Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 11:53
  • Data zakończenia: 10 czerwca 2025 12:29

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. czerpak
B. barometr
C. aspirator
D. pojemnik
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 2

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na mokro
B. UV
C. na sucho
D. mikrofalową
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 0,25 g
B. 2,5 g
C. 250 g
D. 25 g
Aby obliczyć ilość NaCl w 250 g 10% roztworu, należy zastosować wzór na stężenie procentowe. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g substancji rozpuszczonej. Dla 250 g roztworu, proporcja ta jest taka sama, co można obliczyć, stosując przeliczenie: (10 g / 100 g) * 250 g = 25 g NaCl. W praktyce, takie obliczenia są niezwykle istotne w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania odpowiednich reakcji chemicznych. Zrozumienie stężenia roztworów pozwala na ich prawidłowe stosowanie w różnych procedurach, takich jak przygotowanie leków, analiza chemiczna czy też wytwarzanie materiałów. Warto również znać zasady dotyczące przechowywania oraz rozcieńczania roztworów, co jest zgodne z najlepszymi praktykami laboratoryjnymi.

Pytanie 5

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. wymywanie lub wymianę jonową
C. rozpuszczanie i rozcieńczanie
D. mineralizację suchą
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. BaCl2
B. oranżu metylowego
C. AgNO3
D. fenoloftaleiny
Fenoloftaleina to wskaźnik pH, ale niestety nie nadaje się do wykrywania siarczanów. Dlaczego? Bo zmienia kolor w zależności od kwasowości roztworu, ale nie reaguje z jonami siarczanowymi. Można się łatwo pomylić, jeśli się jej używa, bo ona tylko sygnalizuje zmianę pH, a to nie jest to, co potrzebujemy przy analizie siarczanów. Z drugiej strony, AgNO3, czyli azotan srebra, też nie jest właściwy do wykrywania siarczanów, bo tworzy osad z jonami chlorkowymi, a nie siarczanowymi. Używanie takich reagentów, jak AgNO3, może prowadzić do błędnych wniosków o obecności siarczanów, więc raczej tego unikaj. Oranż metylowy to kolejny wskaźnik pH, ale zmienia kolor w zakresie 3.1-4.4, co też się nie przyda do wykrywania siarczanów. Jak się robi analizę chemiczną, trzeba dokładnie rozumieć właściwości reagentów, bo różne błędy mogą się przytrafić w interpretacji wyników. W skrócie, lepiej używać odpowiednich reagentów, jak BaCl2, żeby mieć pewność, że wyniki będą wiarygodne.

Pytanie 8

Pierwotna próbka jest zbierana

A. z próbki przeznaczonej do badań
B. z próbki ogólnej w sposób bezpośredni
C. w jednym punkcie partii materiału
D. z opakowania pierwotnego
Prawidłowa odpowiedź wskazuje, że próbka pierwotna jest pobierana w jednym miejscu partii materiału. Jest to zgodne z najlepszymi praktykami w zakresie pobierania próbek, które zalecają, aby próbki były reprezentatywne dla całej partii, co pozwala na dokładną ocenę jakości materiału. Pobieranie próbek w jednym miejscu eliminuje ryzyko rozrzutności wyników i zapewnia, że każda próbka oddaje rzeczywisty stan partii. Na przykład w przemyśle farmaceutycznym pobieranie próbek substancji czynnej w jednym miejscu partii pozwala na skuteczną kontrolę jakości i zgodność z normami, takimi jak ISO 17025, które wymagają, aby metody pobierania próbek były jasno określone i zgodne z procedurami operacyjnymi. W praktyce, taka metoda pozwala na skuteczniejsze monitorowanie i zarządzanie jakością, co jest kluczowe dla zapewnienia bezpieczeństwa i skuteczności produktów.

Pytanie 9

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. 5 maja 2017 roku
B. 13 maja 2017 roku
C. w kwietniu 2017 roku
D. w czerwcu 2017 roku
Wybór daty z maja czy kwietnia 2017 roku jest błędny, ponieważ sugeruje zakończony okres użyteczności odczynnika, co może prowadzić do niebezpiecznych sytuacji w laboratoriach. Używanie odczynników po wskazanych datach ma negatywne skutki, w tym zmniejszoną efektywność i dokładność wyników badań. Dobrą praktyką w laboratoriach jest regularne przeglądanie zapasów odczynników i usuwanie tych, które osiągnęły swoje daty ważności. Na przykład, odczynniki chemiczne mogą podlegać degradacji na skutek czynników zewnętrznych, takich jak światło, temperatura czy wilgoć, co z kolei wpływa na ich właściwości chemiczne. Utylizacja niezużytych odczynników powinna być zgodna z wytycznymi organizacji ochrony środowiska oraz lokalnymi regulacjami prawnymi. Ignorowanie tych zasad prowadzi do ryzykownych praktyk, które mogą zagrażać zdrowiu i życiu pracowników, a także prowadzić do kontaminacji środowiska. Ponadto, nieprzestrzeganie procedur dotyczących utylizacji może skutkować sankcjami prawno-administracyjnymi. Należy również podkreślić, że każda decyzja o utylizacji powinna być oparta na obiektywnej analizie stanu odczynnika oraz jego potencjalnych konsekwencji dla badań oraz bezpieczeństwa operacyjnego laboratorium.

