Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 31 maja 2025 09:10
  • Data zakończenia: 31 maja 2025 09:27

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 2,50 g stałego NaOH.
B. 25,0 g stałego NaOH.
C. 0,05 g stałego NaOH.
D. 2,00 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 2

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. waga hydrostatyczna
B. manometr
C. piknometr
D. areometr
Manometr jest przyrządem służącym do pomiaru ciśnienia gazów i cieczy. Nie jest on jednak przeznaczony do wyznaczania gęstości cieczy. Gęstość, definiowana jako masa na jednostkę objętości, wymaga zastosowania innych narzędzi pomiarowych. Manometr działa na zasadzie różnicy ciśnień, co sprawia, że jest istotny w wielu zastosowaniach przemysłowych, takich jak monitorowanie ciśnienia w systemach hydraulicznych czy pneumatycznych. W praktyce, aby określić gęstość cieczy, można wykorzystać piknometr, który pozwala na bezpośredni pomiar masy próbki i jej objętości, co umożliwia obliczenie gęstości. Innym przyrządem jest areometr, który działa na zasadzie pływania w cieczy i również dostarcza informacji o gęstości. W przemyśle chemicznym, precyzyjne pomiary gęstości są kluczowe w kontroli jakości, dlatego znajomość właściwych narzędzi pomiarowych jest niezbędna.

Pytanie 3

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon

A. Argon.
B. Tlen.
C. Neon.
D. Azot.
Tlen to składnik powietrza, który wrze w -182,96°C. W destylacji chodzi o to, żeby oddzielić różne składniki mieszanki na podstawie ich temperatur wrzenia. Kiedy destylujemy powietrze, najpierw oddzielają się te składniki, które mają niższe temperatury wrzenia. Tlen, mający najwyższą temperaturę w porównaniu z pozostałymi substancjami, będzie się wydobywał jako ostatni. Moim zdaniem, zrozumienie tego procesu jest naprawdę ważne, zwłaszcza w takich dziedzinach jak inżynieria chemiczna. Na przykład, w przemyśle gazowym, czysty tlen z powietrza uzyskuje się właśnie przez destylację frakcyjną. To pokazuje, jak praktyczna jest ta wiedza. Warto też pamiętać, że różne metody separacji gazów opierają się na różnych właściwościach fizycznych, jak różnice w temperaturach wrzenia. Takie poznanie na pewno się przyda inżynierom w ich pracy.

Pytanie 4

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
B. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
C. tygiel, trójkąt ceramiczny, krystalizator.
D. tygiel, siatkę grzewczą, eksykator.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 5

Jaką metodą nie można rozdzielać mieszanin?

A. aeracja
B. krystalizacja
C. chromatografia
D. ekstrakcja
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 6

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
B. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
C. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
D. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 7

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
B. odczynnik jest przeznaczony do analiz spektralnych
C. zawartość głównego składnika wynosi 99,9-99,99%
D. zawartość głównego składnika wynosi 99-99,9%
Skrót 'cz.' oznacza, że zawartość głównego składnika odczynnika chemicznego wynosi od 99% do 99,9%. Jest to standard stosowany w chemii analitycznej, gdzie wysoka czystość substancji chemicznych jest kluczowa dla uzyskiwania wiarygodnych wyników analiz. W praktyce oznacza to, że stosując reagenty oznaczone tym skrótem, możemy mieć wysoką pewność co do ich jakości i niezawodności. Przykładem zastosowania jest przygotowanie roztworów wzorcowych, gdzie precyzyjne stężenie substancji chemicznych jest niezbędne do przeprowadzenia dokładnych pomiarów. Reagenty o wysokiej czystości są również niezbędne w laboratoriach badawczych, gdzie niewielkie zanieczyszczenia mogą prowadzić do błędów w wynikach eksperymentów. Standardy takie jak ISO 9001 czy ASTM E2412-10 podkreślają znaczenie stosowania reagentów o określonej czystości w różnych procesach laboratoryjnych.

