłoczuły
Uszkodzony bęben światłoczuły w drukarce laserowej może prowadzić do powtarzających się wzorów lub smug na wydruku takich jak te widoczne na załączonym rysunku. Bęben światłoczuły jest kluczowym elementem drukarki odpowiedzialnym za przenoszenie tonera na papier. Jego powierzchnia musi być idealnie gładka i równomiernie naelektryzowana aby toner mógł być dokładnie przeniesiony. Jeśli bęben jest uszkodzony lub ma defekty te mogą powodować niejednolity transfer tonera co skutkuje powtarzalnymi defektami na wydruku. Takie uszkodzenia mogą być spowodowane przez zużycie mechaniczne cząstki zanieczyszczeń lub nieodpowiednie przechowywanie. W praktyce zaleca się regularne czyszczenie i konserwację drukarki a w przypadku zauważenia problemów szybkie sprawdzenie stanu bębna. Standardy branżowe rekomendują również korzystanie z oryginalnych materiałów eksploatacyjnych co może znacznie wydłużyć żywotność bębna i poprawić jakość wydruków. Wiedza o tym jak działa bęben światłoczuły i jakie są symptomy jego uszkodzeń pozwala na skuteczniejsze diagnozowanie problemów i lepszą konserwację urządzeń biurowych.

Pytanie 17

W sieci z maską 255.255.255.128 można przypisać adresy dla

A. 127 urządzeń
B. 254 urządzenia
C. 126 urządzeń
D. 128 urządzeń
Maska podsieci 255.255.255.128, której notacja CIDR to /25, pozwala na podział adresu IPv4 na dwie części: adres sieci oraz adres hosta. W przypadku maski /25, mamy 7 bitów przeznaczonych na adresy hostów (32 bity - 25 bity maski = 7 bity). Liczba dostępnych adresów hostów oblicza się za pomocą wzoru 2^n - 2, gdzie n to liczba bitów przeznaczonych dla hostów. W naszym przypadku to 2^7 - 2, co daje 128 - 2 = 126 adresów hostów. Odejmuje się 2 adresy: jeden dla adresu sieci (wszystkie bity hosta ustawione na 0) i jeden dla adresu rozgłoszeniowego (wszystkie bity hosta ustawione na 1). Przykładowo, w sieci 192.168.1.0/25, możliwe adresy hostów to od 192.168.1.1 do 192.168.1.126. Wiedza o adresowaniu i podsieciach jest kluczowa w zarządzaniu sieciami komputerowymi, a stosowanie odpowiednich masek sieciowych pozwala na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 18

Jaki procesor powinien być zastosowany przy składaniu komputera osobistego z płytą główną Asus M5A78L-M/USB3 AMD760G socket AM3+?

A. AMD APU A8 7650K 3300MHz FM2+ BOX
B. AMD APU A4 6320 3800MHz FM2
C. AMD FX 8300 3300MHz AM3+ Oem
D. AMD A8-7600 S.FM2 BOX
W przypadku pozostałych opcji, nie są one zgodne z gniazdem AM3+, co skutkuje ich niekompatybilnością z płytą główną Asus M5A78L-M/USB3. Procesory AMD A8-7600 S.FM2 BOX oraz AMD APU A4 6320 3800MHz FM2 wymagają gniazda FM2, które jest zupełnie innym standardem, a ich konstrukcja oraz architektura są dostosowane do innego typu platformy. Użytkownicy, którzy zdecydują się na montaż tych jednostek w płycie obsługującej AM3+, napotkają na problemy związane z brakiem fizycznej możliwości podłączenia procesora do gniazda. Z kolei procesor AMD APU A8 7650K 3300MHz FM2+ BOX również nie będzie działał z powodu wymagań dotyczących gniazda FM2+. Często mylnie zakłada się, że procesory z rodziny APU mogą być łatwo zamieniane z procesorami FX, ale różnice w gniazdach oraz architekturze sprawiają, że takie podejście jest błędne. W praktyce, niekompatybilność komponentów to jedna z najczęstszych przyczyn problemów w budowie komputera, a nieznajomość specyfikacji technicznych może prowadzić do dużych frustracji oraz dodatkowych kosztów wynikających z konieczności zakupu nowych podzespołów. Dlatego kluczowe jest dokładne sprawdzenie specyfikacji płyty głównej oraz wymagań dla wybranego procesora przed dokonaniem zakupu.

