Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 10:40
  • Data zakończenia: 1 kwietnia 2025 11:06

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i mniejszym napięciu znamionowym
B. większej pojemności i większym napięciu znamionowym
C. większej pojemności i mniejszym napięciu znamionowym
D. mniejszej pojemności i większym napięciu znamionowym
Wybór kondensatora o mniejszej pojemności oraz mniejszym napięciu znamionowym jest często mylnie postrzegany jako wystarczający w wielu aplikacjach. Mniejsza pojemność prowadzi do niewystarczającego wygładzania napięcia, co może skutkować zwiększonym tętnieniem na wyjściu zasilacza. Wyższe tętnienia mogą wpływać negatywnie na działanie podłączonych urządzeń, takich jak komputery czy urządzenia audio, powodując szumy czy zniekształcenia. Zastosowanie kondensatora o mniejszym napięciu znamionowym zmniejsza margines bezpieczeństwa, co zwiększa ryzyko przebicia. Przykładem błędnych rozważań może być założenie, że kondensator o niższej pojemności będzie pracował w podobny sposób, co jego odpowiednik o wyższej pojemności. W rzeczywistości, różnice te mogą prowadzić do poważnych problemów, takich jak uszkodzenie komponentów w zasilaczu, co narusza standardy jakości obowiązujące w branży. Dobrą praktyką jest zawsze dobierać kondensatory zgodnie z wymogami aplikacji oraz zapewniać odpowiednie parametry, aby uniknąć potencjalnych usterek i zapewnić długotrwałą niezawodność systemu.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W procesie lutowania komponentów elektronicznych topnik stosuje się w celu

A. zwiększenia przewodności elektrycznej spoiny lutowniczej
B. chemicznego oczyszczenia powierzchni łączonych metali
C. polepszenia twardości spoiny lutowniczej
D. obniżenia temperatury topnienia lutowia
Odpowiedzi sugerujące zwiększenie przewodności elektrycznej spoiny lutowniczej, obniżenie temperatury topnienia stopu lutowniczego oraz zwiększenie twardości spoiny są mylne i wynikają z nieporozumień dotyczących funkcji i właściwości topnika. Zwiększenie przewodności elektrycznej spoiny lutowniczej nie jest bezpośrednio związane z użyciem topnika, ponieważ przewodność elektryczna zależy głównie od właściwości materiałów lutowniczych, a nie od topnika. Topnik działa na zasadzie oczyszczania powierzchni, co może pośrednio wpłynąć na przewodność, ale nie jest jego funkcją. Obniżenie temperatury topnienia stopu lutowniczego to kolejna nieprawidłowa koncepcja. Temperatura topnienia stopu lutowniczego jest właściwością samego stopu, a topnik nie ma na nią bezpośredniego wpływu. Rzeczywiście, niektóre topniki mogą być zaprojektowane do pracy w niższych temperaturach, ale ich głównym celem wciąż pozostaje oczyszczenie powierzchni. Zwiększenie twardości spoiny lutowniczej również nie jest związane z funkcją topnika. Twardość spoiny wynika z właściwości materiału lutowniczego oraz jego interakcji z lutowanymi metalami. Nieprawidłowe zrozumienie roli topnika prowadzi do typowych błędów myślowych, takich jak przypisywanie mu właściwości, które są zarezerwowane dla materiałów lutowniczych, zamiast dostrzegać jego kluczową rolę w zapewnieniu czystości i jakości połączeń. W praktyce, dobre zrozumienie funkcji topnika jest kluczowe dla uzyskania trwałych i niezawodnych połączeń lutowniczych w elektronice.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. sztuczne oddychanie
B. masaż serca
C. układanie w pozycji bocznej
D. udrożnienie dróg oddechowych
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, elewacji, transpondera
B. azymutu, konwertera, transpondera
C. elewacji, konwertera, transpondera
D. elewacji, konwertera, azymutu
Kierunek ustawienia anteny satelitarnej jest kluczowym elementem w procesie odbioru sygnału. Właściwe ustawienie anteny zależy od trzech głównych kątów: elewacji, azymutu oraz kąta konwertera. Kąt elewacji określa, pod jakim kątem antena powinna być skierowana w górę, co jest kluczowe dla odbioru sygnałów z satelitów znajdujących się na odpowiedniej wysokości nad horyzontem. Natomiast kąt azymutu definiuje, w którym kierunku, w poziomie, antena powinna być skierowana, aby była skierowana bezpośrednio w stronę satelity. Kąt konwertera, z kolei, odnosi się do ustawienia konwertera LNB znajdującego się na końcu anteny, co jest niezbędne do efektywnego odbioru i konwersji sygnału. Użycie tych trzech kątów pozwala na precyzyjne ustawienie anteny, co skutkuje poprawą jakości sygnału oraz stabilnością połączenia. W praktyce, aby ustawić antenę, można skorzystać z narzędzi takich jak mierniki sygnału satelitarnego, które pomagają w dokładnym pomiarze i dostrojeniu anteny. Zgodnie z dobrą praktyką, podczas instalacji anteny warto również zwrócić uwagę na lokalne przeszkody, które mogą wpływać na jakość sygnału.

