Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 czerwca 2025 11:38
  • Data zakończenia: 3 czerwca 2025 12:05

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czym jest przerwanie w procesorze?

A. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
B. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
C. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
D. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
Pojęcie przerwania w systemach komputerowych jest często mylone z innymi koncepcjami, co prowadzi do nieporozumień. Wiele osób może intuicyjnie sądzić, że przerwanie to zatrzymanie działania programu w wyniku napotkania błędu. Jednakże, takie podejście ignoruje kluczową rolę przerwań jako mechanizmów umożliwiających dynamiczne zarządzanie zasobami, co odzwierciedla ich główną funkcję. Zatrzymanie działania programu po napotkaniu błędu, choć istotne w kontekście zarządzania wyjątkiem, nie jest równoznaczne z przerwaniem. Jest to raczej reakcja na nieprawidłowe działanie, a nie strukturalna decyzja o zawieszeniu jednego programu na rzecz innego. Inny błąd myślowy polega na myleniu przerwań z przełączaniem kontekstu w systemie wielozadaniowym, co jest procesem bardziej złożonym i nie dotyczy wyłącznie priorytetów. Podobnie, niektóre odpowiedzi sugerują, że przerwania mogą powodować uśpienie procesora po wykryciu błędnych danych. To również jest błędne, ponieważ przerwania są zaprojektowane do natychmiastowego przerywania programów w celu ich obsługi, a nie do wprowadzenia procesora w stan uśpienia. Dobrą praktyką jest zrozumienie, że przerwania w świecie komputerów są niezbędne dla efektywnego działania systemów operacyjnych i ich zdolności do zarządzania wieloma zadaniami jednocześnie, co podkreśla ich kluczowe znaczenie w architekturze komputerowej.

Pytanie 2

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. EUROSCART
B. DIN 5
C. S-VHS
D. JACK
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 3

Na schemacie ideowym elektronicznego urządzenia wskazano wartość rezystancji poprzez oznaczenie k22.
Jaką wartość ma ta rezystancja?

A. 0,22 kΩ
B. 22 Ω
C. 22 kΩ
D. 0,22 Ω
No to tak. Wartość rezystancji, którą mamy oznaczoną jako k22, to tak naprawdę 0,22 kΩ, a to jest równoznaczne z 220 Ω. Ten 'k' w tym przypadku to taki prefiks kilo, który oznacza, że to jest tysięczna wielokrotność jednostki. Ale w tym konkretnym przypadku, pierwsza cyfra '2' to nie dodatkowe zera, tylko pełna wartość. Umiejętność czytania oznaczeń rezystorów jest naprawdę ważna, jak chcesz projektować jakieś obwody elektroniczne. To pozwala dobrze dobrać wszystkie komponenty, co ma wielkie znaczenie dla funkcji i bezpieczeństwa całego układu. Zrozumienie tego systemu jest istotne nie tylko dla inżynierów, ale też dla tych, którzy są hobbystami w elektronice. W dzisiejszych czasach, normy takie jak IPC-2221 kładą duży nacisk na dokładne odczytywanie wartości rezystancji, żeby uniknąć różnych pomyłek w projektowaniu obwodów drukowanych, co jest ważne zarówno w przemyśle, jak i dla użytkowników końcowych.

Pytanie 4

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. dekodera DVB-T.
B. odbiornika telewizyjnego.
C. kamery CCTV.
D. czujki PIR.
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 5

Wskaźniki natężenia pola służą do określania dla anten

A. charakterystyki promieniowania
B. współczynnika odbicia
C. rezystancji promieniowania
D. zysku energetycznego
Wybór niewłaściwych odpowiedzi często wiąże się z nieporozumieniami dotyczącymi podstawowych pojęć związanych z antenami i ich właściwościami. Rezystancja promieniowania odnosi się do oporu, jaki antena stawia podczas emisji energii, lecz nie jest bezpośrednio związana z natężeniem pola. Z kolei zysk energetyczny określa poprawę sygnału w kierunku danym w porównaniu do anteny izotropowej, ale nie jest bezpośrednio wyznaczany przez wskaźniki natężenia pola, które koncentrują się na analizie rozkładu promieniowania. Współczynnik odbicia z kolei dotyczy strat energii na granicy między materiałami, co jest ważne w kontekście dopasowania impedancji, ale również nie przekłada się na wyznaczanie charakterystyki promieniowania. W praktyce inżynieryjnej, aby właściwie ocenić funkcjonowanie anteny, niezbędne jest zrozumienie, że wskaźniki natężenia pola są instrumentami do badania efektów promieniowania, a nie jednoznacznymi miarami innych parametrów, jak rezystancja czy współczynnik odbicia. Dlatego kluczowe jest, aby przy analizie anten koncentrować się na ich charakterystyce promieniowania, co umożliwia zrozumienie, jak anteny oddziałują z otoczeniem oraz jakie mają zastosowania w systemach komunikacji.