Pytanie 19

W systemie Windows, zainstalowanym w wersji obsługującej przydziały dyskowe, użytkownik o nazwie Gość

A. może być członkiem grup lokalnych oraz grup globalnych
B. nie może być tylko w grupie o nazwie Goście
C. nie może być członkiem żadnej grupy
D. nie może być wyłącznie członkiem grupy globalnej
Odpowiedź mówiąca, że użytkownik o nazwie Gość może należeć do grup lokalnych i grup globalnych, jest zgodna z zasadami zarządzania użytkownikami w systemie Windows. W systemach operacyjnych Windows, grupy użytkowników są kluczowe dla zarządzania uprawnieniami i dostępem do zasobów. Użytkownik Gość, mimo że ma ograniczone uprawnienia, może być członkiem grup, co pozwala na nadanie mu specyficznych uprawnień. Przykładowo, członkostwo w lokalnej grupie 'Użytkownicy' umożliwia Gościowi korzystanie z podstawowych funkcji systemu, takich jak logowanie się oraz dostęp do publicznych folderów. Z kolei dołączenie do globalnej grupy, na przykład 'Użytkownicy domeny', pozwala na zarządzanie dostępem do zasobów w sieci w zależności od polityki i potrzeb organizacji. Zgodnie z dobrymi praktykami, takim jak zasada najmniejszych uprawnień, przydzielanie użytkownikom, w tym Gościowi, odpowiednich grup lokalnych i globalnych ułatwia kontrolowanie dostępu i minimalizowanie ryzyka, co jest szczególnie ważne w środowiskach produkcyjnych oraz w organizacjach z restrykcyjnymi politykami bezpieczeństwa.

Pytanie 20

W norma PN-EN 50174 brak jest wskazówek odnoszących się do

A. realizacji instalacji wewnątrz obiektów
B. zapewnienia jakości instalacji kablowych
C. uziemień instalacji urządzeń przetwarzania danych
D. realizacji instalacji na zewnątrz obiektów
Norma PN-EN 50174, która dotyczy instalacji systemów okablowania strukturalnego, nie wnosi wytycznych dotyczących zapewnienia jakości instalacji okablowania. Użytkownicy mogą być mylnie przekonani, że jakość instalacji można ocenić na podstawie samej normy, jednak w rzeczywistości normy te nie obejmują kryteriów jakości, które są kluczowe dla prawidłowego funkcjonowania systemów. Jakość instalacji powinna być zapewniona poprzez stosowanie odpowiednich procedur testowych oraz standardów jakości, takich jak ISO 9001, które koncentrują się na systemach zarządzania jakością. W odniesieniu do wykonania instalacji wewnątrz budynków, norma PN-EN 50174 oferuje wskazówki, lecz nie jest jedynym dokumentem, na którym można się opierać. Z kolei instalacje na zewnątrz budynków również wymagają szczegółowych wytycznych, które nie są zawarte wyłącznie w tej normie. Każda instalacja musi spełniać określone normy dotyczące odporności na warunki atmosferyczne oraz ochrony przed uszkodzeniami mechanicznymi, co należy łączyć z innymi przepisami czy normami branżowymi. Stąd wynika, że ignorowanie aspektów jakości oraz specyfikacji dla instalacji zewnętrznych prowadzi do błędnych wniosków, przyczyniających się do nieprawidłowej eksploatacji systemów okablowania.

Pytanie 21

W jakim typie skanera stosuje się fotopowielacze?

A. ręcznym
B. płaskim
C. kodów kreskowych
D. bębnowym
Wybór skanera ręcznego, kodów kreskowych lub płaskiego nie jest właściwy w kontekście wykorzystania fotopowielaczy. Skanery ręczne, chociaż przydatne w przenośnym skanowaniu, nie wykorzystują technologii fotopowielaczy, lecz często prostsze komponenty optyczne, co ogranicza ich zdolność do uzyskiwania wysokiej jakości obrazów. Z kolei skanery kodów kreskowych są zaprojektowane głównie do odczytywania kodów kreskowych, a ich technologie, takie jak laserowe skanowanie lub skanowanie CCD, nie wymagają użycia fotopowielaczy. Zamiast tego koncentrują się na szybkości i precyzji odczytu kodów, co w zupełności różni się od aspektów obrazowania. W przypadku skanerów płaskich, choć mogą oferować przyzwoitą jakość skanowania, zazwyczaj wykorzystują inne typy sensorów, takie jak CMOS, zamiast fotopowielaczy. W wielu przypadkach użytkownicy mogą błędnie zakładać, że wszystkie typy skanerów mogą osiągnąć podobną jakość obrazu, nie dostrzegając różnic w zastosowanych technologiach. Dlatego ważne jest, aby zrozumieć, że dobór odpowiedniego skanera zależy od specyficznych potrzeb związanych z jakością obrazu oraz rodzajem skanowanych materiałów. Nie mogą one zatem zastąpić bębnowych skanerów w kontekście profesjonalnych zastosowań wymagających najwyższej możliwości detekcji detali.

