Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 czerwca 2025 14:41
  • Data zakończenia: 3 czerwca 2025 15:07

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji.
C. Prąd upływu.
D. Chwilową moc obciążenia.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 2

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie ochronnym
B. Zwarcie doziemne przewodu neutralnego
C. Uszkodzenie izolacji przewodu ochronnego
D. Przerwa w przewodzie neutralnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 3

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. brak możliwości zadziałania załączonego wyłącznika
B. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
C. prawidłowe działanie wyłącznika
D. niemożność załączenia wyłącznika pod obciążeniem
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 4

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Zmiana rodzaju użytych przewodów
B. Instalacja dodatkowego gniazda elektrycznego
C. Wymiana uszkodzonych źródeł światła
D. Modernizacja rozdzielnicy instalacji elektrycznej
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 5

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
C. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
D. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 6

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
B. Podczas zmiany tradycyjnych żarówek na energooszczędne
C. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
D. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 7

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. stanu obudów wszystkich elementów instalacji
B. nastaw urządzeń zabezpieczających w instalacji
C. poprawności działania wyłącznika różnicowoprądowego
D. wartości rezystancji izolacji przewodów
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 8

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Tworząc zwarcie w obwodzie zabezpieczonym
B. Naciskając przycisk "TEST"
C. Zmieniając ustawienie dźwigni "ON-OFF"
D. Sprawdzając napięcie oraz prąd wyłącznika
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 9

Przeciążenie w instalacji elektrycznej polega na

A. przekroczeniu maksymalnego prądu znamionowego instalacji.
B. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
C. bezpośrednim połączeniu dwóch faz w systemie.
D. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
Bezpośrednie połączenie dwóch faz instalacji nie jest przyczyną przeciążenia, lecz może prowadzić do poważnych awarii, takich jak zwarcie. W przypadku takiego połączenia, fazy mogą się wzajemnie 'krótkocircuitować', co prowadzi do nagłego wzrostu prądu, a tym samym do uszkodzenia urządzeń oraz instalacji. Napięcie elektryczne jest innym parametrem, który nie jest bezpośrednio związany z przeciążeniem, a jego nagły wzrost, znany jako przepięcie, nie oznacza przekroczenia prądu znamionowego. Przepięcia mogą występować z różnych przyczyn, w tym wyładowania atmosferycznego, ale są to zjawiska, które można kontrolować za pomocą ochronników przepięciowych. Warto również zauważyć, że fala przepięciowa, chociaż może wpływać na działanie instalacji elektrycznej, nie jest tożsame z przeciążeniem, które dotyczy bezpośrednio prądu przepływającego przez przewody. W praktyce, przy projektowaniu instalacji elektrycznych kluczowe jest zrozumienie różnicy między tymi pojęciami oraz ich wpływem na bezpieczeństwo i niezawodność systemów elektrycznych.

Pytanie 10

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do prądnic tachometrycznych
B. Do wzmacniaczy maszynowych
C. Do transformatorów
D. Do indukcyjnych sprzęgieł dwukierunkowych
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.

Pytanie 11

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. co najmniej raz na 10 lat
C. co najmniej raz na 5 lat
D. raz na pół roku
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 12

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 50 V
B. AC 500 V i DC 10 V
C. DC 500 V i AC 100 V
D. DC 500 V i AC 50 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 13

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Transformator separacyjny
B. Przekładnik prądowy
C. Przetwornicę napięcia
D. Transformator bezpieczeństwa
Przetwornica napięcia, transformator bezpieczeństwa oraz transformator separacyjny to urządzenia, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do pomiaru mocy czynnej w pośrednich układach pomiarowych. Przetwornice napięcia służą do zmiany poziomu napięcia w instalacjach elektrycznych, co jest istotne w kontekście zasilania różnorodnych urządzeń, ale nie pełnią roli w bezpośrednim pomiarze mocy. Z kolei transformatory bezpieczeństwa, które mają na celu zabezpieczenie osób przed porażeniem prądem, również nie są odpowiednie do zastosowań pomiarowych, ponieważ ich główną funkcją jest izolacja oraz obniżanie napięcia do bezpiecznego poziomu. Transformator separacyjny, używany w systemach elektronicznych dla ochrony przed zakłóceniami oraz dla zapewnienia bezpieczeństwa, nie dostarcza odpowiednich danych pomiarowych niezbędnych do analizy mocy czynnej. Typowym błędem myślowym jest utożsamianie tych urządzeń z funkcją pomiarową, podczas gdy ich zastosowania są zupełnie inne i nie spełniają wymaganych standardów pomiarowych, takich jak precyzja oraz odpowiednie przekształcenie sygnałów pomiarowych. W kontekście norm, ważne jest przestrzeganie standardów dotyczących pomiarów elektrycznych, aby zapewnić rzetelne i dokładne wyniki analizy energetycznej.

