Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 kwietnia 2025 12:06
  • Data zakończenia: 17 kwietnia 2025 12:37

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 1,5 mm2
C. 6 mm2
D. 4 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 2

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Nożem monterskim
B. Neonowym wskaźnikiem napięcia
C. Wkrętakiem
D. Kluczem płaskim
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 3

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt małe wzbudzenie silnika
Wybór odpowiedzi związanej z zbyt dużym wzbudzeniem silnika opiera się na błędnym wrażeniu, że większa moc wzbudzenia prowadzi do zmniejszenia iskrzenia na komutatorze. W rzeczywistości, nadmierne wzbudzenie może skutkować zwiększeniem prędkości obrotowej silnika, co pogarsza warunki pracy szczotek. Wzrost obrotów prowadzi do intensywniejszego kontaktu szczotek z komutatorem, co w połączeniu z niewłaściwą powierzchnią styku może zaostrzyć problem iskrzenia. Kolejne nieporozumienie dotyczy zbyt małego wzbudzenia, które często jest mylone z zaniżonym napięciem czy słabą mocą, co może prowadzić do niestabilności pracy silnika, ale nie jest bezpośrednim czynnikiem powodującym iskrzenie. Z kolei odpowiedź sugerująca zbyt duży nacisk szczotek na komutator, mimo że może prowadzić do ich szybszego zużycia, nie wyjaśnia przyczyny iskrzenia. Zbyt duży nacisk powoduje, że szczotki zużywają się szybciej, ale to nie jest głównym czynnikiem iskrzenia, które, jak pokazuje praktyka, jest w głównej mierze związane z samą powierzchnią styku. Aby unikać problemów z iskrzeniem, kluczowe jest zrozumienie wpływu właściwego wzbudzenia i siły nacisku na wydajność szczotek oraz regularne monitorowanie ich stanu, co powinno stać się standardową praktyką w każdej aplikacji silników prądu stałego.

Pytanie 4

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Rezystancji izolacji przewodu uziemiającego
B. Ciągłości przewodów fazowych
C. Ciągłości przewodu neutralnego
D. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
Pomiar ciągłości przewodu neutralnego oraz przewodów fazowych, chociaż istotny w kontekście sprawdzania integralności obwodów elektrycznych, nie jest wystarczający, aby ocenić skuteczność ochrony przeciwporażeniowej dla odbiorników I klasy ochronności w sieci TT. Ciągłość przewodu neutralnego jest krytyczna dla prawidłowego funkcjonowania układów elektrycznych, ale nie zapewnia informacji o jakości uziemienia. Przewody neutralne i fazowe mogą być sprawne, ale jeśli uziemienie jest niewłaściwe, może to prowadzić do niebezpiecznych sytuacji, w których obudowa urządzenia może stać się naładowana prądem. Z kolei pomiar rezystancji izolacji przewodu uziemiającego również nie dostarcza pełnych informacji o skuteczności ochrony przeciwporażeniowej, ponieważ dotyczy on tylko stanu izolacji, a nie efektywności połączenia z ziemią. Typowym błędem myślowym jest zakładanie, że dobre wyniki tych pomiarów automatycznie zapewniają bezpieczeństwo, podczas gdy kluczowe jest, aby obudowa była podłączona do efektywnego systemu uziemienia. Normy, takie jak PN-IEC 60364, jasno wskazują, że uziemienie jest fundamentalnym elementem systemów ochrony przed porażeniem elektrycznym. Dlatego regularne pomiary rezystancji uziomu są niezbędne do zapewnienia bezpieczeństwa i zgodności z przepisami.

Pytanie 5

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
B. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
C. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
D. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
Wybrana odpowiedź o pracach przy urządzeniach, które są wyłączone spod napięcia oraz pracach w wykopach do 2 metrów nie do końca uwzględnia ważne zasady BHP. Nawet jeśli urządzenia są wyłączone, to mogą pojawić się inne zagrożenia, jak urazy mechaniczne czy kontuzje przy obsłudze ciężkiego sprzętu. W przypadku wykopów, prace do 2 metrów nie muszą zwykle być wykonywane przez dwuosobowy zespół, ale i tak lepiej mieć kogoś obok, żeby móc pomóc w nagłej sytuacji. Muszę też dodać, że prace prowadzone przez upoważnione osoby w ustalonych miejscach mogą wydawać się bezpieczne, ale zawsze jest jakieś ryzyko, które warto zminimalizować odpowiednimi procedurami. Ignorowanie tych zasad może prowadzić do niebezpiecznych sytuacji, a co gorsza, może dać fałszywe poczucie bezpieczeństwa. Dlatego przestrzeganie standardów BHP, w tym norm PN-EN, jest naprawdę ważne dla ochrony wszystkich pracowników.