Pytanie 8

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 20g
B. 200g
C. 50g
D. 80g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 9

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 dm3
B. 200 cm3
C. 20 ml
D. 200 dm3
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 10

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w polietylenowej butelce.
B. w metalowym naczyniu.
C. w butelce z ciemnego szkła.
D. w szklanej butelce.
Przechowywanie próbki do oznaczania biochemicznego zapotrzebowania tlenu (BZT) w butelce z ciemnego szkła jest kluczowe, aby zapewnić jej integralność i dokładność pomiarów. Ciemne szkło chroni próbkę przed działaniem światła, które może prowadzić do fotodegradacji niektórych składników organicznych, co w konsekwencji zafałszowałoby wyniki analizy. Przechowywanie w odpowiedniej temperaturze, zazwyczaj w zakresie 2-5°C, również ma fundamentalne znaczenie, ponieważ niska temperatura spowalnia procesy biochemiczne, które mogłyby wpłynąć na zmiany w stężeniu tlenu. Zgodnie z normami ISO i dobrymi praktykami laboratoryjnymi, nieprzekraczanie tych warunków gwarantuje wyższej jakości wyniki. W praktyce, takie podejście jest stosowane w laboratoriach zajmujących się analizą wód, gdzie prawidłowe przechowywanie próbek jest kluczowe dla monitorowania stanu ekologicznego zbiorników wodnych. Zastosowanie butelek z ciemnego szkła jest zatem nie tylko zgodne z wymaganiami, ale także odzwierciedla wysokie standardy profesjonalizmu w pracy laboratoryjnej.

Pytanie 11

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
B. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
C. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
D. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 12

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
B. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 13

Na ilustracji oznaczono numery 1 i 4:

A. 1 - kolbę destylacyjną, 4 - ekstraktor
B. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
C. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
D. 1 - ekstraktor, 4 - chłodnicę zwrotną
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 14

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 15

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
B. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
D. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 16

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. I, II, IV.
B. I, III, IV.
C. I, II, V
D. II, IV, V.
Poprawna odpowiedź to I, II, V, ponieważ wszystkie wymienione substancje są zasadami, które mogą reagować z tlenkiem węgla(IV), czyli dwutlenkiem węgla (CO2), tworząc węglany. Substancja I, Ca(OH)2, znana jako wapno hydratyzowane, reaguje z CO2, tworząc węglan wapnia, co jest procesem wykorzystywanym w budownictwie oraz w produkcji materiałów budowlanych. Substancja II, NaOH, czyli soda kaustyczna, jest silną zasadą, która również reaguje z CO2, co jest stosowane m.in. w procesach neutralizacji kwasów w przemyśle chemicznym. Substancja V, CaO, zwana wapnem palonym, po rozpuszczeniu w wodzie również tworzy Ca(OH)2, a jego zastosowanie obejmuje zarówno przemysł budowlany, jak i produkcję chemiczną. Rozumienie reakcji tych substancji z CO2 jest istotne w kontekście ochrony środowiska, ponieważ ich właściwości mogą być wykorzystywane do redukcji emisji CO2 z różnych procesów przemysłowych. Wszystkie te substancje stosuje się zgodnie z normami ochrony środowiska, co podkreśla ich znaczenie w praktycznych zastosowaniach, takich jak absorpcja CO2.

Pytanie 17

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15

A. 10
B. 5,5
C. 20
D. 7
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 18

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 56,6 g Na2SO4·10H2O i 143,4 g H2O
B. 68,5 g Na2SO4·10H2O i 131,5 g H2O
C. 54,4 g Na2SO4·10H2O i 145,6 g H2O
D. 22,4 g Na2SO4·10H2O i 177,6 g H2O
To jest świetny wynik! Odpowiedź 54,4 g Na2SO4·10H2O i 145,6 g H2O jest jak najbardziej trafna. Masz dobrą kontrolę nad obliczeniami związanymi z masą molową siarczanu(VI) sodu oraz stężeniem roztworu. Przypomnę, że masa molowa Na2SO4·10H2O to 322 g/mol, co można łatwo wyliczyć (2 * 23 + 32 + 10 * 18). Żeby zrobić 200 g roztworu o stężeniu 12%, potrzebujesz 24 g substancji rozpuszczonej (0,12 * 200 g). A z tej masy Na2SO4·10H2O wychodzi, że 54,4 g zawiera dokładnie 24 g Na2SO4, a reszta to woda – czyli 145,6 g H2O. W laboratoriach to naprawdę ważne, żeby umieć takie obliczenia, bo wpływają na wyniki eksperymentów. Fajnie, że się tym zajmujesz, bo dokładność to klucz w naszej pracy!