Pytanie 11

Jakim skrótem literowym określa się wskaźnik błędów modulacji w cyfrowej telewizji?

A. SNR
B. BER
C. PSNR
D. MER
SNR, czyli Signal-to-Noise Ratio, jest wskaźnikiem stosunku energii sygnału do energii szumów. Choć jego pomiar jest istotny, nie odnosi się bezpośrednio do jakości modulacji sygnału, jak to ma miejsce w przypadku MER. Wysoki wskaźnik SNR świadczy o tym, że sygnał jest znacznie silniejszy od szumów, ale nie uwzględnia on jakości samej modulacji, co jest kluczowe w systemach cyfrowych. PSNR, czyli Peak Signal-to-Noise Ratio, z kolei jest stosowany głównie w kontekście jakości obrazu, a jego zastosowanie w telewizji cyfrowej jest marginalne i nie dostarcza informacji o błędach modulacji. BER, czyli Bit Error Rate, mierzy natomiast procent błędnych bitów w przesyłanym sygnale, co jest istotnym wskaźnikiem, ale również nie odnosi się bezpośrednio do samego procesu modulacji. Wybór SNR, PSNR lub BER zamiast MER prowadzi do niepełnego obrazu jakości sygnału, ponieważ te wskaźniki nie dostarczają pełnej perspektywy na temat błędów związanych z samą modulacją. Analizując te wskaźniki, można łatwo wpaść w pułapkę myślenia, że silniejszy sygnał automatycznie oznacza lepszą jakość, co jest błędnym założeniem. W praktyce, nawet przy wysokim SNR, niska wartość MER może wskazywać na problemy z jakością obrazu, co podkreśla znaczenie zrozumienia różnic między tymi wskaźnikami.

Pytanie 12

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. podzespołów pasywnych
B. bezpiecznika aparatowego
C. prostownika
D. dioda elektroluminescencyjna
Sprawdzanie różnych elementów, jak mostek prostowniczy czy dioda LED, w sytuacji, gdy zasilacz przestaje działać, może prowadzić do złych wniosków. Elementy pasywne, takie jak rezystory czy kondensatory, raczej nie są przyczyną nagłego wyłączenia zasilacza, zwłaszcza jeśli nie widać żadnych oznak jego działania. Nawet mostek prostowniczy może być sprawny, a zasilacz i tak nie działa, bo jego awaria nie oznacza, że nie ma prądu. Diody LED, co prawda informują o stanie urządzenia, ale nie są najważniejsze w zasilaniu; ich awaria nie znaczy, że zasilacz na pewno jest zepsuty. Dobrze jest najpierw sprawdzić bezpieczniki, bo to najczęstszy powód problemów. Takie podejście to dobry sposób na diagnostykę, który pokazuje, że najpierw musisz skupić się na najważniejszych elementach.

Pytanie 13

Jakie cechy posiada wzmacniacz kanałowy w złożonych systemach antenowych?