Pytanie 22

Który z protokołów jest używany podczas rozpoczynania sesji VoIP?

A. SDP
B. MCGP
C. SIP
D. MIME
Wybór błędnych odpowiedzi może wynikać z nieporozumienia dotyczącego ról różnych protokołów w kontekście VoIP. MCGP (Media Control Gateway Protocol) nie jest protokołem do inicjacji sesji, lecz jest używany do zarządzania mediami w kontekście bramek telekomunikacyjnych, co czyni go niewłaściwym wyborem w tej sytuacji. MIME (Multipurpose Internet Mail Extensions), z drugiej strony, jest zestawem rozszerzeń do protokołu e-mail, który pozwala na przesyłanie różnych typów danych, ale nie jest w żaden sposób związany z inicjacją sesji VoIP. Wreszcie, SDP (Session Description Protocol) służy do opisu parametrów sesji multimedia, ale nie pełni funkcji inicjacji sesji. Zrozumienie różnic między tymi protokołami jest kluczowe dla efektywnego zarządzania komunikacją w sieciach. Typowym błędem jest mylenie sygnalizacji z transmisją danych: SIP zajmuje się sygnalizacją, z kolei inne protokoły, takie jak RTP, są odpowiedzialne za przesyłanie samego dźwięku czy wideo. Warto pamiętać, że w kontekście VoIP, poprawna identyfikacja protokołów oraz ich funkcji jest niezbędna do zbudowania efektywnego systemu komunikacji.

Pytanie 23

Poprzez użycie opisanego urządzenia możliwe jest wykonanie diagnostyki działania

Ilustracja do pytania
A. zasilacza ATX
B. interfejsu SATA
C. modułu DAC karty graficznej
D. pamięci RAM
Urządzenie przedstawione na zdjęciu to multimetr cyfrowy który jest niezbędnym narzędziem w diagnostyce zasilaczy ATX. Multimetr umożliwia pomiar napięcia prądu i oporu co jest kluczowe przy analizie poprawności działania zasilacza komputerowego. W kontekście zasilaczy ATX ważne jest aby zmierzyć napięcia na liniach 3.3V 5V i 12V aby upewnić się że mieszczą się w określonych przez standard ATX tolerancjach. Na przykład linia 12V powinna być w granicach 11.4V do 12.6V. Multimetr może pomóc również w wykryciu ewentualnych zwarć poprzez testowanie ciągłości obwodu. Ponadto zasilacze ATX muszą utrzymywać stabilność napięcia pod obciążeniem co można zweryfikować przy pomocy multimetru podłączając go podczas pracy. Normy takie jak ATX12V definiują wymagania i specyfikacje dla zasilaczy komputerowych a korzystanie z odpowiednich narzędzi pomiarowych umożliwia spełnienie tych standardów. Regularna diagnostyka z użyciem multimetru przyczynia się do utrzymania bezpieczeństwa i niezawodności systemów komputerowych.

Pytanie 24

Komputer z adresem IP 192.168.5.165 oraz maską podsieci 255.255.255.192 funkcjonuje w sieci o adresie

A. 192.168.5.128
B. 192.168.5.64
C. 192.168.5.192
D. 192.168.5.0
Adres IP 192.168.5.165 z maską podsieci 255.255.255.192 oznacza, że komputer jest częścią podsieci, która ma podstawowy adres sieciowy 192.168.5.128. Maska 255.255.255.192 (lub /26) dzieli adresację IP na podsieci, w których każda podsieć może obsługiwać do 62 hostów (2^(32-26)-2, gdzie odejmujemy 2 na adres sieciowy i adres rozgłoszeniowy). W przypadku tej maski, podsieć 192.168.5.128 obejmuje adresy od 192.168.5.128 do 192.168.5.191, co potwierdza, że komputer z adresacją 192.168.5.165 należy do tej podsieci. Wiedza ta jest istotna w zarządzaniu zasobami sieciowymi oraz w prawidłowej konfiguracji ruterów i urządzeń sieciowych. Przykładowo, w praktyce często stosuje się takie podziałki w większych sieciach firmowych, aby efektywnie zarządzać adresacją IP oraz zapewnić segregację ruchu w sieci.