Pytanie 19

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 6,30 mol/dm3
B. 3,49 mol/dm3
C. 5,30 mol/dm3
D. 3,60 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 20

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. najmniejsze dozwolone obciążenie wagi
C. największe dozwolone obciążenie wagi
D. największą masę, która powoduje wyraźne wychylenie wskazówki
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 21

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. uwalniania związków o drażniącym zapachu
B. zajścia nagłej, egzotermicznej reakcji
C. produkcji toksycznych par lub gazów
D. powolnego rozkładu związków
Cyjanki i związki kompleksowe zawierające jony cyjankowe są substancjami niezwykle niebezpiecznymi, ponieważ ich rozkład może prowadzić do wytwarzania toksycznych par i gazów, które mają szkodliwy wpływ na zdrowie ludzi oraz środowisko. W procesie utylizacji, gdy te substancje są narażone na działanie wysokich temperatur, mogą wydzielać cyjanowodór, który jest silnie trującym gazem. Zgodnie z wytycznymi dotyczącymi gospodarki odpadami niebezpiecznymi, należy unikać mieszania cyjanków z innymi odpadami, aby zminimalizować ryzyko ich reakcji chemicznych. Przykładem zastosowania tych zasad mogą być zakłady utylizacyjne, które stosują systemy segregacji odpadów niebezpiecznych oraz specjalistyczne procedury ich przetwarzania, aby zapewnić bezpieczeństwo pracy i ochronę środowiska. Dobre praktyki obejmują także regularne szkolenia personelu oraz stosowanie odpowiednich środków ochrony osobistej, aby uniknąć narażenia na toksyczne substancje. W związku z tym, wprowadzenie cyjanków do pojemników na odpady stałe jest surowo zabronione.

Pytanie 22

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. obniżyć temperaturę próbek do 10oC
B. dodać do próbek roztwór H3PO4 w celu zakwaszenia
C. stosować opakowania nieprzezroczyste
D. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 23

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,05% zanieczyszczeń
B. zawiera maksymalnie 0,1% zanieczyszczeń
C. zawiera co najmniej 0,1% zanieczyszczeń
D. zawiera co najmniej 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera minimum 0,05% zanieczyszczeń, jest nieprawidłowy, ponieważ nie uwzględnia istoty oznaczenia "cz.d.a.". Oznaczenie to implikuje, że substancje te są przeznaczone do zastosowań analitycznych i muszą spełniać określone normy czystości, które ograniczają zawartość zanieczyszczeń do maksymalnie 0,1%. Odpowiedź sugerująca, że odczynnik zawiera minimum 0,1% zanieczyszczeń, jest również błędna, ponieważ wprowadza w błąd co do definicji czystości. Ponadto odpowiedzi wskazujące na maksymalne zanieczyszczenie wynoszące 0,05% są niewłaściwe, ponieważ mogą prowadzić do nieporozumień w kontekście przygotowania próbek do analiz. W praktyce, odczynniki chemiczne używane w laboratoriach muszą spełniać rygorystyczne wymagania dotyczące czystości, aby zapewnić dokładność i powtarzalność wyników. Typowym błędem myślowym jest zakładanie, że niska granica zanieczyszczeń oznacza, że odczynniki muszą mieć jeszcze bardziej restrykcyjne normy, co nie jest zgodne z rzeczywistością. Właściwe zrozumienie terminologii i oznaczeń w zakresie chemii analitycznej jest kluczowe, aby uniknąć błędów w interpretacji i stosowaniu odczynników w praktyce. Z tego powodu, znajomość standardów czystości jest niezbędna dla każdego profesjonalisty pracującego w laboratorium.