A. Wzmacnia sygnał wszystkich kanałów o takiej samej wartości
B. Wzmacnia selektywnie sygnały jednego lub kilku kanałów telewizyjnych
C. Zwiększa sygnał kanałów wizyjnych o niższych częstotliwościach
D. Wzmacnia sygnał kanałów wizyjnych o wyższych częstotliwościach
Wzmacniacz kanałowy jest kluczowym elementem rozbudowanych instalacji antenowych, który pełni istotną rolę w poprawie jakości sygnału telewizyjnego. Jego fundamentalną właściwością jest selektywne wzmacnianie sygnałów jednego lub kilku określonych kanałów telewizyjnych, co pozwala na eliminację zakłóceń i poprawę odbioru. W praktyce, zastosowanie wzmacniacza kanałowego pozwala na osiągnięcie lepszej jakości obrazu i dźwięku, zwłaszcza w warunkach, gdzie sygnał jest osłabiony przez czynniki zewnętrzne, takie jak odległość od nadajnika czy przeszkody terenowe. Wzmacniacze te są projektowane zgodnie z określonymi standardami, aby zapewnić optymalną wydajność i minimalizację strat sygnału. Na przykład w instalacjach kablowych lub w systemach zbiorowego odbioru telewizyjnego, wzmacniacze kanałowe są często wykorzystywane do selektywnego wzmacniania sygnałów z różnych źródeł, co umożliwia odbiór szerokiego zakresu kanałów bez zakłóceń. Dzięki temu użytkownicy mogą cieszyć się lepszym doświadczeniem telewizyjnym, a instalacje mają większą niezawodność i efektywność.

Pytanie 14

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. aparat oddechowy zasilany powietrzem
B. półmaskę
C. filtr krótkoczasowy
D. maskę pełną
Aparaty oddechowe zasilane powietrzem to najskuteczniejszy sposób ochrony dróg oddechowych w sytuacjach, gdy dostępność tlenu w otoczeniu jest ograniczona. Tego rodzaju urządzenia zasysają powietrze z zewnątrz, filtrując je, aby zapewnić użytkownikowi odpowiednią jakość powietrza do oddychania. W przeciwieństwie do innych urządzeń, takich jak maski pełne czy półmaski, które mogą nie zapewnić wystarczającej ilości tlenu w przypadku znacznego obniżenia jego stężenia w powietrzu, aparaty te są przystosowane do pracy w trudnych warunkach, np. w zamkniętych przestrzeniach lub w pobliżu substancji chemicznych, gdzie ryzyko wystąpienia niskiego poziomu tlenu jest wyższe. Użycie aparatu oddechowego zasilanego powietrzem jest zgodne z obowiązującymi normami BHP oraz standardami ochrony zdrowia, takimi jak normy EN 137 i EN 12942. Przykładem zastosowania tego typu urządzeń jest praca w przemyśle, gdzie narażenie na gazy toksyczne i niedotlenienie może być realnym zagrożeniem. Regularne szkolenia z ich obsługi oraz przeszkolenie użytkowników w zakresie postępowania w sytuacjach awaryjnych są kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 15

Jaką funkcję pełni czasza w antenie satelitarnej?

A. umożliwienie odbioru konkretnych częstotliwości sygnału
B. odbicie fal i skierowanie ich do konwertera
C. skierowanie konwertera w stronę wybranego satelity
D. umożliwienie zamontowania konwertera pod właściwym kątem
Czasza w antenie satelitarnej odgrywa kluczową rolę w procesie odbioru sygnałów satelitarnych. Jej głównym zadaniem jest odbicie fal elektromagnetycznych, które są następnie skierowane do konwertera. Dzięki temu, antena może efektywnie zbierać sygnały o różnych częstotliwościach, co ma szczególne znaczenie w kontekście różnorodności usług satelitarnych, takich jak transmisja telewizyjna, internet satelitarny czy telekomunikacja. Odbicie fal jest możliwe dzięki odpowiedniej geometrii czaszy, która jest najczęściej paraboliczna. Ta geometria pozwala na skupienie fal na konwerterze, co zwiększa efektywność odbioru. Przykładem zastosowania tej zasady są instalacje antenowe w telewizji satelitarnej, gdzie precyzyjne ustawienie czaszy pozwala na odbiór sygnałów z satelitów, które znajdują się na różnych orbitach geostacjonarnych. Zgodnie z najlepszymi praktykami, odpowiednie ustawienie kąta nachylenia oraz azymutu czaszy jest kluczowe dla uzyskania optymalnej jakości sygnału, co podkreśla znaczenie wiedzy na temat zasady działania czaszy w antenach satelitarnych.

