Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 czerwca 2025 19:06
  • Data zakończenia: 8 czerwca 2025 19:21

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. prostownika
B. bezpiecznika aparatowego
C. dioda elektroluminescencyjna
D. podzespołów pasywnych
Sprawdzanie różnych elementów, jak mostek prostowniczy czy dioda LED, w sytuacji, gdy zasilacz przestaje działać, może prowadzić do złych wniosków. Elementy pasywne, takie jak rezystory czy kondensatory, raczej nie są przyczyną nagłego wyłączenia zasilacza, zwłaszcza jeśli nie widać żadnych oznak jego działania. Nawet mostek prostowniczy może być sprawny, a zasilacz i tak nie działa, bo jego awaria nie oznacza, że nie ma prądu. Diody LED, co prawda informują o stanie urządzenia, ale nie są najważniejsze w zasilaniu; ich awaria nie znaczy, że zasilacz na pewno jest zepsuty. Dobrze jest najpierw sprawdzić bezpieczniki, bo to najczęstszy powód problemów. Takie podejście to dobry sposób na diagnostykę, który pokazuje, że najpierw musisz skupić się na najważniejszych elementach.

Pytanie 2

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór elektromagnetyczny
B. zawór regulacyjny
C. przetwornik
D. kontroler
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 3

Podczas wymiany (demontażu) złącza kompresyjnego typu F, jak należy postąpić z tym złączem?

A. odlutować
B. odciąć
C. wyrwać
D. odkręcić
Odpowiedź "odciąć" jest poprawna, ponieważ demontaż złącza kompresyjnego typu F wymaga precyzyjnego podejścia, które zapewnia minimalne uszkodzenia pozostałych elementów systemu. Złącza typu F są najczęściej wykorzystywane w instalacjach telewizyjnych i satelitarnych, gdzie zapewniają stabilne połączenie. W sytuacji, gdy złącze ma być wymienione, odcięcie go z użyciem odpowiednich narzędzi, takich jak nożyce do kabli, gwarantuje, że nie dojdzie do uszkodzenia przewodów czy innych komponentów systemu. Praktyczne zastosowanie tej metody może obejmować sytuacje, gdzie złącze uległo uszkodzeniu mechanicznemu lub korozji. Zgodnie z normami branżowymi, takimi jak ISO 9001, warto stosować procedury, które minimalizują ryzyko niepowodzeń w systemach transmisji sygnału. Ważne jest także, aby po odcięciu złącza przeprowadzić dokładną inspekcję przewodu w celu upewnienia się, że nie ma uszkodzeń, które mogłyby wpływać na jakość sygnału.

Pytanie 4

Na środku wyświetlacza odbiornika OTV pojawia się bardzo jasna pozioma linia, podczas gdy reszta ekranu jest ciemna. Gdzie doszło do awarii w odbiorniku?

A. W bloku odchylania pionowego
B. We wzmacniaczu p.cz. różnicowej fonii
C. W dekoderze kolorów
D. W bloku odchylania poziomego
Uszkodzenie w bloku odchylania pionowego jest przyczyną jasnej poziomej linii na ekranie, ponieważ ten blok odpowiada za kontrolowanie ruchu elektronu w pionie. Jeśli obwody w tym bloku są uszkodzone, losowe impulsy nie są w stanie prawidłowo odchylić strumienia elektronów w górę i w dół, co skutkuje brakiem wyświetlania treści w pionie. Przykładem zastosowania tej wiedzy jest diagnostyka telewizorów CRT, gdzie technicy często sprawdzają napięcia w obwodach odchylania pionowego, aby zlokalizować problemy. Ponadto, zgodnie z dobrą praktyką, podczas naprawy sprzętu RTV, zaleca się regularne wykonywanie przeglądów bloków odpowiedzialnych za odchylanie, co może zapobiec występowaniu takich problemów. Warto również przypomnieć, że zrozumienie architektury wewnętrznej telewizora pozwala skuteczniej diagnozować i naprawiać usterki.

Pytanie 5

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. podać leki
B. sprawdzić drożność dróg oddechowych
C. wykonać sztuczne oddychanie oraz masaż serca
D. umożliwić położenie na boku
Nieprawidłowe podejście do sytuacji zatrzymania akcji serca i braku oddechu, takie jak umożliwienie leżenia na boku, brakuje kluczowego elementu pierwszej pomocy, którym jest zapewnienie drożności dróg oddechowych. Pozycja na boku, mimo że może być stosowana w innych przypadkach, nie jest odpowiednia w sytuacji, gdy osoba nie oddycha i ma zatrzymaną akcję serca. Kiedy osoba jest nieprzytomna i nie oddycha, kluczowe jest natychmiastowe udrożnienie dróg oddechowych, co jest niezbędne dla skutecznej wentylacji. Wiele osób myli również kolejność działań, sądząc, że sztuczne oddychanie i masaż serca powinny być wykonywane bezpośrednio, zanim drożność dróg oddechowych zostanie zapewniona. Jednak w rzeczywistości, jeśli drogi oddechowe są zablokowane, sztuczne oddychanie nie przyniesie oczekiwanego efektu, a masaż serca również nie będzie skuteczny. Podawanie leków w takiej sytuacji jest również błędne, ponieważ w przypadku zatrzymania akcji serca natychmiastowe działania mają na celu przywrócenie krążenia i wentylacji, a leki mogą być stosowane dopiero po tych podstawowych czynnościach. Wreszcie, kluczowym błędem myślowym w takich sytuacjach jest niedocenianie znaczenia wstępnej oceny stanu poszkodowanego przed podjęciem decyzji o dalszych krokach, co jest fundamentalną częścią standardów resuscytacji.