Pytanie 24

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z lotnością
B. z poparzeniem
C. z pożarem
D. z wybuchem
Odpowiedź "z pożarem" jest prawidłowa, ponieważ wiele reagentów chemicznych, zwłaszcza te o niskim punkcie zapłonu, stanowi poważne zagrożenie pożarowe. Takie substancje mogą łatwo zapalać się w obecności źródła ciepła lub otwartego ognia, co stwarza ryzyko nie tylko dla zdrowia osób pracujących w laboratoriach, ale także dla samej infrastruktury. Przykładem substancji stwarzających to ryzyko są rozpuszczalniki organiczne, takie jak aceton czy etanol, które są powszechnie wykorzystywane w różnych procesach chemicznych. Pracując z tymi substancjami, należy przestrzegać zasad BHP, takich jak przechowywanie reagentów w odpowiednich warunkach oraz korzystanie z odpowiednich środków ochrony osobistej. Warto również mieć na uwadze przepisy dotyczące magazynowania substancji łatwopalnych, które określają minimalne odległości od źródeł zapłonu oraz wymagania dotyczące wentylacji. Znajomość tych zasad i praktyk jest niezbędna do bezpiecznego wykonywania prac laboratoryjnych oraz do minimalizacji ryzyka wystąpienia zagrożeń pożarowych.

Pytanie 25

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Odpowiedź wskazująca, że woda po wrzuceniu szczypty otrzymanego preparatu nie będzie się barwić na pomarańczowo nieprzereagowanym dichromianem (VI) jest prawidłowa, ponieważ świadczy o tym, że reakcja rozkładu dichromianu (VI) amonu zakończyła się pomyślnie. Po zakończonej reakcji, w której powstaje Cr2O3, nie powinny pozostać żadne resztki surowców ani pośrednich produktów, co potwierdza brak doboru barwy wody. Praktycznie, takie podejście można zastosować w laboratoriach analitycznych, gdzie kontrola końca reakcji jest kluczowa dla uzyskania czystych produktów. Przy badaniach jakościowych, wykorzystanie takiego testu barwnego jest standardową procedurą, aby zweryfikować obecność niepożądanych substancji. Tego typu reakcje są typowe w chemii nieorganicznej i pomogą w zrozumieniu zachowań związków chromu, a także ich zastosowań w różnych dziedzinach, takich jak przemysł chemiczny czy materiałowy.

Pytanie 26

W którym wierszu są zapisane nazwy wyłącznie rozpuszczalników palnych?

Właściwości wybranych rozpuszczalników.
RozpuszczalnikGęstość
[g/cm3]
Temperatura
wrzenia
[°C]
Temperatura
zapłonu
[°C]
Rozpuszczalność
w wodzie
[g/100 cm3]
Eter dietylowy0,7135-457
Heksan0,6660-80-230,01
Aceton0,7957-18
Benzen0,8880-110,07
Chloroform1,4961-0,82
Tetrachlorometan1,5977-0,08
Etanol0,817812
Chlorometan1,3441-2

A. Heksan, benzen, tetrachlorometan.
B. Aceton, etanol, benzen.
C. Aceton, etanol, chloroform.
D. Chloroform, chlorometan, tetrachlorometan.
Analizując pozostałe odpowiedzi, pojawia się kilka kluczowych błędów. Odpowiedzi zawierające chloroform oraz tetrachlorometan wskazują na pomyłkę w ocenie ich właściwości chemicznych. Chloroform ma temperaturę zapłonu wynoszącą 61°C, co czyni go mniej łatwopalnym niż pozostałe wymienione substancje. Ponadto, tetrachlorometan (inaczej znany jako czterochlorek węgla) nie jest substancją łatwopalną, ponieważ jego temperatura zapłonu wynosi 12°C, lecz jego właściwości toksykologiczne oraz potencjalne zagrożenia dla zdrowia są znacznie wyższe. Typowym błędem jest mylenie pojęć „łatwopalny” z „palny”, co prowadzi do błędnych wniosków na temat bezpieczeństwa użycia tych substancji. Użytkownicy często nie zwracają uwagi na klasyfikację substancji chemicznych według systemu GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Substancji Chemicznych), co jest istotne przy ocenie zagrożeń. Dlatego tak ważne jest, aby dokładnie zapoznać się z właściwościami chemicznymi stosowanych substancji oraz ich klasyfikacją w celu zapewnienia maksymalnego bezpieczeństwa w pracy z materiałami chemicznymi.