Pytanie 6

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,2 A
B. 6,7 A
C. 3,9 A
D. 2,2 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 7

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. silników przed przeciążeniami oraz zwarciami
B. przewodów przed przeciążeniami oraz zwarciami
C. urządzeń półprzewodnikowych przed zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 8

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. impedancja sieci zasilającej jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. rezystancja uziemienia jest zbyt niska
D. rezystancja izolacji miejsca pracy jest zbyt duża
W kontekście ochrony przed porażeniem prądem elektrycznym, zrozumienie roli różnych parametrów instalacji jest niezwykle istotne. Rezystancja izolacji stanowiska nie jest bezpośrednio związana z efektywnością ochrony w układzie TN-C. Wysoka rezystancja izolacji może świadczyć o dobrym stanie izolacji, co w teorii zmniejsza ryzyko porażenia prądem, ale nie eliminuje potrzeby niskiej impedancji pętli zwarcia. Z kolei zbyt mała rezystancja uziomu nie gwarantuje właściwej ochrony, ponieważ kluczowym parametrem jest to, jak szybko prąd zwarciowy może przepłynąć przez obwód, co zależy od impedancji pętli zwarcia. Impedancja sieci zasilającej jest także mniej istotna w kontekście bezpośredniego bezpieczeństwa, ponieważ to nie ona decyduje o skuteczności wyłączenia obwodu w przypadku zwarcia. Typowym błędem myślowym jest skupianie się na pojedynczych parametrach, zamiast na całościowym zrozumieniu interakcji między różnymi elementami instalacji. Bez właściwej analizy impedancji pętli zwarcia, jakiekolwiek poprawki dotyczące uziemienia czy rezystancji izolacji mogą nie przynieść oczekiwanych rezultatów, a tym samym zagrażać bezpieczeństwu użytkowników instalacji elektrycznych. Kluczowe jest zatem podejście holistyczne, które uwzględnia wszystkie parametry, aby zapewnić pełną ochronę przed porażeniem prądem elektrycznym.

Pytanie 9

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. YADY
C. LgY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 10

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Jednodrutowe
B. Sektorowe
C. Płaskie
D. Wielodrutowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 11

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 10,00 V
B. 7,07 V
C. 6,40 V
D. 4,50 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.

Pytanie 12

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji w pętli zwarciowej
B. Weryfikacja stanu izolacji podłóg
C. Pomiar rezystancji izolacji przewodów
D. Sprawdzanie wyłącznika różnicowoprądowego
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 13

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Młotek
B. Piła do metalu
C. Ściągacz izolacji
D. Poziomnica
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 14

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Montaż ochronników przepięciowych w głównej rozdzielnicy
B. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
C. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
D. Użycie transformatora separacyjnego do zasilania
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 15

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. aM
C. aL
D. gG
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 16

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 500 mA
B. 200 mA
C. 100 mA
D. 150 mA
Pomiar ciągłości elektrycznej przewodów ochronnych jest kluczowym aspektem zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku połączeń wyrównawczych oraz pierścieniowych obwodów odbiorczych, zastosowanie prądu o wartości co najmniej 200 mA jest zgodne z normami oraz dobrymi praktykami branżowymi. Użycie takiej wartości prądu pozwala na dokładne sprawdzenie ciągłości przewodów ochronnych, co jest niezbędne do zapewnienia właściwego działania systemu ochrony przeciwporażeniowej. W praktyce oznacza to, że w przypadku wykrycia jakiejkolwiek przerwy w przewodach ochronnych, prąd o tej wartości będzie w stanie wywołać odpowiednią reakcję w zabezpieczeniach, takich jak wyłączniki różnicowoprądowe. Taki pomiar powinien być przeprowadzany regularnie w ramach przeglądów okresowych instalacji elektrycznych, aby zminimalizować ryzyko uszkodzeń i zagrożeń dla użytkowników. Warto również podkreślić, że zgodnie z normą PN-EN 61557-4, pomiary te powinny być wykonywane przez wykwalifikowany personel z użyciem odpowiedniego sprzętu pomiarowego.