Pytanie 25

Urządzenie, które pozwala komputerom na bezprzewodowe łączenie się z siecią komputerową przewodową, to

A. regenerator
B. koncentrator
C. modem
D. punkt dostępowy
Punkt dostępowy (ang. access point) to urządzenie, które pełni kluczową rolę w tworzeniu bezprzewodowych sieci komputerowych. Jego głównym zadaniem jest umożliwienie komputerom, laptopom i innym urządzeniom mobilnym łączności z przewodową siecią lokalną (LAN). Działa on jako przekaźnik, który konwertuje sygnały radiowe na sygnał sieciowy i odwrotnie. Dzięki temu, urządzenia bezprzewodowe mogą korzystać z zasobów i usług dostępnych w sieci przewodowej. Typowym zastosowaniem punktów dostępowych jest ich umieszczanie w biurach, uczelniach czy miejscach publicznych, gdzie zapewniają dostęp do Internetu. W standardzie IEEE 802.11, który definiuje zasady komunikacji w sieciach WLAN, punkty dostępowe są niezbędne do zapewnienia stabilnej i wydajnej komunikacji bezprzewodowej. Warto także wspomnieć o technikach zarządzania, takich jak WDS (Wireless Distribution System), które pozwalają na rozbudowę sieci i zwiększenie jej zasięgu poprzez integrację wielu punktów dostępowych.

Pytanie 26

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. siatki
B. gwiazdy
C. magistrali
D. pierścienia
Wybór topologii gwiazdy, pierścienia lub magistrali w kontekście sieci Ad-Hoc IBSS jest nieprawidłowy, ponieważ każda z tych struktur ma swoje specyficzne ograniczenia i nie pasuje do natury Ad-Hoc. Topologia gwiazdy opiera się na centralnym punkcie dostępowym, co jest sprzeczne z decentralizowanym charakterem Ad-Hoc, gdzie każde urządzenie może pełnić rolę zarówno nadawcy, jak i odbiorcy. W przypadku topologii pierścienia, w której dane przemieszczają się w jednym kierunku przez wszystkie urządzenia, łatwo o zakłócenia i problemy z wydajnością, co w sieciach Ad-Hoc jest niepożądane. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest również nieodpowiednia, ponieważ wymaga stabilnej struktury, co nie jest możliwe w dynamicznym środowisku Ad-Hoc. Typowym błędem myślowym jest mylenie pojmowania struktury sieci z typowymi, stałymi instalacjami, podczas gdy Ad-Hoc ma na celu umożliwienie szybkiej i elastycznej komunikacji w zmieniających się warunkach. Te nieprawidłowe odpowiedzi nie uwzględniają również praktycznych aspektów rozwoju sieci bezprzewodowych, które opierają się na standardach takich jak IEEE 802.11, które promują elastyczność i decentralizację.

Pytanie 27

Który z parametrów w poleceniu ipconfig w systemie Windows służy do odnawiania konfiguracji adresów IP?

A. /displaydns
B. /flushdns
C. /release
D. /renew
Parametr /renew w poleceniu ipconfig w systemie Windows jest używany do odnawiania adresu IP przypisanego do urządzenia w sieci. Umożliwia to klientowi DHCP (Dynamic Host Configuration Protocol) ponowne uzyskanie adresu IP oraz innych konfiguracji sieciowych od serwera DHCP. W praktyce, gdy komputer jest podłączony do sieci lokalnej i potrzebuje nowego adresu IP, na przykład po zmianie lokalizacji w sieci lub po upływie czasu ważności aktualnego adresu, użycie polecenia 'ipconfig /renew' pozwala na szybkie i efektywne odświeżenie ustawień. W kontekście standardów branżowych, regularne odnawianie adresów IP za pomocą DHCP jest powszechnie stosowaną praktyką, która zapewnia optymalizację wykorzystania dostępnych adresów IP oraz ułatwia zarządzanie siecią. Ważne jest, aby administratorzy sieci byli świadomi, że czasami może być konieczne ręczne odnowienie adresu IP, co można zrealizować właśnie tym poleceniem, zwłaszcza w sytuacjach, gdy występują problemy z połączeniem lub konieczne jest przydzielenie nowego adresu z puli DHCP.

Pytanie 28

Jakie polecenie jest używane do monitorowania statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych z rodziny Windows?

A. tracert
B. ping
C. route
D. netstat
Polecenie 'netstat' jest kluczowym narzędziem w systemach operacyjnych Windows, służącym do monitorowania statystyk protokołów TCP/IP oraz aktualnych połączeń sieciowych. Umożliwia ono wyświetlenie listy aktywnych połączeń, portów nasłuchujących, a także statystyk dotyczących protokołów, takich jak TCP i UDP. Dzięki temu administratorzy sieci mogą zidentyfikować aktywne połączenia, sprawdzić, które aplikacje są powiązane z danymi połączeniami oraz zdiagnozować problemy związane z działaniem sieci. Na przykład, użycie komendy 'netstat -an' wyświetli wszystkie połączenia oraz porty w stanie nasłuchu, co może być niezwykle przydatne w przypadku podejrzenia nieautoryzowanego dostępu do systemu. W kontekście dobrych praktyk, regularne sprawdzanie statystyk sieciowych za pomocą 'netstat' może pomóc w wykrywaniu potencjalnych zagrożeń i utrzymaniu bezpieczeństwa sieci. Ponadto, narzędzie to jest zgodne z zaleceniami organizacji zajmujących się bezpieczeństwem, które podkreślają istotę monitorowania ruchu sieciowego jako kluczowego elementu zarządzania bezpieczeństwem IT.