Pytanie 27

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną, rękawice i okulary ochronne.
B. Gumowe rękawice i maskę ochronną.
C. Odzież ochronną i maskę tlenową.
D. Fartuch ochronny, rękawice i maskę tlenową.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 28

W wyniku reakcji 100 g azotanu(V) ołowiu(II) z jodkiem potasu otrzymano 120 g jodku ołowiu(II). Wydajność reakcji wyniosła

Pb(NO3)2 + 2KI → PbI2 + 2KNO3
(MPb(NO3)2 = 331 g/mol, MKI = 166 g/mol, MPbI2 = 461 g/mol, MKNO3 = 101 g/mol)

A. 86%
B. 98%
C. 25%
D. 42%
To pytanie dotyczące wydajności reakcji pokazuje, że wykonałeś dobre obliczenia. Wynik 86% to naprawdę fajny wynik, bo wiesz, że to oznacza, iż dobrze oszacowałeś masy reagentów i produktów. Jeśli weźmiemy pod uwagę azotan(V) ołowiu(II) i obliczymy maksymalną masę jodku ołowiu(II), to powinno wyjść jakieś 139,22 g. W Twoim eksperymencie uzyskałeś 120 g jodku ołowiu(II), więc to daje nam ładną wydajność. Te obliczenia są mega ważne w chemii, bo pomagają ocenić, jak dobrze działa reakcja. Wiedza o tym, jak to policzyć, jest przydatna nie tylko w chemii, ale też w farmacja czy w przemyśle materiałowym. Takie umiejętności mogą naprawdę pomóc w tworzeniu nowych rzeczy i rozwijaniu technologii w różnych dziedzinach.

Pytanie 29

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 4,5,6
B. 1,2,3
C. 1,2,4
D. 1,4,5
Odpowiedzi 1, 4 i 5 są na pewno trafione. Do zmontowania zestawu do sączenia pod próżnią potrzebujemy trzech głównych elementów: pompy wodnej (1), kolby ssawkowej (4) i lejka sitowego (5). Pompa wodna robi tutaj robotę, bo to ona wytwarza próżnię, która jest kluczowa do filtracji. Kolba ssawkowa to takie naczynie, gdzie zbiera się filtrat, chroniąc nas przed różnymi zanieczyszczeniami. No i lejek sitowy, on pozwala na dodanie materiału filtracyjnego, co jest mega ważne, żeby cały proces działał sprawnie. W laboratoriach chemicznych używa się takich zestawów na porządku dziennym, bo precyzyjne oddzielanie substancji jest niezbędne, kiedy robimy analizy. Dlatego wybór tych elementów nie tylko sprawia, że to działa, ale też jest bezpieczne.

Pytanie 30

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. ekstrakcja w systemie ciecz - ciecz
B. chromatografia cieczowa
C. adsorpcja
D. destylacja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 31