Pytanie 6

Podczas hibernacji komputera zachodzi

A. reset systemu.
B. zapisanie zawartości pamięci na dysku twardym.
C. zamknięcie systemu.
D. przełączanie na zasilanie z UPS.
Hibernacja systemu komputerowego jest często mylona z innymi procesami związanymi z zarządzaniem energią, dlatego ważne jest zrozumienie różnic między nimi. Resetowanie systemu to całkowite ponowne uruchomienie, które nie zachowuje żadnych otwartych programów ani danych w pamięci operacyjnej. Takie działanie prowadzi do utraty wszelkich niezapisanych postępów i jest używane głównie w przypadku awarii lub potrzeby zakończenia pracy systemu. Z kolei przełączanie na zasilanie z UPS, czyli zasilacza awaryjnego, dotyczy sytuacji kryzysowych, takich jak przerwy w dostawie prądu, i nie ma związku z hibernacją. W przypadku zamykania systemu, użytkownik decyduje się na całkowite zakończenie pracy komputera, co również skutkuje utratą otwartych aplikacji, chyba że zostały one wcześniej zapisane. Wiele osób może mieć mylne przekonanie, że hibernacja i usypianie są tym samym, jednak usypianie polega jedynie na tymczasowym przechowywaniu danych w pamięci, co wymaga ciągłego zasilania. Dlatego istotne jest rozróżnienie tych procesów oraz zrozumienie ich zastosowania w praktyce, aby skutecznie zarządzać energią i wydajnością systemu. Zrozumienie tych koncepcji jest kluczowe dla efektywnego użytkowania komputerów w różnych scenariuszach operacyjnych.

Pytanie 7

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. kontroler
B. przetwornik
C. zawór regulacyjny
D. zawór elektromagnetyczny
Przetwornik jest kluczowym elementem w systemach automatyki przemysłowej, odpowiedzialnym za konwersję sygnałów fizycznych na sygnały elektroniczne, które mogą być przetwarzane przez systemy sterowania. Działa on na zasadzie pomiaru różnych parametrów, takich jak temperatura, ciśnienie czy poziom cieczy, a następnie przekształca te dane na formę, która jest zrozumiała dla systemów sterujących. Przykładem zastosowania przetwornika może być czujnik temperatury, który przekształca temperaturę w sygnał analogowy lub cyfrowy, umożliwiając sterownikowi podjęcie odpowiednich działań, takich jak włączenie lub wyłączenie grzejnika. Zgodnie z normami ISA (International Society for Automation) oraz IEC (International Electrotechnical Commission), stosowanie odpowiednich przetworników jest kluczowe dla zapewnienia dokładności i niezawodności procesów przemysłowych. Przetworniki są również istotne dla monitorowania stanu produkcji i diagnostyki, co wpływa na efektywność i bezpieczeństwo pracy systemów automatyki.

Pytanie 8

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. multimetr cyfrowy
B. wobulator i oscyloskop
C. miernik magnetoelektryczny
D. mostek pomiarowy
Wobulator i oscyloskop to naprawdę ważne sprzęty, gdy mówimy o strojeniu toru pośredniej częstotliwości w radiu. Wobulator generuje różne sygnały, co jest super przydatne do testowania i dostrajania obwodów. Działa to na zasadzie modulacji sygnału, więc można bardzo precyzyjnie ustawić częstotliwość odbioru. Oscyloskop natomiast to narzędzie, które pozwala nam widzieć sygnały elektroniczne na bieżąco. Dzięki temu inżynierowie mogą dostrzegać problemy z jakością sygnału, na przykład szumy czy zniekształcenia. Weźmy na przykład sytuację, kiedy stroimy tor pośredniej częstotliwości – wobulator może wprowadzić sygnał o znanej częstotliwości, a oscyloskop pokazuje, czy odbiornik to dobrze demoduluje. Takie podejście jest naprawdę zgodne z tym, co robią specjaliści w branży i podkreśla, jak ważna jest dokładna analiza sygnałów podczas strojenia.

Pytanie 9

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. określenie tempa przetwarzania poszczególnych instrukcji
B. podniesienie prędkości działania programu
C. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
D. zablokowanie obsługi przerwań zewnętrznych
Wykonywanie programu w trybie krokowym, określane również jako 'instrukcja po instrukcji', ma kluczowe znaczenie dla diagnostyki błędów w oprogramowaniu. Ta metoda pozwala programistom na analizowanie działania programu w czasie rzeczywistym, co ułatwia identyfikację miejsc, w których mogą wystąpić nieprawidłowości. Przykładowo, debugger umożliwia przechodzenie przez każdą linię kodu, monitorując wartości zmiennych oraz stan pamięci. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami inżynierii oprogramowania, w tym metodologią Test-Driven Development (TDD), gdzie testowanie i poprawianie kodu odbywa się w cyklu iteracyjnym. Warto również zwrócić uwagę na to, że tryb krokowy jest niezwykle pomocny w kontekście złożonych systemów, takich jak embedded systems, gdzie błędy mogą prowadzić do krytycznych awarii sprzętowych. Poprawne zidentyfikowanie błędu na etapie rozwoju oprogramowania pozwala na oszczędność czasu i zasobów w późniejszych fazach projektu.