Pytanie 16

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. okulary ochronne
B. buty na izolowanej podeszwie
C. fartuch bawełniany
D. rękawice ochronne
Fartuch bawełniany jest kluczowym elementem odzieży ochronnej podczas prac serwisowych w elektronice, w tym wylutowywaniu podzespołów elektronicznych. Jego główną funkcją jest ochrona użytkownika przed zanieczyszczeniem, odpadami chemicznymi oraz drobnymi elementami, które mogą być uwolnione podczas prac serwisowych. Fartuch bawełniany jest wykonany z materiału, który jest odporny na wysoką temperaturę, co jest istotne, gdy używamy lutownicy lub innych narzędzi wymagających wysokiej temperatury. Dodatkowo, bawełna jest materiałem przewiewnym, co zapewnia komfort podczas długotrwałej pracy. Ponadto, zgodnie z normami BHP, fartuch powinien być odpowiednio zapinany oraz wystarczająco długi, aby chronić ciało przed potencjalnymi uszkodzeniami. W praktyce stosowanie fartucha bawełnianego jest zgodne z zaleceniami dotyczącymi zasad bezpieczeństwa w miejscu pracy, co znacząco zmniejsza ryzyko wystąpienia urazów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Ogranicznik prądowy zrealizowany w technologii bipolarnej
B. Wzmacniacz z tranzystorem bipolarnym w układzie OB
C. Źródło prądowe oparte na tranzystorze bipolarnym
D. Wzmacniacz z tranzystorem bipolarnym w układzie OC
Wtórnik emiterowy, znany również jako wzmacniacz emiterowy, to układ elektroniczny oparty na tranzystorze bipolarnym, który działa w konfiguracji OC (emiter wspólny). Jego główną cechą jest to, że sygnał wyjściowy jest pobierany z emitera tranzystora, co pozwala na uzyskanie wysokiej impedancji wejściowej oraz niskiej impedancji wyjściowej. Dzięki temu, wtórnik emiterowy jest szczególnie efektywny w aplikacjach, gdzie wymagana jest izolacja pomiędzy różnymi stopniami układu. Przykładem zastosowania wtórnika emiterowego może być tor sygnałowy w systemach audio, gdzie zapewnia on stabilne napięcie wyjściowe niezależnie od obciążenia. Zastosowania w branży obejmują również układy zasilające, gdzie wtórnik emiterowy stabilizuje napięcie na poziomie wymaganym przez podłączone urządzenia. Dobre praktyki projektowe sugerują stosowanie wtórników emiterowych w przypadkach, gdy zachowanie integralności sygnału jest kluczowe, a obciążenia są zmienne.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie jest zastosowanie symetryzatora antenowego?

A. w celu zmiany charakterystyki kierunkowej anteny
B. do dopasowania impedancyjnego anteny i odbiornika
C. do przesyłania sygnałów z kilku anten do jednego odbiornika
D. aby zwiększyć zysk energetyczny anteny
Wybór odpowiedzi, które sugerują, że symetryzator antenowy służy do zwiększenia zysku energetycznego anteny, zmiany kierunkowości anteny lub przesyłania sygnałów z kilku anten do jednego odbiornika, opiera się na nieporozumieniach dotyczących funkcji tych urządzeń. Symetryzator nie zwiększa zysku energetycznego anteny. Zysk energetyczny anteny odnosi się do jej charakterystyki radiowej, która jest związana z porównaniem wydajności anteny do standardowej anteny izotropowej, a nie do samego dopasowania impedancji. Zmiana charakterystyki kierunkowej anteny jest realizowana przez zastosowanie różnych typów anten, takich jak anteny kierunkowe lub omni-kierunkowe, a nie przez symetryzator. Symetryzator nie jest też urządzeniem, które przesyła sygnały z kilku anten. Zamiast tego, w sytuacji wymagającej podłączenia wielu anten, stosuje się urządzenia takie jak przełączniki antenowe lub wzmacniacze rozgałęźne. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli dopasowania impedancyjnego z parametrami wydajnościowymi anteny lub niewłaściwe zrozumienie funkcji urządzeń w systemach komunikacyjnych. Właściwe zrozumienie tych koncepcji jest niezbędne dla efektywnego projektowania i stosowania technologii antenowych.