Pytanie 6

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Zniszczenie przewodu łączącego bramofon z monitorem
B. Usterka kamery bramofonu
C. Awaria zasilacza zestawu wideodomofonowego
D. Uszkodzenie monitora
Awaria zasilacza zestawu wideodomofonowego nie może być przyczyną braku wizji, ponieważ dźwięk działa prawidłowo. W systemach wideodomofonowych zasilacz odpowiada za dostarczenie energii zarówno do kamery, jak i do monitora. Jeśli zasilacz jest sprawny, obie funkcje powinny działać poprawnie. W przypadku awarii zasilacza, zarówno obraz, jak i dźwięk przestałyby działać. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie zasilania w instalacjach wideodomofonowych, aby zapewnić ich niezawodność. Warto również wspomnieć, że w profesjonalnych instalacjach zaleca się stosowanie zasilaczy o odpowiedniej mocy, aby uniknąć problemów z funkcjonowaniem urządzeń, co jest zgodne z zaleceniami producentów i standardami branżowymi. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów oraz skuteczniejsze planowanie instalacji.

Pytanie 7

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
B. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
C. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
D. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
Instalacja antenowa w topologii gwiazdy, w której zastosowano gniazda TV końcowe, jest uznawana za najbardziej efektywną i elastyczną strukturę. W tej konfiguracji każdy odbiornik TV jest bezpośrednio podłączony do centralnego punktu dystrybucyjnego, co zapewnia optymalne parametry sygnału. Gniazda końcowe służą do bezpośredniego odbioru sygnału z anteny, eliminując problemy z tłumieniem, które mogą występować w instalacjach liniowych. W praktyce oznacza to, że użytkownicy mogą cieszyć się lepszą jakością obrazu i dźwięku, a także większą ilością dostępnych kanałów. Dodatkowo, instalacja w topologii gwiazdy pozwala na łatwiejsze dodawanie nowych gniazd lub modyfikację istniejących bez wpływu na pozostałe odbiorniki. Zgodnie z normami branżowymi, ważne jest również stosowanie odpowiednich kabli oraz złączek, aby zminimalizować straty sygnału. Wybór tej topologii jest zatem zgodny z najlepszymi praktykami w zakresie instalacji antenowych.

Pytanie 8

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. YTDY
B. RG58
C. YTKSy
D. RG59
Wybór niewłaściwego kabla do przesyłania sygnału video z kamery analogowej może prowadzić do znacznego pogorszenia jakości obrazu oraz problemów z transmisją. Kabel RG58, mimo że jest używany w aplikacjach RF, nie jest zalecany do przesyłania sygnału video, ponieważ jego wyższa tłumienność w porównaniu do RG59 skutkuje stratami sygnału, szczególnie na dłuższych dystansach. Zastosowanie RG58 w systemach CCTV może prowadzić do zniekształceń obrazu, co negatywnie wpłynie na skuteczność monitoringu. Ponadto, kable YTDY i YTKSy, które są w rzeczywistości kablami wielożyłowymi stosowanymi w instalacjach elektrycznych i komunikacyjnych, nie są przystosowane do przesyłania sygnałów video, ponieważ nie spełniają standardów impedancyjnych i mogą wprowadzać zakłócenia sygnału. Typowym błędem myślowym w tym kontekście jest mylenie zastosowań różnych typów kabli, co może prowadzić do nieefektywnych i kosztownych rozwiązań. W sytuacjach wymagających wysokiej jakości obrazu, kluczowe jest przestrzeganie specyfikacji technicznych oraz standardów branżowych, aby zapewnić niezawodność i wysoką jakość systemów monitorujących.

Pytanie 9

Aby zweryfikować ciągłość kabla sygnałowego w systemie kontroli dostępu, jakie urządzenie należy wykorzystać?

A. amperomierza
B. omomierza
C. watomierza
D. woltomierza
Omomierz jest narzędziem, które służy do pomiaru oporu elektrycznego, co czyni go idealnym do sprawdzania ciągłości połączeń elektrycznych, w tym kabli sygnałowych. W kontekście instalacji systemów kontroli dostępu, ciągłość kabla jest kluczowa, ponieważ wszelkie przerwy lub uszkodzenia mogą prowadzić do awarii systemu lub nieprawidłowego działania. Przykładowo, w przypadku zastosowania omomierza, możemy zmierzyć opór na końcach kabla. Jeśli opór wynosi zero lub bardzo blisko zera omów, oznacza to, że kabel jest ciągły i nie ma przerwań. W sytuacji, gdy pomiar wykazuje wysoką wartość oporu, może to wskazywać na uszkodzenie kabla, co wymaga jego wymiany lub naprawy. Normy branżowe, takie jak IEC 60364, zalecają regularne sprawdzanie ciągłości połączeń, co jest istotne dla zapewnienia niezawodności systemów zabezpieczeń. Dlatego omomierz jest podstawowym narzędziem w diagnostyce i konserwacji instalacji elektrycznych, w tym systemów kontroli dostępu.