Pytanie 17

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 300 mA
C. 10 mA
D. 100 mA
Jak dobrze wiesz, wybór wyłącznika różnicowoprądowego o prądzie na przykład 100 mA, 300 mA czy nawet 10 mA może mieć spore znaczenie dla bezpieczeństwa elektrycznego w naszych domach. Te wyłączniki na 100 mA i 300 mA są bardziej zaprojektowane do ochrony sprzętu niż do ochrony ludzi przed porażeniem prądem. Ich wysoki próg zadziałania to problem, bo mogą nie zauważyć małych nieszczelności, które mogą być niebezpieczne dla człowieka. Zazwyczaj stosuje się je w obwodach, gdzie nie chodzi głównie o chronienie ludzi. Z drugiej strony, wyłącznik na 10 mA, chociaż świetny w miejscach z wysokim ryzykiem, jak szpitale, może być za czuły w normalnych warunkach domowych i powodować niepotrzebne wyłączenia. Dlatego ważne jest, żeby wybierać wyłączniki zgodne z normami i przepisami, by naprawdę zapewnić bezpieczeństwo w instalacjach elektrycznych.

Pytanie 18

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
B. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
C. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
D. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 19

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Wykorzystywanie urządzeń o zbyt dużej mocy
B. Użycie wyłącznika o zbyt długim czasie reakcji
C. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
D. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 20

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,0 m
B. 2,0 m
C. 2,5 m
D. 1,5 m
Wybór odpowiedzi, która zakłada inne odległości między oprawami oświetleniowymi, może wynikać z niepełnego zrozumienia zasad projektowania oświetlenia. Na przykład, odległość wynosząca 1,5 m zbyt blisko umiejscawia oprawy, co może prowadzić do nadmiernego oświetlenia w centralnej części pomieszczenia, powodując jednocześnie, że obszary na skrajach będą niedostatecznie oświetlone. W rezultacie pojawiają się cienie, co jest niedopuszczalne w kontekście funkcjonalności przestrzeni. Odpowiedź 1,0 m wskazuje na bardzo bliskie umiejscowienie opraw, co skutkuje nadmiarem światła i olśnieniem, co negatywnie wpływa na komfort użytkowników. Z kolei odległość 2,5 m może prowadzić do znacznych różnic w natężeniu oświetlenia, ponieważ pomimo równomiernego rozmieszczenia, obszary pomieszczenia mogą pozostać niedostatecznie oświetlone. Ponadto, zbyt duża odległość może powodować, że światło nie będzie wystarczająco koncentrowane, a niektóre obszary mogą pozostać w cieniu. W projektowaniu oświetlenia kluczowe jest także zrozumienie, że równomierność oświetlenia jest najważniejszym czynnikiem wpływającym na komfort i funkcjonalność przestrzeni. Standardy branżowe, takie jak EN 12464-1, podkreślają znaczenie zachowania odpowiednich odległości między źródłami światła, aby spełniać wymagania dotyczące oświetlenia w różnych rodzajach pomieszczeń.

Pytanie 21

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Nˑm
B. kg
C. Pa
D. kgˑm2
Wybór niepoprawnych jednostek miary takich jak kg·m2, Pa czy kg wskazuje na brak zrozumienia podstawowych koncepcji związanych z momentem siły. kg·m2 jest jednostką momentu bezwładności, a nie momentu siły. Moment bezwładności określa, jak trudno jest zmienić stan ruchu obiektu, jednak nie ma zastosowania w kontekście dokręcania śrub. Pa, czyli paskal, jest jednostką ciśnienia, a jego zastosowanie w przypadku momentu siły jest błędne, ponieważ nie odnosi się do obrotu, lecz do działania siły na jednostkę powierzchni. kg to jednostka masy i nie ma bezpośredniego zastosowania w kontekście momentu siły. Typowym błędem myślowym jest mylenie różnych jednostek miary, co często wynika z braku znajomości zasad fizyki lub nieprzestrzegania norm i praktyk inżynieryjnych. Aby skutecznie stosować moment siły, ważne jest zrozumienie, że chodzi o siłę działającą na dźwignię, co wymaga właściwego połączenia siły i odległości od punktu obrotu. Dlatego zrozumienie jednostki N·m jest fundamentalne dla prawidłowego wykonywania operacji dokręcania, co zapewnia bezpieczeństwo i efektywność w zastosowaniach inżynieryjnych.