Pytanie 10

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Oscyloskopem o podstawie czasu 100 ns/cm
B. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
C. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
D. Częstościomierzem o maksymalnym zakresie 50 MHz
Pomiary amplitudy przebiegu sygnału z generatora taktującego o częstotliwości 25 MHz przy pomocy woltomierza prądu zmiennego o rezystancji wewnętrznej 100 kOhm/V nie są odpowiednie, ponieważ woltomierze nie są przeznaczone do pomiarów sygnałów o tak dużych częstotliwościach. Woltomierz może nie zarejestrować pełnej amplitudy sygnału, zwłaszcza w przypadku sygnałów o wysokiej częstotliwości, ze względu na swoje ograniczenia pasmowe, co prowadzi do znacznie zaniżonych wyników pomiarów. Podobnie, użycie amperomierza prądu zmiennego z szeregowym rezystorem 10 kOhm jest niewłaściwe, ponieważ amperomierze są zaprojektowane do pomiaru natężenia prądu, a nie napięcia, co w kontekście analizy sygnałów cyfrowych jest nieodpowiednie. Dodatkowo, szeregowe połączenie z rezystorem może wpływać na działanie układu, wprowadzając dodatkowe straty i zmieniając charakterystykę obwodu. Na koniec, częstościomierz o maksymalnym zakresie 50 MHz teoretycznie mógłby być użyty do określenia częstotliwości, lecz nie dostarczyłby żadnych informacji na temat amplitudy sygnału, co jest kluczowe w analizie sygnałów cyfrowych. Typowe błędy myślowe to przekonanie, że jakiekolwiek urządzenie do pomiarów elektrycznych nadaje się do pomiaru amplitudy sygnału o wysokiej częstotliwości, co jest niezgodne z zasadami inżynierii elektronicznej. Praktyką w takich sytuacjach jest zawsze wybór sprzętu dostosowanego do specyfikacji sygnału, co jest fundamentalne dla uzyskania rzetelnych wyników.

Pytanie 11

Na zdjęciu przedstawiono

Ilustracja do pytania
A. termistory
B. tyrystory
C. diody
D. tensometry
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 12

Jakie jest zastosowanie symetryzatora antenowego?

A. do przesyłania sygnałów z kilku anten do jednego odbiornika
B. aby zwiększyć zysk energetyczny anteny
C. w celu zmiany charakterystyki kierunkowej anteny
D. do dopasowania impedancyjnego anteny i odbiornika
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 13

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. pasty lutowniczej
B. cyny
C. ołowiu
D. kalafonii
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 14

Podczas instalacji komputerowej na zewnątrz budynku, należy użyć kabla w izolacji

A. gumowej lub polietylenowej z żyłami miedzianymi
B. gumowej lub polietylenowej z żyłami aluminiowymi
C. papierowej z żyłami miedzianymi
D. papierowej z żyłami aluminiowymi
Wybór kabla gumowego lub polietylenowego z żyłami miedzianymi do instalacji komputerowej na zewnątrz obiektu jest zgodny z najlepszymi praktykami w branży elektroinstalacyjnej. Kabel gumowy charakteryzuje się wysoką odpornością na działanie niekorzystnych warunków atmosferycznych, takich jak wilgoć, promieniowanie UV oraz zmienne temperatury. Polietylen natomiast jest materiałem, który zapewnia doskonałą izolację, a jednocześnie jest odporny na działanie chemikaliów. Żyły miedziane cechują się lepszą przewodnością elektryczną w porównaniu do żył aluminiowych, co przekłada się na mniejsze straty energii oraz lepszą efektywność przesyłania sygnałów. Takie kable są często stosowane w zastosowaniach zewnętrznych, takich jak przyłącza do urządzeń zewnętrznych, monitoringu czy instalacji oświetleniowych. Zgodnie z normą PN-EN 60529, kable powinny mieć odpowiednią klasę ochrony przed szkodliwymi warunkami atmosferycznymi, co potwierdza, że wybór gumy lub polietylenu jest zasadne w kontekście chęci zapewnienia trwałości i bezpieczeństwa instalacji elektronicznych na zewnątrz.

Pytanie 15

Na początku prac konserwacyjnych dotyczących instalacji alarmowej przewodowej, co powinno być zrobione jako pierwsze?