Pytanie 10

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Wzmacniacz z tranzystorem bipolarnym w układzie OB
B. Wzmacniacz z tranzystorem bipolarnym w układzie OC
C. Ogranicznik prądowy zrealizowany w technologii bipolarnej
D. Źródło prądowe oparte na tranzystorze bipolarnym
Wtórnik emiterowy, znany również jako wzmacniacz emiterowy, to układ elektroniczny oparty na tranzystorze bipolarnym, który działa w konfiguracji OC (emiter wspólny). Jego główną cechą jest to, że sygnał wyjściowy jest pobierany z emitera tranzystora, co pozwala na uzyskanie wysokiej impedancji wejściowej oraz niskiej impedancji wyjściowej. Dzięki temu, wtórnik emiterowy jest szczególnie efektywny w aplikacjach, gdzie wymagana jest izolacja pomiędzy różnymi stopniami układu. Przykładem zastosowania wtórnika emiterowego może być tor sygnałowy w systemach audio, gdzie zapewnia on stabilne napięcie wyjściowe niezależnie od obciążenia. Zastosowania w branży obejmują również układy zasilające, gdzie wtórnik emiterowy stabilizuje napięcie na poziomie wymaganym przez podłączone urządzenia. Dobre praktyki projektowe sugerują stosowanie wtórników emiterowych w przypadkach, gdy zachowanie integralności sygnału jest kluczowe, a obciążenia są zmienne.

Pytanie 11

W jakiej kolejności należy wykonać czynności związane z wymianą kamery w systemie telewizji dozorowej?

A.B.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
odłączenie rejestratora od zasilania,
archiwizacja nagrań,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
C.D.
archiwizacja nagrań,
odłączenie przewodów od kamery,
odłączenie rejestratora od zasilania,
wymiana kamery,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji,
podłączenie rejestratora do zasilania.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie rejestratora do zasilania,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji.

A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi A jest prawidłowy, ponieważ przedstawia właściwą kolejność działań przy wymianie kamery w systemie telewizji dozorowej. Przede wszystkim, archiwizacja nagrań jest kluczowa, aby nie utracić ważnych danych. W przypadku wymiany komponentów systemu, szczególnie takich jak kamery, należy unikać sytuacji, w której bieżące nagrania mogą zostać usunięte lub uszkodzone. Następnie odłączenie rejestratora od zasilania jest istotne dla zapewnienia bezpieczeństwa. Pracując z elektroniką, zawsze należy wyłączać zasilanie, aby zminimalizować ryzyko zwarcia lub uszkodzenia sprzętu. Kolejny krok to odłączenie przewodów od starej kamery, co należy wykonać przy zachowaniu ostrożności, aby nie uszkodzić gniazd ani kabli. W dalszej kolejności następuje wymiana kamery, co wymaga precyzyjnego podłączenia nowego urządzenia. Po podłączeniu przewodów do nowej kamery oraz ponownym podłączeniu rejestratora do zasilania, można rozpocząć rejestrację. Taka sekwencja działań jest zgodna z najlepszymi praktykami branżowymi, które rekomendują zachowanie porządku i bezpieczeństwa w systemach monitoringu wideo.

Pytanie 12

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. w trójkąt
B. równolegle
C. w gwiazdę
D. szeregowo
Łączenie czujek w sposób równoległy, trójkątny czy w gwiazdę to kiepski pomysł dla czujek PIR typu NC. Przy połączeniu równoległym każda czujka działa osobno, co może sprawić, że tylko jedna z nich włączy alarm. To może osłabić bezpieczeństwo, bo jeśli jedna czujka nie działa, to może się zdarzyć, że nie wyczuje ruchu. Metoda trójkątna zupełnie nie pasuje do alarmów i może być trudna w diagnozowaniu problemów. A jak dodasz połączenie w gwiazdę, to jeszcze więcej połączeń, co z kolei może sprawić, że system częściej się psuje. Błędne łączenie czujek bierze się często z niezrozumienia działania obwodów alarmowych. Ważne jest, żeby system działał tak, żeby alarm włączał się przy wykryciu intruza, a to można osiągnąć tylko przez połączenie szeregowe.

Pytanie 13

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. wzrostem amplitudy oscylacji
B. zmniejszeniem stabilności układu
C. wydłużeniem czasu regulacji
D. brakiem zmian w czasie regulacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 14

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. serwera DNS
B. kamery
C. przełącznika
D. rutera
Błędne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego roli poszczególnych urządzeń w sieci. Przełącznik to urządzenie, które działa na poziomie warstwy drugiej modelu OSI, odpowiedzialne za przekazywanie ramek danych w obrębie lokalnej sieci. Nie ma on funkcji bramy, ponieważ nie obsługuje komunikacji pomiędzy różnymi sieciami. Kamery, z drugiej strony, to urządzenia końcowe, które przesyłają dane za pomocą protokołów sieciowych, ale również nie pełnią roli bramy. Serwer DNS działa na poziomie tłumaczenia nazw domenowych na adresy IP, co jest niezbędne do lokalizowania zasobów w sieci, jednak jego funkcjonalność również nie obejmuje działania jako brama. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji przełącznika z funkcjami rutera oraz nieznajomość podstawowych zadań serwera DNS. Aby skutecznie zarządzać siecią, należy zrozumieć, że ruter jest odpowiedzialny za komunikację zewnętrzną, a inne urządzenia, takie jak przełączniki, kamery czy serwery DNS, pełnią uzupełniające role, lecz nie mogą działać jako brama bezposrednia.