Pytanie 22

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
B. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
C. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 23

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,30 V)
B. 230 V (±1,50 V)
C. 230 V (±1,20 V)
D. 230 V (±1,40 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 24

Przeciążenie w instalacji elektrycznej polega na

A. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
B. przekroczeniu maksymalnego prądu znamionowego instalacji.
C. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
D. bezpośrednim połączeniu dwóch faz w systemie.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 25

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
B. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
C. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
D. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
Nieprawidłowe odpowiedzi opierają się na błędnych zasadach bezpieczeństwa i procedurach wykonywania prac elektrycznych. Przykładowo, propozycja rozpoczynająca się od załączenia napięcia jest fundamentalnie wadliwa. Włączenie zasilania przed jakąkolwiek weryfikacją stanu instalacji elektrycznej stwarza poważne ryzyko dla zdrowia i życia wykonawcy. Ponadto, sprawdzenie ciągłości połączeń przed upewnieniem się, że nie ma napięcia, jest niewłaściwe, ponieważ pomiar ciągłości w obwodzie z napięciem może prowadzić do uszkodzeń miernika lub, co gorsza, do porażenia prądem. Następnie, co do wymontowania uszkodzonego łącznika, nie powinno się go demontować bez wcześniejszego potwierdzenia, że cały obwód jest bezpieczny. Typowym błędem myślowym w tych podejściach jest zaufanie do założeń, że obwód jest wyłączony lub bezpieczny bez wcześniejszego sprawdzenia. Ignorowanie podstawowych procedur bezpieczeństwa może prowadzić do tragicznych konsekwencji, dlatego tak ważne jest przestrzeganie kolejności działań w zgodzie z ogólnie przyjętymi normami i przepisami, które mają na celu ochronę osób wykonujących takie prace. W każdej sytuacji związanej z pracą w instalacjach elektrycznych kluczowe jest stosowanie się do procedur, które zapewniają zarówno bezpieczeństwo, jak i prawidłowe działanie systemu. W tym kontekście, doświadczenie i świadomość potencjalnych zagrożeń są niezwykle istotne.

Pytanie 26

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 27

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 28

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Niewystarczająca wartość prądu roboczego
B. Poluzowanie śruby mocującej w puszce
C. Wzrost napięcia zasilającego na skutek przepięcia
D. Zbyt duży przekrój używanego przewodu
Przyczyną zwęglenia izolacji przewodu nie może być zbyt mała wartość prądu roboczego, ponieważ w takim przypadku nie dochodzi do przegrzania przewodu. Zbyt niski prąd skutkuje brakiem skutecznej pracy urządzenia, ale nie generuje nadmiernego ciepła, które mogłoby prowadzić do degradacji izolacji. Użycie zbyt dużego przekroju przewodu również nie jest bezpośrednią przyczyną zwęglenia, ponieważ większy przekrój przewodu z reguły poprawia jego zdolność do przewodzenia energii bez generowania nadmiernych strat ciepła. Wzrost napięcia zasilającego z kolei, będący wynikiem przepięcia, jest istotnym zagrożeniem, ale nie jest to najczęstszy czynnik odpowiedzialny za zwęglenie izolacji w tym konkretnym kontekście. Wzrost napięcia może prowadzić do przebicia izolacji lub jej osłabienia, jednak przy odpowiednich zabezpieczeniach, takich jak wyłączniki różnicowoprądowe, ryzyko to jest minimalizowane. Zrozumienie tych zasad jest kluczowe dla poprawnej diagnostyki i prewencji problemów z instalacjami elektrycznymi. W praktyce, ważne jest, aby podczas instalacji i przeglądów przestrzegać najlepszych praktyk, unikając typowych błędów, takich jak niewłaściwe dokręcenie złączy.