A. ustawić alarm w tryb czuwania
B. zabrać alarm z zasilania oraz akumulatora
C. wprowadzić centralę w tryb serwisowy
D. odłączyć wszystkie urządzenia sygnalizacyjne
Wprowadzenie centralę alarmową w tryb serwisowy jest kluczowym krokiem przed przystąpieniem do prac konserwacyjnych. Działanie to pozwala na zminimalizowanie ryzyka przypadkowego uruchomienia alarmu, co mogłoby prowadzić do niepotrzebnych powiadomień lub interwencji służb ochrony. Tryb serwisowy często blokuje funkcję alarmu, umożliwiając technikowi bezpieczne przeprowadzanie potrzebnych działań, takich jak przegląd, czyszczenie komponentów czy wymiana uszkodzonych części. Ponadto, w tym trybie można zbierać dane diagnostyczne, które mogą wskazać na potencjalne problemy z instalacją. Wprowadzenie systemu w stan serwisowy jest zgodne z dobrymi praktykami branżowymi oraz z zaleceniami większości producentów systemów alarmowych, co przyczynia się do długotrwałej niezawodności i efektywności systemu. Przykładem może być system, w którym wykrycie usterek w trybie serwisowym pozwala na ich szybkie usunięcie, zanim doprowadzą one do pełnej awarii systemu.

Pytanie 16

Jakiego rodzaju diodą jest dioda o oznaczeniu BZV49-C7V5?

A. Tunelowa
B. Prostownicza
C. Pojemnościowa
D. Zenera
Dioda oznaczona jako BZV49-C7V5 jest diodą Zenera, która jest wykorzystywana głównie do regulacji napięcia w obwodach elektronicznych. Dioda Zenera działa w obszarze odwrotnego przebicia, co oznacza, że pozwala na stabilizację napięcia na zadanym poziomie, nawet w przypadku zmian w obciążeniu lub napięciu zasilania. Jest to niezwykle istotne w aplikacjach takich jak zasilacze, gdzie stabilność napięcia wejściowego jest kluczowa dla działania komponentów elektronicznych. Dioda BZV49-C7V5 charakteryzuje się maksymalnym napięciem Zenera wynoszącym około 7,5V, co czyni ją odpowiednią do zastosowań w niskonapięciowych układach elektronicznych. Przykładem zastosowania diod Zenera jest ich użycie w układach ochrony przed przepięciami, gdzie zapewniają one bezpieczeństwo wrażliwych komponentów poprzez ograniczanie napięcia do bezpiecznego poziomu. W branży elektronicznej standardy dotyczące stosowania diod Zenera podkreślają ich rolę w zabezpieczaniu układów przed niewłaściwymi wartościami napięcia, co może prowadzić do uszkodzeń podzespołów.

Pytanie 17

Jak nazywa się jednostka mocy pozornej?

A. wat.
B. watogodzina.
C. woltoamper.
D. war.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 18

Switch w sieci LAN

A. odczytuje adresy IP
B. przydziela adresy IP
C. przekazuje sygnał do PC
D. posiada serwer DNS
Przełącznik w sieci LAN (Local Area Network) odgrywa kluczową rolę w przetwarzaniu danych między urządzeniami. Jego główną funkcją jest przekazywanie sygnałów między komputerami, co odbywa się na poziomie drugiego poziomu modelu OSI (Data Link Layer). Przełączniki działają na podstawie adresów MAC (Media Access Control), co pozwala im efektywnie kierować ruch sieciowy do odpowiednich urządzeń. Przykładem zastosowania przełącznika jest konfiguracja sieci biurowej, gdzie wiele komputerów i urządzeń, takich jak drukarki, są podłączone do jednego przełącznika, umożliwiając im wzajemną komunikację. W praktyce, jeżeli komputer A chce wysłać dane do komputera B, przełącznik odczytuje adres MAC komputera B i kieruje pakiety danych wyłącznie do niego, co zwiększa wydajność sieci i zmniejsza ruch niepotrzebny. Dobre praktyki zalecają stosowanie przełączników zarządzanych, które oferują zaawansowane funkcje, takie jak VLANy, QoS oraz monitorowanie ruchu, co przyczynia się do lepszego zarządzania siecią i zwiększenia jej bezpieczeństwa.

Pytanie 19

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
B. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
C. analogowy na zakresie U=200 V i Rwe=10 kOhm
D. analogowy na zakresie U=20 V i Rwe=100 kOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 20

Silne pole elektrostatyczne wywołuje

A. wzrost temperatury otoczenia
B. rozdzielenie laminatu, używanego jako podłoże płytki drukowanej
C. zakłócenia w funkcjonowaniu aparatury kontrolno-pomiarowej
D. wzrost wilgotności powietrza
Silne pole elektrostatyczne może powodować zakłócenia w działaniu aparatury kontrolno-pomiarowej, co jest szczególnie istotne w kontekście urządzeń elektronicznych. W praktyce, te zakłócenia mogą prowadzić do błędnych odczytów, uszkodzeń sprzętu czy nawet całkowitego unieruchomienia systemu. Przykładem mogą być sytuacje, w których urządzenia pomiarowe, takie jak multimetry czy oscyloskopy, są narażone na wpływ silnych pól elektrostatycznych, co skutkuje nieprawidłowym działaniem. W branży elektronicznej, na przykład w laboratoriach badawczych, stosowane są standardy, takie jak IEC 61000-4-2, które regulują testowanie odporności na zakłócenia elektrostatyczne. Odpowiednie projektowanie i stosowanie ekranowania oraz uziemienia urządzeń jest kluczowe, aby zminimalizować wpływ pól elektrostatycznych na działanie aparatury. To wiedza, która powinna być podstawą dla inżynierów i techników pracujących w obszarze elektroniki oraz automatyki.