Pytanie 15

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik termiczny
B. ochronnik przepięciowy
C. wyłącznik różnicowoprądowy
D. wyłącznik nadprądowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 16

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. buty na izolowanej podeszwie
B. fartuch bawełniany
C. okulary ochronne
D. rękawice ochronne
Na pierwszy rzut oka można sądzić, że okulary ochronne, rękawice ochronne i buty na izolowanej podeszwie również mogą być odpowiednimi elementami odzieży ochronnej podczas prac serwisowych. Jednak ich zastosowanie nie jest wystarczające w kontekście wylutowywania podzespołów elektronicznych. Okulary ochronne są ważne do ochrony oczu przed odpryskami i substancjami chemicznymi, jednak nie chronią one całego ciała przed zanieczyszczeniem oraz niepełnym zabezpieczeniem odzieży. Rękawice ochronne mogą być niezbędne, gdy pracujemy z substancjami niebezpiecznymi, jednak w przypadku wylutowywania, ich stosowanie może być niewygodne i obniżać precyzję manipulacji delikatnymi komponentami. Wiele osób może również mylnie sądzić, że buty na izolowanej podeszwie są wystarczające do ochrony w takim środowisku; owszem, chronią one przed porażeniem prądem, ale nie zabezpieczają w wystarczającym stopniu przed chemikaliami czy odpadami, które mogą być wytwarzane podczas prac serwisowych. Dlatego kluczowe jest zrozumienie, że odpowiedni fartuch bawełniany stanowi najbardziej wszechstronną i skuteczną ochronę, zapewniając jednocześnie komfort i bezpieczeństwo. Efektywna odzież ochronna powinna być zgodna z zaleceniami BHP oraz standardami branżowymi, co w praktyce oznacza, że fartuch bawełniany jest najodpowiedniejszym rozwiązaniem w tym przypadku.

Pytanie 17

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. monitoringu wizyjnego
B. przeciwpożarowego
C. kontroli dostępu
D. systemu alarmowego w razie włamania i napadu
System kontroli dostępu to rozwiązanie, które ma na celu ograniczenie dostępu osób niepowołanych do określonych obszarów obiektu. Jego główną funkcją jest identyfikacja osób wchodzących oraz monitorowanie ich obecności w strefach o podwyższonej ochronie. Przykładami zastosowania systemów kontroli dostępu są karty magnetyczne, identyfikatory biometryczne oraz kodowe zamki elektroniczne. Te technologie są zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 27001, które skupiają się na zarządzaniu bezpieczeństwem informacji. Implementacja systemu kontroli dostępu zwiększa bezpieczeństwo obiektu, ograniczając ryzyko kradzieży, sabotażu czy nieautoryzowanego dostępu. W praktyce, systemy te często są zintegrowane z innymi systemami zabezpieczeń, tworząc kompleksowe rozwiązania do zarządzania bezpieczeństwem.

Pytanie 18

Do lutownicy transformatorowej powinny być stosowane groty z drutu

A. miedzianego
B. wolframowego
C. stalowego
D. aluminiowego
Grot lutownicy transformatorowej wykonany z miedzianego drutu jest najodpowiedniejszym wyborem ze względu na doskonałe przewodnictwo elektryczne oraz termiczne, które zapewnia efektywne i szybkie nagrzewanie. Miedź jest materiałem o niskiej rezystywności, co oznacza, że umożliwia szybkie dostarczanie energii do miejsca lutowania. Dodatkowo, miedziane groty charakteryzują się wysoką odpornością na korozję, co przedłuża ich żywotność podczas intensywnego użytkowania. W praktyce, stosując miedziane groty, technicy lutownicy uzyskują lepszą jakość połączeń, co jest szczególnie ważne w zastosowaniach elektronicznych, gdzie precyzja jest kluczowa. Przykładem może być lutowanie elementów SMD, gdzie odpowiednia temperatura i kontrola są niezbędne do uniknięcia uszkodzeń delikatnych komponentów. W branży elektronicznej powszechnie uznaje się, że stosowanie miedzianych grotów jest zgodne z najlepszymi praktykami, a ich użycie wspiera osiąganie wysokiej jakości lutów.

Pytanie 19

Który z poniższych programów jest przeznaczony do symulacji działania układów elektronicznych?

A. Power Point
B. Paint
C. Word
D. PSpice
PSpice to zaawansowane oprogramowanie służące do symulacji i analizy układów elektronicznych. Jest szczególnie popularne wśród inżynierów elektroniki oraz studentów kierunków technicznych, ponieważ umożliwia modelowanie różnych układów i analizowanie ich zachowania bez potrzeby budowy fizycznego prototypu. Dzięki PSpice użytkownicy mogą symulować zarówno układy analogowe, jak i cyfrowe, co pozwala na szybkie sprawdzenie teorii i założeń projektowych. Przykładem zastosowania PSpice może być analiza układów wzmacniaczy, gdzie można zbadać ich odpowiedź częstotliwościową lub badanie układów zasilania, aby ocenić stabilność i wydajność. Program jest zgodny z wieloma standardami branżowymi, co sprawia, że jego wiedza i umiejętności są cennym atutem na rynku pracy. PSpice dostarcza również narzędzi do analizy wrażliwości oraz umożliwia przeprowadzanie symulacji Monte Carlo, co znacznie zwiększa precyzję i wiarygodność wyników.