Pytanie 14

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gG 16 A
C. gB 20 A
D. aR 16 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 15

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
D. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 16

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolowanie miejsca pracy
B. Izolacja odbiornika
C. Ochronne obniżenie napięcia
D. Podwójna lub wzmocniona izolacja
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 17

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. dwa lata
B. pięć lat
C. rok
D. trzy lata
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 18

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 3-5 krotności prądu znamionowego
B. 20-30 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 19

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Po każdej naprawie maszyn
B. Tylko przed uruchomieniem nowych maszyn
C. Co pięć lat
D. Co najmniej raz na rok
Warto zaznaczyć, że przegląd instalacji elektrycznej tylko przed uruchomieniem nowych maszyn nie jest wystarczający. Wprowadzenie nowego sprzętu do istniejącej instalacji wymaga sprawdzenia jej zgodności, ale nie zastępuje regularnych przeglądów. Nowe maszyny mogą wprowadzać dodatkowe obciążenie na system, co zwiększa ryzyko przeciążenia lub awarii. Ponadto, przegląd po każdej naprawie maszyn również nie jest wystarczający. Choć istotne jest, aby po naprawie sprawdzić poprawność działania, nie zapewnia to bieżącego monitorowania stanu całej instalacji. Regularne przeglądy są konieczne, aby identyfikować ukryte problemy, które mogą się pojawić podczas normalnej eksploatacji. Z kolei przeglądy co pięć lat są zdecydowanie zbyt rzadkie. Taka częstotliwość nie pozwala na wystarczająco szybkie wykrycie problemów, co może prowadzić do niebezpiecznych sytuacji i nieplanowanych przestojów w pracy zakładu. Dlatego też normy i przepisy branżowe zalecają częstsze przeglądy, aby zapewnić bezpieczeństwo i efektywność działania instalacji elektrycznych. Zignorowanie tych zasad może skutkować nie tylko przerwami w produkcji, ale także poważnymi zagrożeniami dla życia i zdrowia pracowników.

Pytanie 20

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. YADY
B. XzTKMXpw
C. LgY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 21

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Amperomierza
B. Omomierza
C. Megaomomierza
D. Watomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 22

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 4 lata
B. 2 lata
C. kwartał
D. rok
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 23

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
B. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
C. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 24

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Metoda montażu instalacji
B. Warunki zewnętrzne, którym instalacja jest poddawana
C. Liczba urządzeń zasilanych z tej instalacji
D. Kształt budynku w przestrzeni
Koncepcje związane z innymi czynnikami, takimi jak liczba odbiorników zasilanych z instalacji, kształt przestrzenny budynku czy sposób montażu instalacji, nie mają decydującego wpływu na częstotliwość okresowych kontroli instalacji elektrycznej. Liczba odbiorników, mimo że wpływa na obciążenie systemu, nie przekłada się bezpośrednio na warunki, które mogą prowadzić do uszkodzeń instalacji. Zwiększona liczba urządzeń nie oznacza, że instalacja będzie bardziej narażona na awarie. Natomiast kształt budynku, chociaż może wpływać na dystrybucję energii i projekt instalacji, nie jest czynnikiem wpływającym na de facto potrzebę częstszych kontroli, ponieważ nie zmienia on warunków eksploatacyjnych, w jakich znajduje się instalacja. Z kolei sposób montażu instalacji, chociaż istotny dla bezpieczeństwa i funkcjonalności systemu, nie determinujący częstotliwości przeglądów. Często spotykanym błędem jest mylenie częstotliwości przeglądów z jakością wykonania instalacji. Dlatego tak ważne jest, aby skupić się na warunkach, w jakich instalacja pracuje, ponieważ to one ostatecznie wpływają na jej trwałość i bezpieczeństwo. Przykłady z praktyki pokazują, że instalacje narażone na trudne warunki atmosferyczne, takie jak wilgoć czy zanieczyszczenia, muszą być szczególnie regularnie kontrolowane, aby zminimalizować ryzyko awarii, co nie może być zrealizowane przez analizowanie tylko innych wymienionych czynników.