Pytanie 29

Zestaw narzędzi niezbędnych do instalacji okablowania miedzianego typu "skrętka" w lokalnej sieci powinien obejmować

A. zaciskarkę do złączy modularnych, ściągacz izolacji, narzędzie uderzeniowe, tester okablowania
B. zestaw wkrętaków, narzędzie uderzeniowe, tester okablowania, lutownicę
C. narzędzie uderzeniowe, nóż montażowy, spawarkę światłowodową, tester okablowania
D. ściągacz izolacji, zaciskarkę do złączy modularnych, nóż montażowy, miernik uniwersalny
Zestaw narzędzi do montażu okablowania miedzianego typu 'skrętka' w sieci lokalnej powinien zawierać zaciskarkę złączy modularnych, ściągacz izolacji, narzędzie uderzeniowe oraz tester okablowania. Zaciskarka jest kluczowym narzędziem do prawidłowego łączenia przewodów z wtyczkami RJ-45, co jest niezbędne w instalacjach LAN. Użycie ściągacza izolacji pozwala na precyzyjne usunięcie izolacji z przewodów bez ich uszkodzenia, co jest ważne dla zapewnienia wysokiej jakości połączenia. Narzędzie uderzeniowe (impact tool) jest wykorzystywane do montażu wtyków na gniazdach typu keystone oraz do wpinania wtyczek w panelach krosowych, co jest istotne dla zachowania integralności sygnału. Tester okablowania pozwala na weryfikację poprawności połączeń oraz identyfikację ewentualnych błędów, co jest kluczowe dla zapewnienia niezawodności sieci. Dobre praktyki branżowe zalecają używanie zestawu narzędzi, który umożliwia przeprowadzenie instalacji zgodnie z normami, co wpływa na stabilność i wydajność całej sieci.

Pytanie 30

Jaką wartość liczbową ma BACA zapisaną w systemie heksadecymalnym?

A. 1100101010111010 (2)
B. 47821 (10)
C. 135316 (8)
D. 1011101011001010 (2)
Zgadza się! Twoja odpowiedź 1011101011001010 w systemie binarnym jest trafna, bo liczba BACA w heksadecymalnym odpowiada tej samej wartości w binarnym. Jak to działa? Wystarczy przetłumaczyć każdy znak z heksadecymalnego na binarny. Na przykład: B to 1011, A to 1010, C to 1100 i A znowu to 1010. Łącząc to wszystko dostajemy 1011101011001010. W praktyce, zrozumienie konwersji między systemami liczbowymi jest mega ważne, zwłaszcza w programowaniu i inżynierii komputerowej, bo to pomaga w zarządzaniu danymi w pamięci czy komunikacji między systemami. Dobrze jest też znać standardy, jak np. IEEE 754, które pokazują, jak reprezentować liczby zmiennoprzecinkowe. Wiedza na ten temat naprawdę wspiera lepsze zarządzanie danymi oraz optymalizację algorytmów, co jest kluczowe, gdy chodzi o precyzyjne obliczenia.

Pytanie 31

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 64256(10)
B. 175376 (8)
C. 1111101011011101 (2)
D. 1111101011111100 (2)
Liczba FAFC w systemie heksadecymalnym odpowiada liczbie 1111101011111100 w systemie binarnym. Aby zrozumieć, dlaczego tak jest, warto najpierw przyjrzeć się konwersji pomiędzy systemami liczbowymi. Liczba heksadecymalna FAFC składa się z czterech cyfr, gdzie każda cyfra heksadecymalna odpowiada czterem bitom w systemie binarnym. Zatem, aby przeliczyć FAFC na system binarny, należy przetłumaczyć każdą z cyfr: F to 1111, A to 1010, F to 1111, a C to 1100. Po połączeniu tych bitów otrzymujemy 1111101011111100. Taka konwersja jest powszechnie stosowana w programowaniu i elektronice, zwłaszcza w kontekście adresowania pamięci lub przedstawiania kolorów w systemach graficznych, gdzie heksadecymalne kody kolorów są często używane. Przykładami zastosowań mogą być grafika komputerowa oraz rozwój systemów wbudowanych, gdzie konwersje między różnymi systemami liczbowymi są na porządku dziennym. Zrozumienie tych konwersji jest kluczowe dla efektywnego programowania i pracy z różnymi formatami danych.