Pytanie 24

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
B. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
C. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
D. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
Poprawna odpowiedź wskazuje, że montaż anteny satelitarnej powinien zaczynać się od jej zmontowania, co jest kluczowe dla zapewnienia stabilności i funkcjonalności całego systemu. Następnie, zamocowanie anteny w odpowiednim miejscu jest niezbędne, ponieważ musi być ona umiejscowiona w taki sposób, aby miała bezproblemowy dostęp do sygnału satelitarnego. Wykonanie instalacji kablowej to kolejny istotny krok, ponieważ prawidłowe połączenie kabli zapewni efektywne przesyłanie sygnału do odbiornika. Ostatnim etapem jest ustawienie kąta elewacji i azymutu, które są niezbędne do precyzyjnego skierowania anteny na satelitę. Należy pamiętać, że każdy z tych kroków jest ze sobą powiązany i pominięcie jednego z nich może prowadzić do znacznych problemów z jakością sygnału. W praktyce, stosowanie się do tej kolejności zapewnia, że proces montażu będzie przebiegał sprawnie i efektywnie, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej, a także z instrukcjami producentów anten.

Pytanie 25

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Wykorzystać przewód aluminiowy o identycznym przekroju
B. Połączyć dwie żyły (lub więcej) równolegle
C. Użyć przewodu o mniejszym przekroju
D. Zrezygnować z realizacji połączenia
Rezygnacja z połączenia, kiedy spadek napięcia jest za duży, to nie najlepszy pomysł. Takie podejście może tylko unikać problemów, zamiast je rozwiązywać. Możliwe, że stracisz energię, a to wpłynie na sprzęt, który jest zasilany. Użycie mniejszego przewodu to również zły krok, bo to zwiększa opór, a problem z napięciem tylko się pogłębia. Wydaje się, że wybór przewodu aluminiowego za niższą cenę jest dobry, ale pamiętaj, że aluminium jest znacznie gorsze w przewodnictwie niż miedź, co prowadzi do większego oporu i spadku napięcia. Kiedy projektujesz instalacje, musisz naprawdę zrozumieć, jak kluczowe jest dobre dobranie przewodów i ich przekrojów, żeby wszystko działało bezpiecznie i efektywnie. Ignorowanie tych zasad może prowadzić do poważnych awarii, a nawet grozić pożarem, co czyni takie podejścia ryzykownymi. Dlatego lepiej trzymać się standardów branżowych, jak PN-IEC 60364, bo to podstawa dobrego projektowania i budowy instalacji elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w kanale zwrotnym
B. na wyjściach poszczególnych węzłów optycznych
C. nadanego przez stację czołową
D. w poszczególnych gniazdach abonenckich
Odpowiedź 'w kanale zwrotnym' jest poprawna, ponieważ operatorzy telewizji kablowej monitorują jakość sygnału u abonentów, analizując parametry sygnału, które są przesyłane w kanale zwrotnym. Kanal zwrotny to część infrastruktury, w której sygnał z gniazd abonenckich wraca do stacji czołowej. Operatorzy mogą na przykład mierzyć poziom sygnału, jego jakość oraz wszelkie zakłócenia, które mogą wpływać na odbiór. W praktyce, pomiar tych parametrów pozwala na szybką diagnostykę ewentualnych problemów technicznych, co jest kluczowe dla utrzymania wysokiej jakości usług. W standardach branżowych, takich jak SCTE (Society of Cable Telecommunications Engineers), podkreśla się znaczenie monitorowania kanału zwrotnego jako elementu zapewniającego ciągłość i niezawodność usług telewizyjnych. Dzięki regularnym pomiarom, operatorzy mogą także dostosowywać swoje usługi do potrzeb klientów, co jest istotnym aspektem konkurencyjności na rynku telekomunikacyjnym.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. przemysłowej
B. naziemnej
C. satelitarnej
D. kablowej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 30

Jakim symbolem oznaczany jest parametr głośników wskazujący moc ciągłą (moc znamionową)?