Pytanie 21

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. wykonanych z elastycznych tworzyw sztucznych
B. odpornych na wysoką temperaturę
C. izolowanych
D. zasilanych akumulatorowo
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 22

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 100 kHz
B. 1 kHz
C. 10 kHz
D. 0,1 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 23

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. analizatora sieci strukturalnych
B. multimetru z pomiarem R
C. miernika z pomiarem MER
D. testera wytrzymałości dielektrycznej
Miernik z pomiarem MER (Modulation Error Ratio) jest narzędziem stosowanym w telekomunikacji, często w kontekście analizy sygnałów cyfrowych, ale nie jest to odpowiednie narzędzie do weryfikacji poprawności instalacji sieci komputerowej. MER mierzy jakość sygnału, jednak nie dostarcza informacji o fizycznych aspektach samej instalacji, takich jak integralność kabli czy poprawność połączeń. Tester wytrzymałości dielektrycznej jest urządzeniem stosowanym do oceny izolacji kabli, co jest ważne, ale nie odnosi się bezpośrednio do weryfikacji całej sieci komputerowej ani do jej funkcjonalności po instalacji. Z kolei multimetr z pomiarem R (oporu) pozwala na sprawdzenie ciągłości przewodów, co jest istotne, jednak nie dostarcza kompleksowych informacji o jakości sygnałów ani o wydajności sieci. Typowym błędem w myśleniu technicznym jest przekonanie, że te narzędzia można używać zamiennie z analizatorami sieci strukturalnych. W rzeczywistości, każde z tych narzędzi ma specyficzne zastosowania, które nie pokrywają się z wymaganiami dotyczącymi weryfikacji instalacji sieci komputerowej. Dla zapewnienia efektywności i niezawodności sieci, konieczne jest użycie odpowiednich narzędzi, które pozwalają na pełną diagnostykę oraz spełnienie norm branżowych.

Pytanie 24

W tabeli przedstawiono wybrane dane techniczne regulatora. Który czujnik można podłączyć bezpośrednio do wejścia tego urządzenia?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. Przepływu.
B. Natężenia oświetlenia.
C. Ciśnienia atmosferycznego.
D. Temperatury.
Wybór jakiegokolwiek czujnika innego niż czujnik temperatury może wynikać z nieporozumienia dotyczącego funkcji i zastosowań poszczególnych typów czujników. Czujniki przepływu, na przykład, są zaprojektowane do mierzenia prędkości lub objętości cieczy przepływających przez system, co w zupełności odbiega od wymagań regulacji temperatury. W kontekście automatyki, ich sygnały są przetwarzane w zupełnie inny sposób i nie mogą być bezpośrednio interpretowane przez urządzenia zaprojektowane do pracy z czujnikami temperatury. Podobnie, czujniki ciśnienia atmosferycznego mają zastosowanie w pomiarze ciśnienia gazów w atmosferze, a ich sygnały są również niekompatybilne z wejściem regulatora, które wymaga sygnałów temperatury. Wybór czujnika natężenia oświetlenia to kolejny typowy błąd. Czujniki te mierzą intensywność światła, co jest zupełnie inną kategorią danych niż temperatura. Zrozumienie, że każdy z tych czujników ma swoje specyficzne zastosowania i kompatybilność, jest kluczowe dla prawidłowego doboru urządzeń w systemach automatyki. W praktyce, użycie nieodpowiedniego czujnika może prowadzić do błędnych pomiarów oraz niewłaściwej pracy systemu, co z kolei może skutkować poważnymi konsekwencjami operacyjnymi.

Pytanie 25

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Stabilizator
B. Komparator
C. Multiplekser
D. Demultiplekser
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 26

Sygnał z wewnętrznej anteny osiąga wartość 40 dBμV. Aby na wejściu antenowym telewizora uzyskać sygnał o poziomie 60 dBμV, jaki wzmacniacz o określonym wzmocnieniu powinien być zastosowany?

A. 60 dB
B. 100 dB
C. 20 dB
D. 40 dB
Wzmocnienie sygnału na poziomie 20 dB jest poprawne w kontekście uzyskania pożądanego poziomu sygnału na wejściu odbiornika telewizyjnego. Początkowy poziom sygnału wynosi 40 dBμV, a wymagany poziom to 60 dBμV. Różnica między tymi dwoma wartościami wynosi 20 dB, co oznacza, że aby zwiększyć sygnał do pożądanego poziomu, musimy zastosować wzmacniacz o takim właśnie wzmocnieniu. W praktyce, wzmacniacze sygnału są kluczowymi elementami w systemach dystrybucji sygnału telewizyjnego, szczególnie w sytuacjach, gdy sygnał z anteny jest słaby. Standardowe wzmacniacze antenowe często oferują różne poziomy wzmocnienia, a dobór odpowiedniego powinien być oparty na analizie sygnału, aby uniknąć przesterowania. Należy także zwrócić uwagę na szumy własne wzmacniacza, które mogą wpływać na jakość sygnału, dlatego wybór urządzenia zgodnego z normami branżowymi, takimi jak EN 50083, jest kluczowy dla zachowania wysokiej jakości sygnału.