Pytanie 32

W systemie Blu-ray nośnik przeznaczony do jednokrotnego zapisu jest oznaczany jako

A. BD-ROM
B. BD-RE
C. BD-R
D. BD
BD, BD-RE oraz BD-ROM to różne typy nośników Blu-ray, które pełnią inne funkcje niż BD-R, co często może prowadzić do nieporozumień. BD oznacza po prostu Blu-ray Disc, co jest ogólnym terminem dla wszystkich typów płyt Blu-ray, w tym BD-R, BD-RE i BD-ROM. Użytkownicy mogą pomylić BD z rodzajem nośnika, jednakże BD to termin, który nie definiuje, czy nośnik jest zapisowy, czy odczytowy. Z kolei BD-RE (Blu-ray Disc Rewritable) to nośnik, który umożliwia wielokrotne zapisywanie i usuwanie danych, co sprawia, że jest bardziej elastycznym rozwiązaniem, lecz nie spełnia wymogu „jednokrotnego zapisu”. BD-ROM (Blu-ray Disc Read-Only Memory) to kolejny rodzaj nośnika, który jest fabrycznie zapisany i przeznaczony tylko do odczytu, co oznacza, że użytkownik nie ma możliwości zapisania na nim własnych danych. Typowe błędy myślowe, które mogą prowadzić do niepoprawnych odpowiedzi, obejmują mylenie funkcji i możliwości tych nośników oraz brak zrozumienia ich zastosowania w praktycznych scenariuszach. Dlatego ważne jest, aby zrozumieć, że BD-R jest unikalnym nośnikiem, który umożliwia jednorazowy zapis, co czyni go idealnym do archiwizacji i przechowywania danych, podczas gdy pozostałe typy nośników mają inne przeznaczenie.

Pytanie 33

Symbol zaprezentowany powyżej, używany w dokumentacji technicznej, wskazuje na

Ilustracja do pytania
A. brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych
B. wymóg selektywnej zbiórki sprzętu elektronicznego
C. zielony punkt upoważniający do wniesienia opłaty pieniężnej na rzecz organizacji odzysku opakowań
D. konieczność utylizacji wszystkich elementów elektrycznych
Rozważając niepoprawne odpowiedzi, ważne jest zrozumienie ich podstawowych założeń i dlaczego mogą prowadzić do błędnych wniosków. Koncepcja konieczności utylizacji wszystkich elementów elektrycznych wydaje się intuicyjna, jednak nie jest zgodna z rzeczywistością prawną czy też praktykami branżowymi. Przepisy skupiają się nie tylko na utylizacji, ale przede wszystkim na recyklingu i ponownym użyciu wartościowych surowców. Z kolei brak możliwości składowania odpadów aluminiowych oraz innych tworzyw metalicznych jako definicja tego symbolu jest błędnym uproszczeniem. Choć odpadów metalicznych rzeczywiście nie powinno się wyrzucać w sposób nieselektywny, to przekreślony kosz nie odnosi się bezpośrednio do tej kategorii odpadów. Natomiast zielony punkt upoważniający do wniesienia opłaty na rzecz organizacji odzysku opakowań to zupełnie inny symbol, który dotyczy systemu finansowania recyklingu materiałów opakowaniowych, a nie sprzętu elektronicznego. Tego rodzaju zrozumienie wskazuje na mylne utożsamienie różnych koncepcji zrównoważonego zarządzania odpadami. Ważne jest, aby jednoznacznie rozróżniać między nimi, szczególnie w kontekście regulacji takich jak dyrektywa WEEE, która skupia się na odpowiedzialnym zarządzaniu zużytym sprzętem elektronicznym przez wszystkich zainteresowanych uczestników rynku, od producentów po konsumentów.

Pytanie 34

Użytkownik napotyka trudności przy uruchamianiu systemu Windows. W celu rozwiązania tego problemu, skorzystał z narzędzia System Image Recovery, które