Pytanie 29

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (3÷5) · In
B. (5÷10) · In
C. (2÷3) · In
D. (5÷10) · In
Zakres zadziałania wyzwalaczy elektromagnetycznych samoczynnych wyłączników instalacyjnych nadprądowych typu C jest kluczowym elementem ich funkcjonowania, a błędne odpowiedzi często wynikają z niepełnego zrozumienia ich charakterystyki. Odpowiedzi sugerujące zakres (3÷5) · In i (2÷3) · In są niepoprawne, ponieważ odnoszą się do wyzwalaczy typu B, które działają w niższych krotnościach prądu znamionowego. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenia nie generują dużych prądów rozruchowych, co czyni je odpowiednimi dla instalacji oświetleniowych oraz gniazd zasilających. Również odpowiedź (5÷10) · In nie jest dwukrotnie podana przez przypadek - popełniono tu błąd w prezentacji opcji, co może wprowadzać w błąd. Ważne jest, aby przy wyborze odpowiednich wyłączników nadprądowych kierować się ich charakterystyką zgodną z normami, co wpływa na bezpieczeństwo i niezawodność instalacji. Typowe błędy obejmują mylenie charakterystyki wyzwalaczy B i C, co może prowadzić do niewłaściwego doboru zabezpieczeń w obwodach, narażając instalację na nadmierne ryzyko uszkodzeń. Zrozumienie różnic między tymi typami wyzwalaczy jest kluczowe dla zapewnienia ochrony przed zwarciami oraz nadmiernym przeciążeniem, co ma bezpośrednie przełożenie na bezpieczeństwo użytkowników oraz trwałość instalacji elektrycznej.

Pytanie 30

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. IT
B. TT
C. TN-S
D. TN-C
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 31

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
B. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
C. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
Zalecenie dotyczące zasilania gniazd wtyczkowych w każdym pomieszczeniu z osobnego obwodu jest niezgodne z dobrymi praktykami instalacyjnymi i może prowadzić do nieefektywności w systemie elektrycznym. W rzeczywistości, podział gniazd na osobne obwody dla każdego pomieszczenia zwiększałby koszty zarówno materiałowe, jak i robocze. Przy projektowaniu instalacji elektrycznej kluczowe jest zapewnienie odpowiedniej równowagi między jakością a kosztami. Ponadto, standardy instalacji elektrycznych, takie jak PN-IEC 60364, zalecają grupowanie gniazd wtyczkowych w obwody, co pozwala na lepsze zarządzanie obciążeniem i unikanie przeciążeń. Osobne obwody dla gniazd w każdym pomieszczeniu mogą prowadzić do problemów z dostępnością energii elektrycznej w przypadku awarii jednego z obwodów. W praktyce, w budynkach mieszkalnych gniazda wtyczkowe są najczęściej grupowane według pomieszczeń, a ich zasilanie z jednego obwodu jest powszechne. Taki system zwiększa elastyczność użytkowania i zmniejsza ryzyko wystąpienia przerw w dostawie energii w całym budynku. Ważne jest również, aby pamiętać, że obwody gniazdowe powinny być odpowiednio zabezpieczone przed przeciążeniem, co można osiągnąć przez zastosowanie odpowiednich zabezpieczeń nadprądowych w rozdzielnicy. Takie podejście jest zgodne z obowiązującymi normami i zapewnia bezpieczne oraz funkcjonalne środowisko mieszkalne.

Pytanie 32

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Lampa rtęciowa
C. Żarówka halogenowa
D. Świetlówka tradycyjna
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 33

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Podwójna lub wzmocniona izolacja
B. Izolacja odbiornika
C. Ochronne obniżenie napięcia
D. Izolowanie miejsca pracy
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 34

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Pomiar rezystancji izolacji
B. Weryfikacja braku zwarć międzyzwojowych
C. Sprawdzenie kondycji wycinków komutatora
D. Wyważanie
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 35