Pytanie 20

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav > Ifsm
B. Ifav ~= Ifsm
C. Ifav = Ifsm
D. Ifav < Ifsm
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 21

Programowanie mikrokontrolera bez konieczności jego wylutowania z obwodu jest realizowane za pomocą metody

A. ISP
B. RS 238
C. RS 485
D. USB
Wybór innych technik, takich jak RS 238, USB czy RS 485, wskazuje na nieporozumienie dotyczące metod programowania mikrokontrolerów. RS 238 jest standardem komunikacji szeregowej, który nie jest przeznaczony do programowania, lecz do wymiany danych między urządzeniami. Jest to rozwiązanie o ograniczonej prędkości i nieefektywne w kontekście programowania mikrokontrolerów, które wymagają precyzyjnych i szybkich metod dostępu do pamięci. USB, z drugiej strony, to uniwersalny interfejs, który może być używany do wielu celów, ale nie jest to bezpośrednia technika programowania w systemie. Wiele mikrokontrolerów wykorzystuje USB do komunikacji z komputerem, ale nie do programowania, gdyż wymaga dodatkowego sprzętu i protokołów. RS 485 to z kolei standard komunikacji, który jest używany do transmisji danych na długich dystansach i w trudnych warunkach, jednak również nie jest powiązany z programowaniem mikrokontrolerów. Wybór tych metod może prowadzić do błędnych wniosków, gdyż sugerują one, że programowanie mikrokontrolera można zrealizować za pomocą standardowych protokołów komunikacyjnych, co w rzeczywistości wymaga zastosowania specjalnych technik, takich jak właśnie ISP, dedykowanych do tego celu. Zrozumienie różnicy między programowaniem a komunikacją jest kluczowe dla efektywnego projektowania systemów elektronicznych.

Pytanie 22

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. analogowy na zakresie U=200 V i Rwe=10 kOhm
B. analogowy na zakresie U=20 V i Rwe=100 kOhm
C. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
D. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 23

Wskaźniki natężenia pola służą do określania dla anten

A. charakterystyki promieniowania
B. zysku energetycznego
C. rezystancji promieniowania
D. współczynnika odbicia
Wybór niewłaściwych odpowiedzi często wiąże się z nieporozumieniami dotyczącymi podstawowych pojęć związanych z antenami i ich właściwościami. Rezystancja promieniowania odnosi się do oporu, jaki antena stawia podczas emisji energii, lecz nie jest bezpośrednio związana z natężeniem pola. Z kolei zysk energetyczny określa poprawę sygnału w kierunku danym w porównaniu do anteny izotropowej, ale nie jest bezpośrednio wyznaczany przez wskaźniki natężenia pola, które koncentrują się na analizie rozkładu promieniowania. Współczynnik odbicia z kolei dotyczy strat energii na granicy między materiałami, co jest ważne w kontekście dopasowania impedancji, ale również nie przekłada się na wyznaczanie charakterystyki promieniowania. W praktyce inżynieryjnej, aby właściwie ocenić funkcjonowanie anteny, niezbędne jest zrozumienie, że wskaźniki natężenia pola są instrumentami do badania efektów promieniowania, a nie jednoznacznymi miarami innych parametrów, jak rezystancja czy współczynnik odbicia. Dlatego kluczowe jest, aby przy analizie anten koncentrować się na ich charakterystyce promieniowania, co umożliwia zrozumienie, jak anteny oddziałują z otoczeniem oraz jakie mają zastosowania w systemach komunikacji.

Pytanie 24

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. skretkami telefonicznymi
B. kablami koncentrycznymi
C. łączami światłowodowymi
D. drogą radiową
Odpowiedź 'łączami światłowodowymi' jest prawidłowa, ponieważ magistrale optyczne są kluczowym elementem nowoczesnych systemów telekomunikacyjnych. Wykorzystują one światłowody do przesyłania danych na bardzo dużych odległościach z minimalnymi stratami sygnału. Światłowody działają na zasadzie całkowitego wewnętrznego odbicia, co pozwala na efektywne przekazywanie sygnałów świetlnych. W praktyce, światłowody są wykorzystywane w telekomunikacji do łączenia dużych miast oraz w infrastrukturze internetowej, gdzie wymagane jest przesyłanie dużych ilości danych w krótkim czasie. Standardowe systemy światłowodowe, takie jak ITU-T G.652, zapewniają optymalną wydajność w zakresie transmisji w różnych warunkach. Dzięki zastosowaniu technologii światłowodowej, operatorzy telekomunikacyjni mogą oferować usługi o wysokiej przepustowości, co jest niezbędne w dobie rosnącego zapotrzebowania na szybki internet. Zastosowanie magistrali optycznych w telewizji kablowej pozwala nie tylko na przesył sygnału telewizyjnego, ale także na jednoczesną transmisję danych i głosu, co zwiększa efektywność wykorzystania zasobów infrastrukturalnych.