Pytanie 27

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. NC
B. COM
C. IN
D. NO
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 28

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. zwiększyć poziom głośności w panelu.
B. regulować napięcie w kasecie rozmownej.
C. dostosować poziom głośności w unifonie.
D. zwiększyć napięcie zasilania elektrozaczepu.
Wyregulowanie poziomu głośności w unifonie jest kluczowe, ponieważ pisk w słuchawce wskazuje na nieprawidłowe ustawienia audio. Unifony są wyposażone w odpowiednie regulatory, które pozwalają na dostosowanie głośności dźwięku do indywidualnych potrzeb użytkownika. Ustawienie głośności powinno być dostosowane do warunków akustycznych w pomieszczeniu, a także do osobistych preferencji. Warto pamiętać, że zbyt wysoki poziom głośności może prowadzić do zniekształceń dźwięku oraz dyskomfortu słuchowego. Przykładowo, jeżeli w otoczeniu panuje duży hałas, użytkownik może potrzebować wyższej głośności, natomiast w cichym pomieszczeniu wystarczy niższe ustawienie. Odpowiednia regulacja głośności jest zgodna z dobrymi praktykami instalacyjnymi, które sugerują, aby każdy system audio był dostosowany do specyfiki miejsca jego użytkowania, co zapewnia optymalną jakość dźwięku oraz komfort użytkowania.

Pytanie 29

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
B. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
C. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
D. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
Podczas wymiany modułu klawiatury w systemach kontroli dostępu kluczowe jest, aby kolejność działań była zgodna z najlepszymi praktykami w dziedzinie bezpieczeństwa i konserwacji systemów elektronicznych. Wiele osób może mylnie sądzić, że otwarcie modułu klawiatury przed wyłączeniem zasilania jest wystarczająco bezpieczne. Takie podejście niesie ze sobą ryzyko, ponieważ pozostawienie zasilania włączonego może prowadzić do niezamierzonych zwarć, uszkodzeń elektronicznych lub nawet zagrożenia dla zdrowia technika. Wyłączając zasilanie najpierw, eliminujemy te potencjalne niebezpieczeństwa. Dodatkowo, niektórzy mogą pomyśleć, że wystarczy wymienić moduł i sprawdzić jego działanie bez wcześniejszego wyłączenia systemu, co jest błędnym założeniem. Takie praktyki mogą prowadzić do błędów w działaniu systemu, które mogą być trudne do diagnozowania. W niektórych sytuacjach, takie podejście może także naruszyć standardy bezpieczeństwa, co jest nie do przyjęcia w kontekście systemów kontrolujących dostęp do wrażliwych miejsc. Dlatego ważne jest stosowanie się do ustalonych procedur oraz kolejności działań, aby zapewnić nie tylko poprawne działanie systemu, ale także bezpieczeństwo wszystkich zaangażowanych w proces konserwacji.

Pytanie 30

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć podręczna cache procesora jest uszkodzona.
B. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
C. wystąpił problem z sumą kontrolną BIOS-u.
D. pamięć CMOS nie została ustawiona.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 31

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. może to prowadzić do obniżenia odporności na zakłócenia
B. nastąpi wzrost jego impedancji
C. zredukowana zostanie jego impedancja
D. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
Odpowiedź prawidłowa wskazuje, że rozkręcanie par przewodów na odcinku większym niż 13 mm może doprowadzić do zmniejszenia odporności na zakłócenia. W przypadku kabli krosowych, które są stosowane w systemach telekomunikacyjnych i sieciach komputerowych, ważne jest, aby zachować odpowiednią długość skręcenia przewodów w parze. Skręcenie przewodów w parze ma na celu zminimalizowanie wpływu zakłóceń elektromagnetycznych, które mogą pochodzić z otoczenia lub innych urządzeń. Dobre praktyki zalecają, aby długość rozkręcenia nie przekraczała 13 mm, ponieważ dłuższe odcinki mogą prowadzić do zwiększenia indukcyjności i zmniejszenia zdolności do tłumienia zakłóceń. W kontekście standardów, takich jak TIA/EIA-568, istotne jest, aby stosować się do takich wytycznych, aby zapewnić wysoką jakość transmisji danych i zminimalizować ryzyko utraty sygnału. Przykładem zastosowania tych zasad jest instalacja sieci LAN w biurze, gdzie właściwe skręcenie przewodów zapewnia stabilny i szybki transfer danych.