Pytanie 10

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. obniżają temperaturę wrzenia cieczy
B. przyspieszają proces wrzenia cieczy
C. umożliwiają równomierne wrzenie cieczy
D. przyspieszają przebieg destylacji
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 11

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. jednorodność
B. roztwarzalność
C. reprezentatywność
D. rozpuszczalność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 12

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 20°C
B. z tworzywa sztucznego, w temperaturze około 4°C
C. z tworzywa sztucznego, w temperaturze około 20°C
D. szklanych, w temperaturze około 30°C
Odpowiedź dotycząca użycia butelek z tworzywa sztucznego, w temperaturze około 4°C, jest zgodna z zaleceniami dotyczącymi transportu próbek wody. Tworzywo sztuczne, takie jak polipropylen lub PET, jest preferowane, ponieważ jest lekkie, odporne na pęknięcia i dobrze zabezpiecza próbki przed zanieczyszczeniami. Przechowywanie próbek w niskiej temperaturze, około 4°C, minimalizuje rozwój mikroorganizmów i stabilizuje skład chemiczny wody, co jest kluczowe dla wiarygodności analizy. W praktyce zaleca się, aby próbki były transportowane w ciągu maksymalnie 24 godzin od pobrania, aby zminimalizować ryzyko zmiany parametrów analitycznych. Dobre praktyki laboratoria wodociągowego wskazują, że każda próbka powinna być odpowiednio oznakowana i zarejestrowana, co ułatwia późniejsze śledzenie wyników analizy. W takich sytuacjach warto korzystać z wytycznych takich jak Standard ISO 5667 dotyczący pobierania próbek wody, co zapewnia jakość i wiarygodność uzyskiwanych danych.

Pytanie 13

Substancje kancerogenne to

A. rakotwórcze
B. uczulające
C. mutagenne
D. enzymatyczne
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 14

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Sublimat
B. Lód.
C. Ciecz.
D. Gaz.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 15

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. dygestorium
B. zespół powietrzny
C. urządzenie do sterylizacji
D. komora laminarna
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 16

Zestaw do filtracji pod obniżonym ciśnieniem powinien obejmować między innymi

A. kolbę ssawkową, lejek Büchnera, płuczkę bezpieczeństwa
B. kolbę stożkową, lejek szklany z sączkiem, pompę próżniową
C. kolbę okrągłodenną, lejek szklany z sączkiem, płuczkę bezpieczeństwa
D. kolbę miarową, lejek Büchnera, pompę próżniową
Odpowiedź wskazująca na kolbę ssawkową, lejek Büchnera oraz płuczkę bezpieczeństwa jest prawidłowa, ponieważ wszystkie te elementy są kluczowe w procesie sączenia pod zmniejszonym ciśnieniem. Kolba ssawkowa, znana również jako kolba próżniowa, jest specjalnie zaprojektowana do przechowywania cieczy pod ciśnieniem niższym niż ciśnienie atmosferyczne, co pozwala na efektywne sączenie. Lejek Büchnera, zbudowany z porcelany lub szkła, umożliwia szybkie i efektywne oddzielanie ciał stałych od cieczy, wykorzystując siłę próżni generowaną przez pompę. Płuczka bezpieczeństwa jest istotnym elementem, który chroni zarówno sprzęt, jak i użytkownika przed niebezpiecznymi substancjami chemicznymi, zapobiegając ich zassaniu do systemu próżniowego. Dobór tych elementów odpowiada standardom laboratoryjnym, gdzie bezpieczeństwo i efektywność są priorytetami. Przygotowując się do procedur laboratoryjnych związanych z filtracją, zawsze należy uwzględnić te trzy składniki, aby zapewnić prawidłowe i bezpieczne przeprowadzenie eksperymentów.