Pytanie 25

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. pianowej
C. halonowej
D. proszkowej
Gaśnice proszkowe, śniegowe i halonowe nie są odpowiednie do gaszenia pożarów instalacji elektrycznych. Gaśnice proszkowe, mimo że skuteczne w wielu sytuacjach, mogą nie być wystarczająco bezpieczne w bezpośrednim kontakcie z energią elektryczną. Proszek gaśniczy nie przewodzi prądu, ale w przypadku pożaru elektrycznego, może on nie skutkować pełnym ugaszeniem ognia, a jednocześnie może zanieczyścić urządzenia elektryczne, co prowadzi do ich uszkodzenia. Z kolei gaśnice śniegowe, które wykorzystują dwutlenek węgla, mogą powodować niebezpieczne sytuacje, gdyż ich działanie polega na odcinaniu dostępu powietrza do ognia. Jednak w przypadku niektórych instalacji elektrycznych, może dojść do sytuacji, gdzie nagłe zmiany temperatury mogą spowodować uszkodzenia elementów elektronicznych, co w konsekwencji prowadzi do dalszych zagrożeń. Halon, mimo że jest znany jako skuteczny środek gaśniczy, jest substancją, która również nie jest polecana do gaszenia pożarów związanych z urządzeniami elektrycznymi, głównie ze względów ekologicznych i zdrowotnych. W rzeczywistości, stosowanie halonu zostało w dużej mierze ograniczone przez przepisy międzynarodowe dotyczące ochrony środowiska. W związku z tym, użycie tych trzech typów gaśnic do gaszenia pożarów instalacji elektrycznych jest nie tylko niewłaściwe, ale także może zwiększać ryzyko i konsekwencje pożaru, co jasno podkreślają standardy BHP w kontekście ochrony przeciwpożarowej.

Pytanie 26

W trakcie konserwacji działającego zasilacza komputerowego należy

A. wymienić kondensatory filtrujące
B. wyczyścić styki mikroprocesora sterującego
C. oczyścić elementy chłodzące
D. zmienić elementy chłodzące
Wymiana elementów chłodzących, jak również czyszczenie styki mikroprocesora czy wymiana kondensatorów filtrujących, są podejściami, które mogą wprowadzić niepotrzebne komplikacje i koszty. W przypadku wymiany elementów chłodzących można spotkać się z sytuacją, w której nowe komponenty nie są dostosowane do specyfikacji zasilacza. Może to prowadzić do nieefektywnego chłodzenia, a w rezultacie do przegrzewania się urządzenia. Co więcej, wymiana komponentów wymaga odpowiednich umiejętności oraz narzędzi, co nie zawsze jest dostępne dla przeciętnego użytkownika. Czyszczenie styków mikroprocesora jest praktyką, która może być niebezpieczna, ponieważ niewłaściwe podejście może uszkodzić delikatne elementy. Wymiana kondensatorów filtrujących z kolei jest operacją zaawansowaną, wymagającą precyzyjnych narzędzi oraz wiedzy na temat lutowania. Niewłaściwe wykonanie może prowadzić do poważnych uszkodzeń zasilacza, które mogą zniweczyć efekt działań konserwacyjnych. Warto pamiętać, że kluczowym aspektem konserwacji jest nie tylko dbanie o komponenty, ale także ich skuteczne użytkowanie przez regularne czyszczenie oraz monitorowanie stanu technicznego sprzętu.

Pytanie 27

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. C.
B. B.
C. A.
D. D.
Odpowiedź C jest poprawna, ponieważ zapewnia odpowiednią pojemność akumulatorów w minimalnym koszcie. W przypadku zasilania dziesięciu kamer przez 10 minut, kluczowe jest obliczenie całkowitego zapotrzebowania na energię. Jeśli jedna kamera wymaga akumulatora o pojemności 5 Ah na 10 minut, to dla dziesięciu kamer potrzebujemy co najmniej 50 Ah. Opcja C oferuje akumulator o pojemności 60 Ah, co nie tylko spełnia wymogi, ale również pozostawia pewien zapas, co jest zalecane w praktyce. Wybór akumulatorów powinien uwzględniać nie tylko koszt, ale również ich żywotność i efektywność. Zgodnie z dobrą praktyką, należy dobierać akumulatory z pewnym naddatkiem pojemności, aby uniknąć zbyt głębokiego rozładowania, co wydłuża ich żywotność. Wybór C, przy koszcie 245 zł, jest więc najbardziej optymalny, zwłaszcza w dłuższym czasie eksploatacji systemu monitoringu.

Pytanie 28

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Skuteczną
B. Chwilową
C. Średnią
D. Maksymalną
Wybierając inne wartości, można wprowadzić się w błąd co do natury pomiarów napięcia przemiennego. W przypadku maksymalnej wartości napięcia, chodzi o wartość szczytową, która jest największa osiągana w cyklu napięcia sinusoidalnego, ale nie obrazuje rzeczywistego efektu, jaki napięcie wywiera na obciążenie. Chwilowa wartość napięcia to natomiast wartość zmieniająca się w czasie, co również nie oddaje rzeczywistego wpływu na wydajność energetyczną obwodu. Wartość średnia napięcia sinusoidalnego, która wynosi zero w przypadku pełnego cyklu, niewłaściwie przedstawia energię dostarczaną do obciążenia. W praktyce, błędne zrozumienie tych wartości może prowadzić do nieprawidłowego projektowania obwodów, co może skutkować nieefektywnym wykorzystaniem energii i problemami z bezpieczeństwem. Przykładem może być projektowanie systemów zasilania, gdzie użycie wartości szczytowej zamiast skutecznej może prowadzić do niedoszacowania wymagań dotyczących izolacji, a tym samym stwarzać ryzyko awarii. Dlatego tak istotne jest, aby w pomiarach napięcia przemiennego opierać się na wartościach skutecznych, aby uzyskać wiarygodne i użyteczne dane do analizy i projektowania systemów elektrycznych.