Pytanie 32

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. zaniku napięcia
B. przepięć w sieci energetycznej
C. przeciążenia instalacji elektrycznej
D. wyładowań atmosferycznych
Wyłącznik nadmiarowoprądowy to istotny element systemu zabezpieczeń instalacji elektrycznych, którego głównym zadaniem jest ochrona przed skutkami przeciążenia. W sytuacji, gdy prąd płynący przez instalację przekracza dopuszczalne wartości, co zazwyczaj ma miejsce przy podłączeniu zbyt wielu urządzeń do jednego obwodu, wyłącznik ten automatycznie odłącza zasilanie. Dzięki temu chroni zarówno urządzenia elektroniczne, jak i samą instalację przed uszkodzeniami. W praktyce, zastosowanie wyłącznika nadmiarowoprądowego jest standardem w budynkach mieszkalnych i obiektach komercyjnych, ponieważ pozwala na zminimalizowanie ryzyka wystąpienia pożaru, który mógłby być spowodowany przegrzewaniem się przewodów. Ponadto, wyłączniki te są zgodne z normami PN-EN 60947-2, które definiują wymagania techniczne dla urządzeń rozdzielczych. Ważne jest, aby użytkownicy byli świadomi znaczenia tych urządzeń oraz regularnie kontrolowali ich sprawność, co jest kluczowe dla bezpieczeństwa ich instalacji elektrycznych.

Pytanie 33

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. oscyloskopu i zasilacza
B. woltomierza
C. oscyloskopu i generatora funkcyjnego
D. omomierza
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 34

W trakcie serwisowania systemu alarmu przeciwwłamaniowego oraz napadowego konieczne jest sprawdzenie

A. ciągłości linii dozorowych za pomocą miernika
B. ustawienia lokalizacji czujników
C. poziomu naładowania akumulatora
D. dokumentu gwarancyjnego systemu
Sprawdzanie stanu naładowania akumulatora jest kluczowym elementem konserwacji systemu sygnalizacji włamania i napadu, ponieważ akumulator jest odpowiedzialny za zasilanie systemu w przypadku przerwy w dostawie energii elektrycznej. W praktyce, akumulatory, które są zbyt słabe lub całkowicie rozładowane, mogą prowadzić do awarii systemu, co z kolei naraża obiekt na ryzyko włamania lub usunięcia. Standardy branżowe, takie jak norma EN 50131, podkreślają znaczenie regularnych testów zasilania i stanu akumulatorów. Regularne pomiary napięcia i pojemności akumulatora pozwalają na wczesne wykrycie problemów oraz zapobiegają nieprzewidzianym przestojom w funkcjonowaniu systemu. Na przykład, jeśli akumulator nie jest w stanie utrzymać wymaganego napięcia w czasie testu, może to oznaczać konieczność jego wymiany, co powinno być częścią planu konserwacji. Działania te przyczyniają się do zachowania integralności systemu oraz ochrony mienia.

Pytanie 35

Jakie narzędzie wykorzystuje się do usuwania resztek topnika z płytek drukowanych?

A. ligniny
B. wacika
C. gąbki
D. pędzelka
Wybór gąbki, ligniny lub wacika do usuwania resztek topnika z płytek drukowanych nie jest właściwy z kilku istotnych powodów. Gąbki, mimo że są absorbujące, mogą zostawiać włókna, co jest niepożądane w kontekście precyzyjnych urządzeń elektronicznych. Włókna te mogą stać się źródłem zwarcia lub wpływać na działanie elementów elektronicznych, prowadząc do ich degradacji lub awarii. Lignina, choć może być stosowana w kontekście czyszczenia, nie jest odpowiednia ze względu na swoją szorstkość oraz możliwości zostawiania resztek, co może prowadzić do zanieczyszczenia płytki. Z kolei waciki, które mogą wydawać się praktyczne, także nie są idealnym rozwiązaniem, gdyż ich struktura może zarysować delikatne powierzchnie lub również pozostawić włókna. Każda z tych alternatyw nie spełnia wymogów dotyczących dokładności oraz bezpieczeństwa, które są kluczowe w procesach związanych z elektroniką. Stosowanie niewłaściwych narzędzi czyszczących może prowadzić do uszkodzenia komponentów, co w dłuższej perspektywie generuje dodatkowe koszty i obniża jakość wyrobów. Dlatego w branży elektroniki zdefiniowane są specjalistyczne narzędzia i metody czyszczenia, które zapewniają dokładność oraz minimalizują ryzyko uszkodzeń, a pędzelek jest jednym z najczęściej zalecanych narzędzi w takich sytuacjach.