Pytanie 25

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Montaż ochronników przepięciowych w głównej rozdzielnicy
B. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
C. Użycie transformatora separacyjnego do zasilania
D. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 26

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 6,0 Ω
B. 1,3 Ω
C. 166,7 Ω
D. 766,7 Ω
Wybór wartości różnych rezystancji uziemienia, takich jak 766,7 Ω, 6,0 Ω czy 1,3 Ω, wskazuje na nieporozumienie dotyczące zasadności obliczeń i norm bezpieczeństwa związanych z instalacjami elektrycznymi. Wartość 766,7 Ω jest zbyt wysoka, co oznacza, że w przypadku uszkodzenia izolacji, prąd różnicowy nie zostanie skutecznie odłączony, co stwarza ryzyko porażenia. Z kolei 6,0 Ω i 1,3 Ω są nieadekwatne w kontekście wymaganej maksymalnej rezystancji dla wyłącznika różnicowoprądowego o tak dużym prądzie różnicowym. W praktyce, zbyt niska rezystancja może prowadzić do nieprawidłowego działania systemu ochrony i fałszywych wyzwalań, co jest nie do przyjęcia w instalacjach elektrycznych. Właściwe zrozumienie tego zagadnienia wymaga znajomości wzorów na obliczanie rezystancji uziemienia oraz znajomości zależności między napięciem dotykowym, prądem różnicowym i rezystancją. Każda z tych wartości odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji, a ich niewłaściwe dobieranie może prowadzić do nr. 1 zagrożeń w elektryczności, jakim jest porażenie prądem. Wartości rezystancji powinny być starannie dobierane zgodnie z zaleceniami norm, a ich zrozumienie jest niezbędne dla każdego inżyniera zajmującego się projektowaniem i wdrażaniem instalacji elektrycznych.

Pytanie 27

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Prąd różnicowy oraz czas reakcji
B. Obciążenie prądowe i czas reakcji
C. Napięcie w sieci oraz prąd różnicowy
D. Napięcie w sieci oraz prąd obciążeniowy
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 28

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TN-S
B. TN-C
C. TT
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 29

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. czopu
B. przewietrznika
C. tabliczki znamionowej
D. wprowadzenia przewodu zasilającego
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 30

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Napięcia dotykowego
B. Rezystancji izolacji
C. Rezystancji uziemienia
D. Impedancji zwarciowej
Impedancja zwarciowa, napięcie dotykowe, a także rezystancja uziemienia to istotne parametry w kontekście bezpieczeństwa instalacji elektrycznych, lecz nie są one bezpośrednio związane z oceną skuteczności ochrony przed dotykiem bezpośrednim. Impedancja zwarciowa odnosi się do zachowania się instalacji podczas zwarcia, co ma znaczenie dla ochrony przed zwarciami, ale nie mówi nic o izolacyjności systemu. Napięcie dotykowe to wartość napięcia, jaką może otrzymać osoba mająca kontakt z elementami instalacji. Choć jego pomiar jest ważny, nie zastępuje on analizy rezystancji izolacji, która jest kluczowym wskaźnikiem stanu technicznego izolacji. Z kolei rezystancja uziemienia ma za zadanie zminimalizować potencjalne napięcia występujące w przypadku uszkodzenia izolacji, ale również nie pokazuje bezpośrednio skuteczności izolacji samej w sobie. Wiele osób myli te pojęcia, co może prowadzić do niepoprawnych wniosków i braku odpowiednich działań naprawczych. W kontekście norm i dobrych praktyk, np. IEC 60364, kluczowe jest zrozumienie, że prawidłowa izolacja jest fundamentem bezpieczeństwa, a pomiar rezystancji izolacji jest jednym z podstawowych działań w utrzymaniu instalacji elektrycznych.