Pytanie 29

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Zainstalowanie w miejscu uszkodzenia złączki typu F
B. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
C. Połączenie przewodu za pomocą tulejek zaciskowych
D. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 30

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. który służy do lutowania
B. spawarka
C. zaciśniacz
D. zgrzewarka
Wybór narzędzi do łączenia włókien optycznych może być mylący, szczególnie gdy rozważa się zastosowanie zaciskarki, lutownicy czy zgrzewarki. Zaciskarka jest narzędziem używanym do łączenia kabli elektrycznych i nie ma zastosowania w kontekście włókien optycznych. Jej mechanizm opiera się na zgrzewaniu metalowych przewodów, co jest całkowicie nieodpowiednie dla delikatnych włókien optycznych, które wymagają precyzyjnego połączenia bez narażania ich na uszkodzenia. Lutownica, natomiast, jest narzędziem stosowanym w elektronice do łączenia komponentów elektronicznych, a jej zasada działania polega na topnieniu cyny, co w przypadku włókien optycznych jest niewłaściwe, ponieważ nie ma możliwości skutecznego lutowania materiałów optycznych. Zgrzewarka także nie znajduje zastosowania w tej dziedzinie, ponieważ jej działanie opiera się na łączeniu materiałów przez wysokotemperaturowe zgrzewanie, co w przypadku włókien może prowadzić do ich zniszczenia. Aby połączyć włókna optyczne w sposób efektywny i bezpieczny, niezbędne jest zrozumienie różnic pomiędzy tymi technologiami oraz ich zastosowań w praktyce. Właściwe podejście do łączenia włókien optycznych, które zapewnia minimalizację strat sygnału i wysoką jakość połączenia, opiera się na wiedzy o technicznych aspektach używania spawarek światłowodowych, co podkreśla znaczenie właściwego wyboru narzędzi w branży telekomunikacyjnej.

Pytanie 31

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tensometry
B. termistory
C. diody
D. tyrystory
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 32

Skrętka bez ekranowania folią jest oznaczana jako

A. F/UTP
B. F/FTP
C. U/FTP
D. U/UTP
Skrętka, która nie ma folii, czyli U/UTP, to standardowy kabel sieciowy, który nie jest dodatkowo osłonięty. Nazwa U/UTP pochodzi od angielskiego "Unshielded Twisted Pair". Tego typu kable są często wykorzystywane w lokalnych sieciach komputerowych, zwłaszcza tam, gdzie ryzyko zakłóceń elektromagnetycznych jest umiarkowane. Jak dla mnie, idealnie nadają się do biur, gdzie łączą komputery z przełącznikami sieciowymi. Fajnie, że te nieekranowane kable są zgodne z normami, takimi jak TIA/EIA 568, co mówi o ich szerokim zastosowaniu. Generalnie, U/UTP jest popularny w instalacjach Ethernet, zarówno w 10Base-T, 100Base-TX, jak i 1000Base-T, więc naprawdę warto je znać, jeśli interesujesz się sieciami.

Pytanie 33

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. obiektyw szerokokątny
B. obudowę z plastiku
C. obudowę metalową
D. oświetlacz IR
No więc tak, obudowa z tworzywa może dawać jakąś ochronę przed deszczem albo śniegiem, ale nie ze wszystkim sobie radzi. Jak mamy kamery na zewnątrz, to istotne jest, żeby były całkowicie odporne na zmienne warunki pogodowe. Obudowy metalowe są lepsze pod względem wytrzymałości, ale czasem mają problem z izolacją termiczną, co może wywołać kondensację pary wewnątrz kamery, a to prowadzi do różnych usterek. Co do obiektywu szerokokątnego, to jest przydatny, ale nie jest najważniejszy w monitorowaniu w nocy. Tu liczy się bardziej oświetlacz IR, żeby kamera mogła działać w ciemności. Ludzie często mylą się, skupiając się na estetyce obudowy, a zapominają, że to jak kamera radzi sobie w trudnych warunkach oświetleniowych jest kluczowe. A to zapewnia odpowiednia technologia, taka jak oświetlacze podczerwone.

Pytanie 34

W jakim czujniku do działania wykorzystuje się efekt zmiany pola magnetycznego?

A. Tensometrycznym
B. Kontaktronowym
C. Bimetalicznym
D. Pojemnościowym
Czujnik bimetaliczny nie wykorzystuje zmiany pola magnetycznego do swojego działania, lecz opiera się na różnicy rozszerzalności cieplnej dwóch różnych metali. Gdy temperatura wzrasta, jeden z metali rozszerza się bardziej niż drugi, co powoduje zgięcie elementu bimetalicznego i uruchomienie mechanizmu. To zjawisko znajduje zastosowanie w termometrach oraz regulatorach temperatury, ale nie ma związku z magnetyzmem. Z kolei czujnik pojemnościowy działa na zasadzie pomiaru zmian pojemności elektrycznej, które mogą być spowodowane przez obecność obiektów w polu elektrycznym, a nie w polu magnetycznym. Jest on często stosowany w aplikacjach takich jak detekcja poziomu cieczy czy w elektronice użytkowej, ale również nie odnosi się do zjawiska magnetycznego. Czujnik tensometryczny z kolei mierzy odkształcenia mechaniczne materiału na podstawie zmian oporu elektrycznego, co jest zupełnie innym zjawiskiem fizycznym. Typowym błędem jest mylenie różnych rodzajów czujników oraz ich zasad działania, co prowadzi do niewłaściwych wniosków o ich zastosowaniach i funkcjonalności. Aby poprawnie ocenić, który czujnik działa na zasadzie zmiany pola magnetycznego, trzeba zrozumieć podstawową różnicę w zasadzie działania każdego z tych czujników.