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. śladową
B. ogólną
C. średnią
D. pierwotną
Odpowiedź 'średnia' jest poprawna, ponieważ w kontekście analizy próbek odnosi się do próbki, która jest reprezentatywną redukcją próbki ogólnej. Średnia próbka jest kluczowa w statystyce i analizach laboratoryjnych, gdyż zapewnia zrównoważony przegląd właściwości całej populacji. Na przykład, w badaniach chemicznych, średnia próbka powinna być przygotowana tak, aby uwzględniała różnorodność w składzie chemicznym analizowanej substancji. Przygotowanie średniej próbki może być realizowane poprzez odpowiednie mieszanie prób z różnych miejsc lub czasów, co jest zgodne z normami ISO dotyczącymi przygotowania próbek. W praktyce, stosowanie średnich próbek pomaga w minimalizacji błędów systematycznych i zwiększa wiarygodność wyników analiz, co jest kluczowe w kontekście kontrolowania jakości produktów w przemyśle oraz w badaniach naukowych. Ustalanie średniej próbki jest także niezbędne przy ocenie zmienności parametrów, co ma wpływ na dalsze podejmowanie decyzji w zakresie jakości czy bezpieczeństwa materiałów.

Pytanie 32

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. W
B. R
C. Ex
D. In
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 33

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. sypkich
B. płynnych
C. półpłynnych
D. ciastowatych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 34

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. 2KClO3 → 2KCl + 3O2
B. BaCl2 + H2SO4 → BaSO4 + 2HCl
C. CaCO3 → CaO + CO2
D. NaOH + HCl → NaCl + H2O
Reakcja 2KClO3 → 2KCl + 3O2 pokazuje, jak chloran potasu (KClO3) rozkłada się na chlorek potasu (KCl) i tlen (O2). W tym procesie zmieniają się stopnie utlenienia. Chlor w chloranie potasu ma stopień utlenienia +5, a w chlorku potasu już tylko +1. Tlen w cząsteczkach O2 z kolei ma stopień utlenienia 0. Ta zmiana w stopniach utlenienia to przykład redukcji (dla chloru) i utlenienia (dla tlenu). Z mojego doświadczenia, to zrozumienie zmian jest istotne w kontekście reakcji redoks, które są podstawowe w chemii, szczególnie w syntezach organicznych czy produkcji energii. Wiedza o stopniach utlenienia pomaga przewidywać reakcje chemiczne i ich praktyczne zastosowania, co jest ważne, zwłaszcza w chemii analitycznej i przemysłowej.

Pytanie 35

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. istnieje ryzyko zalania palnika
C. może to zwiększyć jej toksyczność
D. wzrost ciśnienia może spowodować wybuch
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 36

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, datę przygotowania i numer katalogowy
B. koncentrację, ostrzeżenia H oraz datę przygotowania
C. koncentrację, producenta i wykaz zanieczyszczeń
D. masę, koncentrację i numer katalogowy
Wiele z niepoprawnych odpowiedzi nie uwzględnia kluczowych elementów, które są obowiązkowe na etykietach chemikaliów, co może prowadzić do poważnych problemów w zakresie bezpieczeństwa. Odpowiedzi sugerujące umieszczenie masy, daty sporządzenia i numeru katalogowego pomijają istotne informacje dotyczące zagrożeń. Masa substancji chemicznej nie jest parametrem, który powinien być bezpośrednio wskazywany na etykiecie roztworu; zamiast tego, stężenie jest kluczowe dla oceny jej reaktancji i potencjalnego ryzyka. Numer katalogowy jest przydatny w kontekście identyfikacji produktu, ale nie ma bezpośredniego związku z bezpieczeństwem użytkownika w laboratorium. W kontekście praktycznym, błędne podejście do etykietowania może skutkować niewłaściwym użyciem substancji, co niesie ryzyko wystąpienia niebezpiecznych reakcji chemicznych. Ponadto, brak zwrotów zagrożeń H na etykiecie może prowadzić do nieświadomego narażenia pracowników na działanie toksycznych lub żrących substancji. W każdej sytuacji, każdy operator powinien być świadomy konieczności stosowania się do obowiązujących przepisów oraz najlepszych praktyk w zakresie etykietowania substancji chemicznych, a ich zaniedbanie może prowadzić do poważnych konsekwencji zdrowotnych i prawnych.