A. RMS
B. PMPO
C. Q
D. S
Parametr RMS, czyli Root Mean Square, jest powszechnie stosowany do określenia mocy ciągłej głośników. To miara skuteczności głośnika w przetwarzaniu sygnału audio, która uwzględnia zarówno amplitudę, jak i częstotliwość dźwięku. W praktyce oznacza to, że moc RMS informuje o tym, jaką moc głośnik może utrzymać w czasie bez ryzyka uszkodzenia. Na przykład, głośnik o mocy RMS 100 W może bezpiecznie pracować przy mocy 100 W bez przegrzewania się czy zniekształceń dźwięku. W branży audio standardy dotyczące mocy RMS są uznawane za najbardziej wiarygodne, ponieważ pozwalają na porównanie różnych modeli głośników w bardziej obiektywny sposób. Warto również zauważyć, że moc PMPO (Peak Music Power Output) nie jest miarą rzeczywistej mocy, a jedynie szacunkowym wskazaniem maksymalnego poziomu, co może być mylące dla konsumentów. Dlatego w przypadku wyboru głośników, zawsze należy zwracać uwagę na parametry RMS, które odzwierciedlają rzeczywistą jakość i wydajność urządzenia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. zablokowanie obsługi przerwań zewnętrznych
B. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
C. określenie tempa przetwarzania poszczególnych instrukcji
D. podniesienie prędkości działania programu
Wykonywanie programu w trybie krokowym, określane również jako 'instrukcja po instrukcji', ma kluczowe znaczenie dla diagnostyki błędów w oprogramowaniu. Ta metoda pozwala programistom na analizowanie działania programu w czasie rzeczywistym, co ułatwia identyfikację miejsc, w których mogą wystąpić nieprawidłowości. Przykładowo, debugger umożliwia przechodzenie przez każdą linię kodu, monitorując wartości zmiennych oraz stan pamięci. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami inżynierii oprogramowania, w tym metodologią Test-Driven Development (TDD), gdzie testowanie i poprawianie kodu odbywa się w cyklu iteracyjnym. Warto również zwrócić uwagę na to, że tryb krokowy jest niezwykle pomocny w kontekście złożonych systemów, takich jak embedded systems, gdzie błędy mogą prowadzić do krytycznych awarii sprzętowych. Poprawne zidentyfikowanie błędu na etapie rozwoju oprogramowania pozwala na oszczędność czasu i zasobów w późniejszych fazach projektu.

Pytanie 33

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
B. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
C. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
D. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
Lutowanie rdzenia i oplotu w miejscu przerwania, choć może wydawać się praktycznym rozwiązaniem, nie jest zalecane w przypadku kabli koncentrycznych. Lutowanie może wprowadzić dodatkowe tłumienie sygnału z powodu zmian w impedancji, które mogą wystąpić na skutek niewłaściwego lutowania lub nieodpowiednich materiałów. Ponadto, w miejscach lutowania mogą pojawiać się zjawiska termiczne, które wpływają na jakość połączenia, w tym na trwałość samego kabla. Skręcanie rdzenia i oplotu to kolejna metoda, która, mimo że może być szybka i łatwa w zastosowaniu, prowadzi do niestabilnych połączeń. Takie połączenie jest bardziej narażone na zakłócenia elektromagnetyczne oraz wpływ warunków atmosferycznych, co może znacząco obniżyć jakość sygnału. Użycie tulejek zaciskowych również nie jest optymalne, ponieważ nie zapewnia odpowiedniego kontaktu elektrycznego, co może prowadzić do utraty sygnału w czasie. Rekomendowane standardy w branży telekomunikacyjnej, takie jak normy IEC dotyczące instalacji antenowych, wskazują na używanie złączy typu F jako najlepszego rozwiązania, co powinno skłonić profesjonalistów do unikania innych metod łączenia kabli koncentrycznych. W kontekście praktycznym, dobór odpowiedniej metody łączenia może znacząco wpłynąć na jakość odbioru sygnału telewizyjnego, dlatego warto stosować najnowsze standardy i technologie w celu zapewnienia optymalnej wydajności.