Pytanie 31

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA

A. P304 40-30-AC
B. P302 25-10-AC
C. P202 25-30-AC
D. P304 40-100-AC
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 32

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją kołnierzową
B. Podkładką sprężystą
C. Tuleją redukcyjną
D. Podkładką dystansową
Podkładka sprężysta jest kluczowym elementem w procesie zabezpieczania nakrętek przed odkręceniem, ponieważ jej konstrukcja została zaprojektowana w celu generowania siły, która przeciwdziała luzom mechanicznym. W praktyce, podkładki te wykorzystują swoją elastyczność, aby wypełnić mikrouszkodzenia na powierzchniach stykowych oraz dostarczyć dodatkowy opór przeciwko luźnieniu się połączenia w wyniku drgań, uderzeń czy zmian temperatury. Przykłady zastosowania obejmują szeroki zakres branż, od motoryzacji po budownictwo, gdzie mechanizmy narażone są na dynamiczne obciążenia. Zgodnie z normami ISO 7089 i ISO 7090, stosowanie podkładek sprężystych jest zalecane w połączeniach wymagających dużej niezawodności i trwałości, co czyni je istotnym elementem w projektowaniu konstrukcji. Dodatkowo, ich dostępność w różnych materiałach (np. stal nierdzewna, mosiądz) pozwala na dopasowanie do specyficznych warunków pracy, co zwiększa efektywność zabezpieczeń.

Pytanie 33

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
C. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 34

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi pod tynkiem
B. aluminiowymi umieszczonymi na tynku
C. miedzianymi umieszczonymi pod tynkiem
D. miedzianymi umieszczonymi na tynku
Odpowiedź miedzianymi ułożonymi na tynku jest właściwa, ponieważ stosowanie miedzi w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi jest najczęściej zalecane. Miedź charakteryzuje się wysoką odpornością na korozję, co jest szczególnie istotne w środowiskach, gdzie mogą występować substancje chemiczne, które mogą negatywnie wpływać na materiały elektryczne. Ponadto, ułożenie przewodów na tynku ułatwia ich konserwację oraz wymianę, co jest kluczowe w przypadku uszkodzeń lub awarii. Standardy takie jak PN-IEC 60364 oraz dobre praktyki branżowe rekomendują tego typu rozwiązania, aby zapewnić bezpieczeństwo i niezawodność instalacji. Przykładowo, w zakładach przemysłowych, gdzie występują agresywne substancje chemiczne, zastosowanie miedzi i odpowiednich osprzętów szczelnych może znacząco zmniejszyć ryzyko awarii oraz zapewnić trwałość systemu. W praktyce, instalatorzy często wybierają przewody miedziane, gdyż zapewniają one nie tylko lepszą przewodność, ale także większą odporność na uszkodzenia mechaniczne oraz chemiczne.

Pytanie 35

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 0,62%
B. 0,07%
C. 0,74%
D. 6,10%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 36

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji kabli z izolacją połwinnitową
R20 = K20·Rt
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K200,110,190,250,330,631,001,852,383,13

A. 4,1 MΩ
B. 16,2 MΩ
C. 32,4 MΩ
D. 2,0 MΩ
Odpowiedzi 4,1 MΩ, 32,4 MΩ i 16,2 MΩ są błędne z kilku powodów. Wartość 4,1 MΩ nie bierze pod uwagę, że rezystancja izolacji spada, kiedy temperatura rośnie, a to kluczowe. W przypadku 32,4 MΩ można pomyśleć, że rezystancja rośnie z temperaturą, co jest całkowicie mylne. Takie myślenie jest sprzeczne z tym, co mówią normy w elektrotechnice, bo wyższe temperatury skutkują niższymi wartościami rezystancji. I jeszcze 16,2 MΩ nie ma sensu, bo nie korzysta z dobrej formuły do obliczeń i nie odnosi się do standardów pomiarowych. Zawsze musisz pamiętać, jak materiały izolacyjne reagują na zmiany temperatury, bo to ma ogromne znaczenie przy ocenie stanu technicznego instalacji elektrycznych.