Pytanie 36

Skrót CCTV odnosi się do telewizji

A. kablowej
B. przemysłowej
C. naziemnej
D. satelitarnej
CCTV, czyli Closed-Circuit Television, odnosi się do systemu telewizji przemysłowej, który wykorzystuje kamery do nadzoru i monitorowania określonych obszarów. Systemy te działają w zamkniętej sieci, co oznacza, że przesyłane obrazy nie są dostępne publicznie, co zwiększa poziom bezpieczeństwa. Telewizja przemysłowa znajduje zastosowanie w różnych miejscach, takich jak sklepy, biura, parkingi czy obiekty przemysłowe, gdzie monitoring wzmacnia ochronę przed kradzieżą, wandalizmem czy innymi przestępstwami. Przykłady zastosowania to instalacja kamer monitorujących w strefach o podwyższonym ryzyku, takich jak wejścia do budynków użyteczności publicznej, co pozwala na szybszą reakcję służb porządkowych w razie incydentu. W kontekście standardów branżowych, wiele systemów CCTV jest zgodnych z normami ISO/IEC, co zapewnia ich wysoką jakość i niezawodność. Dobrze zaprojektowany system CCTV powinien również uwzględniać aspekty takie jak oświetlenie, kąt widzenia kamer oraz przechowywanie nagrań, co jest kluczowe dla skutecznego monitoringu.

Pytanie 37

Do realizacji instalacji odbiorczej paneli fotowoltaicznych należy użyć kabla rodzaju

A. RG58
B. YDY
C. UTP
D. YTKSY
Kable UTP, RG58 oraz YTKSY nie są odpowiednie do realizacji instalacji odbiorczej ogniw fotowoltaicznych, ponieważ ich zastosowanie i właściwości różnią się od wymagań stawianych przez systemy fotowoltaiczne. Kabel UTP (Unshielded Twisted Pair) jest typowo stosowany w sieciach komputerowych do przesyłania danych, a jego konstrukcja nie jest przystosowana do zasilania urządzeń elektrycznych, co sprawia, że nie można go używać w obwodach niskonapięciowych do paneli słonecznych. Z kolei RG58 jest kablem koncentrycznym, który jest używany głównie w systemach komunikacyjnych, takich jak anteny radiowe czy telewizyjne, a jego zastosowanie w instalacjach elektrycznych nie spełnia norm dotyczących bezpieczeństwa i wydajności. Natomiast kabel YTKSY, znany z zastosowania w telekomunikacji, również nie jest odpowiedni do użycia w systemach fotowoltaicznych, ponieważ jego konstrukcja nie zapewnia wymaganej elastyczności i odporności na czynniki zewnętrzne, co jest kluczowe w kontekście instalacji na otwartym terenie. Użycie niewłaściwego rodzaju kabla w instalacji fotowoltaicznej może prowadzić do awarii systemu, zwiększenia ryzyka uszkodzeń oraz nieefektywnego działania, dlatego ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i wymaganiami technicznymi.

Pytanie 38

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji bocznej ustalonej
B. Na brzuchu z głową odchyloną na bok
C. Na plecach z uniesionymi nogami
D. W pozycji siedzącej z podparciem głowy
Wybór pozycji bocznej ustalonej dla poszkodowanego jest kluczowy w sytuacji, gdy osoba jest nieprzytomna, ale oddycha, a praca serca jest w normie. Ta pozycja pozwala na zapewnienie drożności dróg oddechowych, co jest fundamentalne w sytuacjach medycznych. Ułożenie na boku ogranicza ryzyko zachłyśnięcia się, co może nastąpić, jeśli pacjent w tej sytuacji wymiotuje. Dodatkowo, w pozycji bocznej ustalonej, osoba jest mniej narażona na urazy w przypadku utraty równowagi czy dodatkowych kontuzji. Przy zastosowaniu tej pozycji ważne jest, aby głowa poszkodowanego była ustawiona w sposób, który umożliwia swobodny przepływ powietrza, a nogi były lekko zgięte w kolanach, co stabilizuje jego ciało. Tego typu postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi uznawanymi standardami w pierwszej pomocy, co podkreśla znaczenie edukacji w zakresie reagowania na sytuacje nagłe.

Pytanie 39

Jakie urządzenie służy do mierzenia ciśnienia?

A. manometr
B. tachometr
C. pirometr
D. luksomierz
Manometr jest urządzeniem służącym do pomiaru ciśnienia gazów lub cieczy. Pomiar ciśnienia jest kluczowy w wielu dziedzinach, takich jak inżynieria, przemysł chemiczny, hydraulika oraz w systemach HVAC. Manometry mogą być mechaniczne, wykorzystujące zasadę sprężystości lub cieczy, lub elektroniczne, które oferują większą dokładność oraz możliwość zdalnego odczytu. Przykładem zastosowania manometrów jest monitorowanie ciśnienia w instalacjach wodociągowych, gdzie nadmierne ciśnienie może prowadzić do uszkodzeń. W przemyśle chemicznym manometry są niezbędne do kontrolowania procesów reakcyjnych, które są wrażliwe na ciśnienie. W standardach branżowych, takich jak ASME B40.100, określone są wymagania dotyczące kalibracji i konserwacji manometrów, co zapewnia ich niezawodność i dokładność. Zrozumienie i poprawne stosowanie manometrów jest kluczowe w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 40

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
B. Położenie jej na brzuchu i odchylenie głowy w bok
C. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
D. Położenie jej na plecach i poluzowanie odzieży na szyi
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.