A. przywraca system na podstawie kopii zapasowej
B. przywraca system używając punktów przywracania
C. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
D. naprawia pliki rozruchowe, wykorzystując płytę Recovery
Odpowiedź 'przywraca system na podstawie kopii zapasowej' jest poprawna, ponieważ narzędzie System Image Recovery w systemie Windows zostało zaprojektowane do przywracania systemu operacyjnego z utworzonej wcześniej kopii zapasowej, która zawiera pełny obraz systemu. Taki obraz systemu to kompleksowa kopia wszystkich plików systemowych, aplikacji oraz ustawień, co pozwala na szybkie i efektywne przywrócenie systemu do stanu z momentu wykonania kopii. Przykładowo, w przypadku awarii systemu spowodowanej wirusem lub błędami w oprogramowaniu, użytkownik może przywrócić system do stanu roboczego sprzed awarii, co oszczędza czas i wysiłek związany z reinstalacją systemu. Warto zaznaczyć, że regularne tworzenie kopii zapasowych jest zgodne z najlepszymi praktykami w zarządzaniu danymi i bezpieczeństwem systemów komputerowych, co znacząco minimalizuje ryzyko utraty danych. Dobrą praktyką jest także przechowywanie kopii zapasowych w bezpiecznym miejscu, na przykład na zewnętrznym dysku twardym lub w chmurze.

Pytanie 35

Jaka jest maska podsieci dla adresu IP 217.152.128.100/25?

A. 255.255.255.224
B. 255.255.255.0
C. 255.255.255.192
D. 255.255.255.128
Odpowiedź 255.255.255.128 jest prawidłowa, ponieważ odnosi się do zapisu CIDR /25, co oznacza, że pierwsze 25 bitów adresu IP jest używane jako część adresu sieciowego. Przy masce podsieci 255.255.255.128, pierwsza część 25 bitów w zapisie binarnym to 11111111.11111111.11111111.10000000, co oznacza, że pierwsze 128 adresów (od 217.152.128.0 do 217.152.128.127) należy do tej samej podsieci. Maski podsieci są kluczowe w projektowaniu i zarządzaniu sieciami, ponieważ pozwalają na efektywne rozdzielenie ruchu sieciowego i zwiększają bezpieczeństwo. Na przykład, w dużych organizacjach, różne działy mogą być przypisane do różnych podsieci, co ułatwia zarządzanie dostępem do zasobów. Standardy takie jak RFC 950 definiują zasady dotyczące klasyfikacji adresów IP i przypisywania masek podsieci, co jest niezbędne w praktycznych zastosowaniach sieci komputerowych.

Pytanie 36

Które z poniższych poleceń w Windows wyświetla adresy IP interfejsów sieciowych?

A. tracert
B. ipconfig
C. getmac
D. netstat
Polecenie ipconfig w systemie Windows jest podstawowym narzędziem wykorzystywanym do wyświetlania konfiguracji sieciowej urządzenia. To polecenie pozwala użytkownikowi uzyskać szczegółowe informacje o adresach IP przypisanych do różnych interfejsów sieciowych na komputerze. Dzięki opcji ipconfig, można zobaczyć zarówno adresy IPv4, jak i IPv6, a także inne istotne elementy konfiguracji sieci, takie jak maska podsieci czy brama domyślna. Jest to niezwykle przydatne narzędzie dla administratorów systemów, którzy zarządzają sieciami komputerowymi, ponieważ umożliwia szybką weryfikację czy interfejsy sieciowe są poprawnie skonfigurowane i działają zgodnie z oczekiwaniami. Dodatkowo, korzystając z opcji takich jak ipconfig /all, można uzyskać jeszcze bardziej szczegółowe informacje, w tym dane dotyczące DHCP czy serwerów DNS. Polecenie to jest zgodne ze standardowymi praktykami administracyjnymi i jest często wykorzystywane w diagnostyce problemów sieciowych, co czyni je nieocenionym narzędziem w arsenale każdego specjalisty IT.

Pytanie 37

Co należy zrobić przed przystąpieniem do prac serwisowych związanych z edytowaniem rejestru systemu Windows?

A. oczyszczanie dysku
B. kopia rejestru
C. czyszczenie rejestru
D. defragmentacja dysku
Wykonanie kopii rejestru systemu Windows przed przystąpieniem do jakichkolwiek modyfikacji jest kluczowym krokiem w zapewnieniu bezpieczeństwa i stabilności systemu. Rejestr systemowy zawiera krytyczne informacje dotyczące konfiguracji systemu operacyjnego, aplikacji oraz sprzętu. Zmiany wprowadzone w rejestrze mogą doprowadzić do nieprawidłowego działania systemu, a nawet do jego niestabilności. Dlatego przed przystąpieniem do jakiejkolwiek modyfikacji zaleca się utworzenie kopii zapasowej rejestru. Można to zrobić za pomocą narzędzia Regedit, które pozwala na wyeksportowanie całego rejestru lub jego wybranych gałęzi. W przypadku wystąpienia problemów po dokonaniu zmian, użytkownik może przywrócić poprzednią wersję rejestru, co minimalizuje ryzyko utraty danych i przywraca funkcjonalność systemu. Przykładowo, jeśli planujesz zainstalować nową aplikację, która wymaga zmian w rejestrze, a po instalacji system nie działa prawidłowo, przywrócenie kopii zapasowej rejestru może rozwiązać problem. Taki proces jest zgodny z najlepszymi praktykami zarządzania systemem operacyjnym, co czyni go nieodłącznym elementem odpowiedzialnego podejścia do administracji komputerowej.