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie funkcjonować w trybie jałowym
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
W przypadku zasilania silnika przeciwprądem, wirnik nie jest w stanie rozwijać normalnej prędkości obrotowej, jednak nie prowadzi to do 100% poślizgu. Zasilanie przeciwprądem powoduje, że wirnik obraca się w kierunku przeciwnym do kierunku pola magnetycznego, co może prowadzić do inwersji momentu obrotowego, ale nie zatrzymuje wirnika całkowicie. W praktycznych zastosowaniach, takie zjawisko jest wykorzystywane do regeneracji energii, ale nie jest to sytuacja, która generuje 100% poślizgu. Kiedy wirnik zostaje dopędzony powyżej prędkości synchronicznej, jego prędkość obrotowa przekracza pole magnetyczne, co prowadzi do negatywnego poślizgu, a nie do 100%. Przykładem może być silnik, który wchodzi w stan asynchroniczny przy dużym obciążeniu. Z kolei pozostawienie silnika na biegu jałowym nie skutkuje 100% poślizgiem, ponieważ wirnik wciąż obraca się, choć z obniżoną prędkością. Takie błędne zrozumienie poślizgu może prowadzić do niepoprawnych diagnoz w przypadku usterek czy awarii, co w końcu przekłada się na zwiększenie kosztów eksploatacji oraz skrócenie żywotności urządzeń. W związku z tym, kluczowe jest zrozumienie, jak różne sytuacje wpływają na poślizg silnika oraz jakie są ich praktyczne implikacje w kontekście efektywności i bezpieczeństwa pracy urządzeń elektrycznych.

Pytanie 36

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Synchroniczny
C. Asynchroniczny klatkowy
D. Szeregowy prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 37

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B16
B. B10
C. C16
D. C10
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 38

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. wewnętrznej linii zasilającej
B. instalacji wewnętrznej
C. przyłącza kablowego
D. przyłącza napowietrznego
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 39

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów rozruchowych i regulacyjnych
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Sprawdzenie układów sterowania i sygnalizacji
D. Impregnację uzwojeń i wyważenie wirnika
Sprawdzanie układów sterowania i sygnalizacji, układów rozruchowych oraz regulacyjnych, a także impregnacja uzwojeń i wyważanie wirnika to ważne czynności związane z konserwacją silnika elektrycznego, jednak nie są one pierwszymi krokami, które powinny zostać podjęte po przeprowadzeniu konserwacji. Często błędnie uważa się, że wszystkie te czynności są równoważne, co może prowadzić do niedocenienia znaczenia pomiaru rezystancji izolacji. Układy sterowania i sygnalizacji powinny być sprawdzane regularnie, ale to pomiary izolacji są kluczowe dla zapewnienia bezpiecznej pracy silnika, zwłaszcza po konserwacji, gdy mogą wystąpić zmiany w stanie izolacji. Podobnie, chociaż sprawdzenie układów rozruchowych i regulacyjnych jest niezbędne, powinno się je przeprowadzać po wcześniejszym upewnieniu się, że izolacja jest w odpowiednim stanie. Impregnacja uzwojeń i wyważanie wirnika to zaawansowane czynności, które również są istotne, ale nie są konieczne po każdej konserwacji i powinny być wykonywane w odpowiednich odstępach czasu, zgodnie z zaleceniami producenta. Zbagatelizowanie pomiaru izolacji może prowadzić do niebezpiecznych sytuacji, takich jak zwarcie czy uszkodzenie silnika, co jest niezgodne z zasadami bezpieczeństwa pracy i eksploatacji urządzeń elektrycznych.

Pytanie 40

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Rodzaj materiału izolacyjnego
B. Przekrój poprzeczny przewodów
C. Długość zamontowanych przewodów
D. Metoda ułożenia przewodów
Przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów są elementami, które mają istotny wpływ na dopuszczalną obciążalność długotrwałą instalacji elektrycznej. Przekrój poprzeczny żył wpływa na opór przewodów; im większy przekrój, tym mniejszy opór, co przekłada się na możliwość przewodzenia większych prądów bez przegrzewania się. Z kolei materiał izolacji ma kluczowe znaczenie dla wydolności cieplnej przewodów; różne materiały mają różne właściwości termiczne i dielektryczne, co w praktyce wpływa na bezpieczeństwo użytkowania. Sposób ułożenia przewodów również jest istotny – na przykład, przewody ułożone w szczelnych kanałach mogą wymagać zmniejszenia dopuszczalnej obciążalności ze względu na ograniczony przepływ powietrza i trudności w odprowadzaniu ciepła. Typowe błędy myślowe obejmują mylenie długości przewodów z ich zdolnością do przewodzenia prądu. Choć długa trasa kablowa może zwiększać spadek napięcia, nie wpływa na maksymalną wartość prądu, jaki przewody mogą bezpiecznie przewodzić. Dlatego istotne jest, aby projektując instalacje, kierować się zaleceniami zawartymi w normach oraz wytycznymi branżowymi, aby uniknąć nieprawidłowych wniosków dotyczących obciążalności przewodów.