Pytanie 34

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik magnetyczny
B. Czujnik hallotronowy
C. Czujnik pojemnościowy
D. Czujnik tensometryczny
Choć inne czujniki również mogą być używane w różnych kontekstach, nie są one właściwe do pomiaru naprężeń mechanicznych. Czujniki pojemnościowe działają na zasadzie zmiany pojemności elektrycznej między dwiema elektrodami, co czyni je przydatnymi w pomiarach przemieszczenia i siły, ale nie są odpowiednie do bezpośredniego monitorowania naprężeń. W aplikacjach, gdzie kluczowe jest określenie sił działających na konstrukcję, ich użycie może prowadzić do zniekształconych wyników. Z kolei czujniki Hallotronowe, które wykorzystują efekty magnetyczne do pomiaru pola magnetycznego, są stosowane głównie w detekcji i pomiarze prądów oraz pozycji, a nie w analizie naprężeń. Ich zastosowanie w kontekście pomiaru naprężeń mechanicznych jest nieodpowiednie i prowadzi do błędnych wniosków. Wreszcie, czujniki magnetyczne, które operują na zasadzie pomiaru zmiany pola magnetycznego, są również dalekie od monitorowania naprężeń. Typowe błędy myślowe polegają na myleniu różnych typów czujników z ich ogólnymi funkcjami, co może prowadzić do wyboru niewłaściwego urządzenia do konkretnego zastosowania inżynierskiego. Właściwy dobór czujników jest kluczowy dla precyzyjnych pomiarów, a wiedza na temat ich specyfiki i ograniczeń jest fundamentem skutecznego projektowania w inżynierii.

Pytanie 35

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. ołowiu
C. pasty lutowniczej
D. kalafonii
Stosowanie kalafonii, cyny oraz pasty lutowniczej nie narusza zasad określonych w dyrektywie RoHS, co często prowadzi do nieporozumień. Kalafonia, będąca naturalną żywicą, jest używana jako środek ułatwiający lutowanie i nie zawiera substancji zakazanych przez dyrektywę. Cyna, będąca głównym składnikiem wielu rodzajów lutowia, również nie jest objęta zakazem, pod warunkiem, że nie zawiera szkodliwych dodatków. Użytkownicy często mylą ołów z tymi substancjami, co prowadzi do błędnego przekonania, że lutowie ogólnie jest niebezpieczne, co jest nieprawdziwe. Pasta lutownicza, stanowiąca mieszankę różnych składników, również nie łamie zasad, o ile nie zawiera ołowiu. Warto pamiętać, że błędne zrozumienie wymagań dyrektywy może prowadzić do niewłaściwych praktyk w branży elektronicznej, takich jak stosowanie nieodpowiednich materiałów lub brak odpowiednich certyfikatów zgodności. Kluczem do sukcesu w projektowaniu i produkcji sprzętu elektronicznego jest przestrzeganie zasad RoHS, co nie tylko zapewnia zgodność z przepisami, ale także wpływa na bezpieczeństwo konsumentów oraz zrównoważony rozwój środowiska.

Pytanie 36

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest ciągły
B. w badanym obwodzie znajduje się źródło prądowe
C. badany obwód jest uszkodzony
D. w badanym obwodzie znajduje się złącze półprzewodnikowe
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Do lutownicy transformatorowej powinny być stosowane groty z drutu

A. miedzianego
B. wolframowego
C. aluminiowego
D. stalowego
Grot lutownicy transformatorowej wykonany z miedzianego drutu jest najodpowiedniejszym wyborem ze względu na doskonałe przewodnictwo elektryczne oraz termiczne, które zapewnia efektywne i szybkie nagrzewanie. Miedź jest materiałem o niskiej rezystywności, co oznacza, że umożliwia szybkie dostarczanie energii do miejsca lutowania. Dodatkowo, miedziane groty charakteryzują się wysoką odpornością na korozję, co przedłuża ich żywotność podczas intensywnego użytkowania. W praktyce, stosując miedziane groty, technicy lutownicy uzyskują lepszą jakość połączeń, co jest szczególnie ważne w zastosowaniach elektronicznych, gdzie precyzja jest kluczowa. Przykładem może być lutowanie elementów SMD, gdzie odpowiednia temperatura i kontrola są niezbędne do uniknięcia uszkodzeń delikatnych komponentów. W branży elektronicznej powszechnie uznaje się, że stosowanie miedzianych grotów jest zgodne z najlepszymi praktykami, a ich użycie wspiera osiąganie wysokiej jakości lutów.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.