Pytanie 37

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. upływ prądu
B. przeciążenie
C. uszkodzenie przewodu
D. przepięcie
Przyciśnięcie przycisku TEST na wyłączniku różnicowoprądowym nie symuluje przeciążenia, ponieważ przeciążenie związane jest z sytuacją, w której obciążenie prądowe przewyższa maksymalne dopuszczalne wartości dla danego obwodu. W takich sytuacjach działają zabezpieczenia nadprądowe, takie jak bezpieczniki lub wyłączniki automatyczne, które mają za zadanie przerwać obwód, aby zapobiec przegrzaniu przewodów i potencjalnym pożarom. Wciśniecie przycisku TEST nie dotyczy również przepięcia, które jest skutkiem nagłych wzrostów napięcia, na przykład podczas wyładowań atmosferycznych. Przepięcia są zazwyczaj niwelowane przez urządzenia ochronne, takie jak ograniczniki przepięć, a nie przez wyłączniki różnicowoprądowe. Wreszcie, wciśnięcie przycisku TEST nie dotyczy przerwy przewodu, co jest sytuacją, w której prąd nie przepływa w obwodzie z powodu uszkodzenia przewodu. Tego rodzaju problem nie jest związany z funkcją różnicowoprądową, ponieważ RCD działa na podstawie różnicy prądów między przewodami fazowymi a neutralnym, a nie na podstawie ich ciągłości. Zrozumienie tych różnic jest kluczowe dla prawidłowego użytkowania i ochrony instalacji elektrycznych.

Pytanie 38

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza nasadowego
B. Klucza imbusowego
C. Wiertarki udarowej z wiertłem widiowym
D. Wkrętarki akumulatorowej z odpowiednim bitem
Użycie klucza imbusowego w kontekście wykonywania połączeń w listwach zaciskowych śrubowych jest niewłaściwe, ponieważ narzędzie to jest przeznaczone głównie do luzowania i dokręcania śrub z gniazdem sześciokątnym. W przypadku listw zaciskowych, które zazwyczaj wymagają bardziej elastycznego podejścia do różnych typów śrub, klucz imbusowy nie zapewnia optymalnej efektywności ani szybkości. Wkrętarka akumulatorowa z dopasowanym bitem jest narzędziem, które pozwala na szybką wymianę bitów w zależności od wymagań konkretnego zadania. Z kolei wiertarka udarowa z wiertłem widiowym jest przeznaczona do wiercenia otworów, a nie do dokręcania śrub, co czyni jej użycie w tym kontekście niepraktycznym. Klucz nasadowy, mimo że może być używany do różnych zastosowań, w przypadku listw zaciskowych również nie oferuje takiej uniwersalności i efektywności jak wkrętarka akumulatorowa. Typowym błędem myślowym jest założenie, że każde narzędzie do dokręcania jest odpowiednie do wszystkich zastosowań. W rzeczywistości, wybór narzędzia powinien być uzależniony od specyfiki zadania oraz wymagań dotyczących precyzji, szybkości i bezpieczeństwa pracy. Właściwe narzędzie przyczynia się nie tylko do efektywności, ale również do jakości wykonania instalacji elektrycznej, co jest kluczowe dla jej długotrwałego funkcjonowania.

Pytanie 39

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 300/500 V
C. 600/1000 V
D. 300/300 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 40

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Uszkodzony obwód zasilający piekarnik
B. Zbyt mały przekrój przewodów zasilających pomieszczenie
C. Nadpalony styk wyłącznika światła
D. Słaby styk w lampie
Nadpalony styk wyłącznika oświetlenia, słaby styk w oprawie oświetleniowej oraz uszkodzony obwód zasilający piekarnik to potencjalne, ale mniej prawdopodobne przyczyny przygasania żarówki podczas pracy piekarnika. Nadpalony styk wyłącznika oświetlenia może rzeczywiście powodować problemy z przewodnictwem, co może prowadzić do spadków napięcia, ale zazwyczaj objawiają się one w sposób bardziej intensywny, np. poprzez migotanie światła lub całkowite wyłączenie oświetlenia. Słaby styk w oprawie oświetleniowej również może skutkować problemami, jednak najczęściej objawia się to w postaci niestabilnego działania konkretnej żarówki, a nie ogólnym przygasaniem. Uszkodzony obwód zasilający piekarnik może sprawiać, że urządzenie nie działa prawidłowo, ale w przypadku dobrze funkcjonujących piekarników, zjawisko przygasania żarówek jest bardziej powiązane z przeciążeniem obwodu. Typowe błędy myślowe prowadzące do błędnych wniosków obejmują skupienie się na problemach lokalnych, zamiast analizować cały obwód zasilający. W praktyce, diagnozując problemy z instalacją elektryczną, konieczne jest zrozumienie interakcji między urządzeniami i ich wpływu na infrastrukturę elektryczną, co z kolei wymaga znajomości przepisów i standardów dotyczących instalacji elektrycznych.