Pytanie 35

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. X-Y
B. DUAL
C. ADD
D. SINGLE
Jak przełączysz oscyloskop w tryb DUAL, ADD albo SINGLE, to w zasadzie nie wykorzystasz krzywych Lissajous do analizy częstotliwości sygnału, co jest trochę szkoda. W trybie DUAL możesz wprawdzie pokazać dwa sygnały naraz, ale na osobnych osiach czasu, więc nie zobaczysz, jak się one do siebie mają pod względem fazy czy amplitudy. W tym trybie nie uzyskasz tych fajnych krzywych Lissajous, bo sygnały nie są w odpowiednich osiach X i Y. Z kolei tryb ADD po prostu zsumuje sygnały i wszystko zniekształci, więc porównanie ich w kontekście analizy fazowej w ogóle nie wyjdzie. A w trybie SINGLE to tylko jeden sygnał pokażesz, więc całkiem odpadasz z porównania dwóch sygnałów na tym samym wykresie. Czasem ludzie myślą, że jak mają tryb DUAL to wystarczy, ale zapominają, że wtedy krzywych Lissajous się nie da uzyskać. To pewnie wynika z tego, że nie do końca rozumieją, o co chodzi w analizie sygnałów i jak je można zobrazować na wykresie. Żeby dobrze wykorzystać oscyloskop do określenia częstotliwości sygnałów, trzeba zrozumieć, że kluczowe jest przedstawienie ich w odpowiednich osiach, co tylko w trybie X-Y działa.

Pytanie 36

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. S-VHS
B. EUROSCART
C. DIN 5
D. JACK
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 37

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. nóż monterskiego
B. zaciskarki do złączy
C. narzędzia LSA typu KRONE
D. płaskiego śrubokręta
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 38

Instrukcja CLR P1.7 wskazuje na

A. wymazanie komórki o adresie 1.7
B. wczytanie komórki znajdującej się pod adresem 1.7
C. konfigurację linii 7 w porcie P1
D. zerowanie linii 7 w porcie P1
Rozkaz CLR P1.7 oznacza zerowanie linii 7 w porcie P1, co jest kluczowe w kontekście programowania mikrokontrolerów, szczególnie w architekturze MCS-51. W systemach mikroprocesorowych porty I/O, takie jak P1, są używane do komunikacji z zewnętrznymi urządzeniami. Komenda CLR, czyli 'Clear', jest stosowana do ustawienia konkretnego bitu w rejestrze portu na stan niski (0). Zerowanie linii 7 w porcie P1 może mieć istotne znaczenie w aplikacjach, gdzie ta linia steruje zewnętrznym urządzeniem, takim jak dioda LED, przekaźnik czy inny element elektroniczny. Przykładowo, aby wyłączyć diodę LED podłączoną do linii 7, należy wykonać tę komendę, co rezultuje w uzyskaniu pożądanego efektu w aplikacji. Zrozumienie działania portów I/O oraz umiejętność manipulowania stanami bitów w rejestrach jest fundamentem w inżynierii oprogramowania dla systemów wbudowanych, co jest zgodne z zasadami najlepszych praktyk w branży.

Pytanie 39

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Enkoder
B. Koder
C. Dekoder
D. Transkoder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 40

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. HDMI
B. MIFARE
C. FIREWARE
D. RCP
Wybór odpowiedzi związanych z HDMI, FIREWARE czy RCP wskazuje na pomylenie różnych standardów technologicznych, które nie odnoszą się do kontekstu bezdotykowej kontroli dostępu. HDMI (High-Definition Multimedia Interface) to standard interfejsu do przesyłania cyfrowego sygnału audio i wideo, a nie kart dostępu. Jego zastosowanie koncentruje się na przesyłaniu danych pomiędzy urządzeniami multimedialnymi, a nie na identyfikacji czy kontroli dostępu. FIREWARE, z drugiej strony, to termin, który nie jest standardem, lecz może być mylnie interpretowany jako związany z oprogramowaniem sprzętowym (firmware) w kontekście urządzeń elektronicznych. Choć oprogramowanie sprzętowe jest kluczowe w zarządzaniu funkcjami urządzeń, to nie ma związku z bezdotykowymi systemami kontroli dostępu, które wykorzystują technologie RFID. RCP (Remote Control Protocol) to protokół, który umożliwia zdalne sterowanie urządzeniami, jednak nie ma zastosowania w kontekście kart dostępu ani RFID. Typowym błędem w podejściu do tego pytania jest mylenie zastosowań standardów technologicznych, co prowadzi do niepoprawnych wniosków. Kluczowe jest zrozumienie, jaki jest cel każdego z tych standardów i ich odpowiednie zastosowanie w praktyce, aby unikać takich pomyłek.