Pytanie 37

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. z tworzywa sztucznego
B. ze szkła sodowego
C. ze szkła borowo-krzemowego
D. z kwarcu
Najlepszym wyborem do przechowywania próbek wody do badania krzemu są naczynia z tworzyw sztucznych. Oprócz tego, że są neutralne chemicznie, to nie wprowadzają zanieczyszczeń, które mogłyby zepsuć nasze analizy. Materiały jak PET czy polipropylen są nisko reaktywne, więc świetnie nadają się do tego rodzaju badań. W praktyce, używając takich pojemników, możemy trzymać próbki dłużej, bo nie ma ryzyka, że coś się w nich zmieni przez reakcje chemiczne. W dodatku, wiele norm, w tym te od ISO, sugeruje, aby korzystać z tworzyw sztucznych, zwłaszcza jeśli próbki mają być transportowane lub przechowywane przez dłuższy czas. Takie podejście wpisuje się w najlepsze praktyki laboratoryjne, co znaczy, że nasze wyniki będą bardziej wiarygodne.

Pytanie 38

Wskaź sprzęt konieczny do przeprowadzenia miareczkowania?

A. Biureta, kolba miarowa, lejek do biurety, statyw
B. Pipeta, kolba stożkowa, lejek, statyw
C. Biureta, kolba stożkowa, lejek do biurety, statyw
D. Biureta, kolba stożkowa, kolba miarowa, statyw
Wybrana odpowiedź jest poprawna, ponieważ miareczkowanie to technika analityczna, która wymaga precyzyjnego pomiaru objętości roztworu reagentu. Biureta jest kluczowym narzędziem, które pozwala na dokładne dozowanie cieczy, co jest niezbędne do uzyskania precyzyjnych wyników. Kolba stożkowa, w której zazwyczaj odbywa się miareczkowanie, umożliwia łatwe mieszanie roztworów oraz ich obserwację. Lejek do biurety jest istotny, ponieważ umożliwia bezpieczne i precyzyjne napełnianie biurety bez ryzyka rozlania reagentu. Statyw natomiast stabilizuje biuretę, co jest ważne dla bezpieczeństwa i dokładności pomiarów. W praktyce, aby miareczkowanie było skuteczne, należy stosować również odpowiednie techniki pipetowania i mieszania, aby zapewnić jednolite stężenie roztworu oraz uzyskać wiarygodne wyniki analizy. Te komponenty są zgodne z dobrymi praktykami laboratoryjnymi, które podkreślają znaczenie precyzji i poprawności technik analitycznych.

Pytanie 39

Przy transporcie próbek wody zaleca się, aby próbki były

A. schłodzone do temperatury 2 - 5°C
B. zakwaszone do pH < 6
C. zalkalizowane
D. narażone na działanie światła
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 40

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. chromianu(VI) potasu
B. fenoloftaleiny
C. oranżu metylowego
D. skrobi
Oranż metylowy jest wskaźnikiem pH, który ma zastosowanie w miareczkowaniu kwasów i zasad. Jego zmiana koloru z czerwonego na żółty zachodzi w zakresie pH od około 3,1 do 4,4, co czyni go idealnym wskaźnikiem do reakcji pomiędzy kwasem solnym (HCl) a wodorotlenkiem sodu (NaOH). W tym przypadku, podczas miareczkowania, roztwór HCl, który początkowo ma pH poniżej 3,1, zyskuje na zasadowości, a moment osiągnięcia pH bliskiego 4,4, będący punktem końcowym miareczkowania, prowadzi do zmiany barwy. Zastosowanie oranżu metylowego w tej procedurze jest zgodne z dobrymi praktykami laboratoryjnymi, które zalecają wybór wskaźnika dopasowanego do konkretnego zakresu pH reakcji. Przykładem praktycznego użycia oranżu metylowego może być analityka chemiczna, gdzie precyzyjne oznaczenia stężenia kwasów i zasad są kluczowe dla uzyskania dokładnych wyników. Zastosowanie tego wskaźnika w miareczkowaniu jest szeroko uznawane i dokumentowane w literaturze chemicznej, co potwierdza jego efektywność i niezawodność.