Pytanie 38

Po dokonaniu eksportu klucza HKCU stworzona zostanie kopia rejestru zawierająca dane o konfiguracji

A. wszystkich aktywnie ładowanych profili użytkowników systemu
B. aktualnie zalogowanego użytkownika
C. procedurach uruchamiających system operacyjny
D. sprzętu komputera dla wszystkich użytkowników systemu
Poprawna odpowiedź to aktualnie zalogowany użytkownik, ponieważ eksport klucza rejestru HKCU (HKEY_CURRENT_USER) dotyczy jedynie ustawień i konfiguracji związanych z bieżącym profilem użytkownika. Klucz HKCU przechowuje dane specyficzne dla aktualnie zalogowanego użytkownika, takie jak preferencje aplikacji, ustawienia systemowe oraz różne konfiguracje związane z interfejsem użytkownika. Na przykład, po zalogowaniu się na konto użytkownika, system operacyjny wczytuje te ustawienia, co umożliwia personalizację środowiska pracy. Eksportowanie klucza HKCU jest praktycznym sposobem na tworzenie kopii zapasowych tych ustawień lub przenoszenie ich na inny komputer. W wielu sytuacjach administracyjnych i wsparcia technicznego zarządzanie tymi danymi jest kluczowe, ponieważ pozwala na szybkie przywrócenie preferencji użytkownika po reinstalacji systemu lub migracji na nową maszynę. Zgodnie z dobrymi praktykami zabezpieczeń, zawsze warto także mieć świadomość, jakie dane są eksportowane, aby uniknąć niezamierzonego ujawnienia informacji wrażliwych."

Pytanie 39

Jak określana jest transmisja w obie strony w sieci Ethernet?

A. Full duplex
B. Duosimplex
C. Half duplex
D. Simplex
Transmisja dwukierunkowa w sieci Ethernet nazywana jest full duplex. Oznacza to, że urządzenia mogą jednocześnie wysyłać i odbierać dane, co znacząco zwiększa efektywność komunikacji w sieci. W przypadku pełnego dupleksu, zastosowanie technologii takich jak przełączniki Ethernet pozwala na jednoczesne przesyłanie informacji w obydwu kierunkach, co jest szczególnie istotne w aplikacjach wymagających dużej przepustowości, takich jak strumieniowanie wideo, rozmowy VoIP czy gry online. W praktyce pełny dupleks jest standardem w nowoczesnych sieciach komputerowych, wspieranym przez protokoły IEEE 802.3, co zapewnia lepsze wykorzystanie dostępnych zasobów sieciowych oraz minimalizację opóźnień.

Pytanie 40

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym przy użyciu protokołu TCP oraz komunikacja w trybie bezpołączeniowym z protokołem UDP?

A. Warstwa fizyczna
B. Warstwa transportowa
C. Warstwa sieciowa
D. Warstwa łącza danych
Warstwy modelu ISO/OSI, takie jak Łącza danych, Fizyczna i Sieciowa, nie są odpowiednie dla zadań związanych z segmentowaniem danych oraz komunikacją w trybie połączeniowym i bezpołączeniowym. Warstwa Łącza danych zajmuje się przede wszystkim odpowiedzialnością za przesyłanie ramek danych między urządzeniami w tej samej sieci, a także wykrywaniem i ewentualną korekcją błędów na tym poziomie. To jest kluczowe dla zapewnienia poprawności transmisji na poziomie lokalnym, ale nie obejmuje zarządzania połączeniem czy segmentowaniem danych. Warstwa Fizyczna definiuje fizyczne aspekty transmisji, takie jak sygnały elektryczne, światłowodowe czy radiowe, ale nie zajmuje się strukturą danych ani ich organizacją w kontekście aplikacji. Z kolei warstwa Sieciowa odpowiada za trasowanie pakietów między różnymi sieciami oraz obsługę adresacji, co jest fundamentalne dla komunikacji w rozproszonych systemach komputerowych, ale nie dotyczy szczegółów dotyczących połączenia i segmentacji informacji. Typowe błędy w myśleniu mogą obejmować mylenie funkcji warstw oraz ignorowanie specyfikacji protokołów, co prowadzi do nieprawidłowych interpretacji ich roli w ramach modelu ISO/OSI. Zrozumienie, która warstwa odpowiedzialna jest za konkretne aspekty komunikacji, jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi oraz aplikacjami sieciowymi.