Pytanie 17

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym większa, im bardziej niejednorodny jest skład produktu
B. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
C. być tym mniejsza, im większa jest niejednorodność składu produktu
D. być tym większa, im bardziej jednorodny jest skład produktu
Odpowiedź jest poprawna, ponieważ w przypadku próbek ogólnych, jednostkowych lub pierwotnych, ich wielkość powinna wzrastać w miarę zwiększania się niejednorodności składu produktu. Zgodnie z zasadami statystyki i analizy chemicznej, im większa jest różnorodność składników, tym większa próbka jest potrzebna do uzyskania reprezentatywności wyników analizy. Przykładowo, w przemyśle spożywczym, jeśli surowiec ma zróżnicowany skład (np. mieszanka różnych nasion), to do analizy jakościowej lub ilościowej powinno się pobrać większą próbkę, aby uwzględnić wszystkie warianty składników. Normy takie jak ISO 17025 podkreślają znaczenie reprezentatywności próbek w kontekście uzyskiwania wiarygodnych wyników analitycznych. W praktyce, właściwe podejście do pobierania próbek może znacznie wpłynąć na jakość końcowych danych, co jest kluczowe w kontekście kontroli jakości i zapewnienia zgodności z normami.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
Niezrozumienie konsekwencji skali pH prowadzi do błędnych wniosków. W przypadku stwierdzenia, że stężenie jonów [H+] w roztworze o pH=5 jest 3 razy mniejsze niż w roztworze o pH=2, pomija się kluczowy fakt o logarytmicznej naturze skali pH. Zmiana pH o jednostkę oznacza dziesięciokrotną różnicę w stężeniu jonów, co tworzy mylne przekonanie, że różnice są liniowe. W konsekwencji, jeśli pH zmienia się z 2 na 5, stężenie [H+] nie zmniejsza się o 3, ale o 1000 razy. Twierdzenie, że stężenie w roztworze pH=5 jest 1000 razy większe niż w pH=2, także jest błędne, ponieważ ignoruje właściwości pH jako miary stężenia jonów. Odpowiedź sugerująca, że stężenie w roztworze o pH=5 jest większe o 3 mol/dm3 niż w pH=2, wskazuje na brak zrozumienia skali i jednostek. W rzeczywistości różnice te nie są mierzone w molach, ale w proporcjach logarytmicznych. Błędem jest również myślenie, że takie zmiany można analizować w sposób prosty, liniowy, co jest sprzeczne z podstawowymi zasadami chemii kwasowo-zasadowej. Aby unikać takich nieporozumień, należy stosować dokładne obliczenia oparte na logarytmach oraz zrozumienie, jak pH wpływa na różne procesy chemiczne i biologiczne.

Pytanie 21

Na ilustracji numery rzymskie wskazują

A. I – rozdzielacz, II – destylat
B. I – chłodnicę, II – sublimat
C. I – rozdzielacz, II – sublimat
D. I – chłodnicę, II – destylat
Wybór odpowiedzi, w której I oznaczono jako rozdzielacz, a II jako sublimat, prowadzi do kilku kluczowych nieporozumień. Rozdzielacz jest urządzeniem, które służy do oddzielania różnych faz, na przykład cieczy od gazów, co nie jest jego funkcją w kontekście destylacji. Destylacja to proces, w którym składniki mieszaniny cieczy są oddzielane na podstawie różnicy ich temperatur wrzenia, a nie za pomocą rozdzielaczy. Sublimacja, z drugiej strony, to proces, w którym substancja przechodzi bezpośrednio ze stanu stałego do gazowego, omijając fazę ciekłą, co nie znajduje zastosowania w kontekście chłodnicy i destylacji. Odpowiedzi, które określają II jako sublimat, pomijają zrozumienie, że sublimacja nie jest zjawiskiem zachodzącym w pracy chłodnicy, a tym bardziej w procesie destylacyjnym. Często obserwowanym błędem jest niewłaściwe utożsamianie procesów termicznych i stanów skupienia substancji. Ważne jest, aby przy analizie procesów chemicznych zrozumieć różnice między podziałem na fazy oraz transformacjami fizycznymi, do których należy sublimacja. Dobrym przykładem są procesy odparowywania i skraplania, które są kluczowe w kontekście destylacji, a pomylenie tych pojęć prowadzi do nieprawidłowych wniosków dotyczących zastosowania urządzeń i ich funkcji. Konieczne jest przyswojenie sobie tych definicji, aby skutecznie operować w obszarze chemii i inżynierii procesowej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakim narzędziem dokonuje się poboru próbki wody?

A. pływaka.
B. przelewki.
C. czerpaka.
D. odbieralnika.
Czerpak jest urządzeniem stosowanym do pobierania próbek wody, które umożliwia dokładne i kontrolowane uchwycenie próbki z określonego miejsca. W praktyce czerpaki są często wykorzystywane w laboratoriach analitycznych oraz w sytuacjach, gdzie zachowanie jakości próbki jest kluczowe. Czerpaki są projektowane w różnorodny sposób, aby dostosować się do specyfiki badanego medium oraz przeprowadzanych analiz. Na przykład, w przypadku pobierania wód gruntowych, czerpaki mogą być wyposażone w mechanizmy, które minimalizują zanieczyszczenia z zewnątrz. W kontekście standardów, takie jak ISO 5667, definiują metody pobierania prób wody, co jest istotne dla zapewnienia wiarygodności wyników badań. Dzięki zrozumieniu właściwego zastosowania czerpaka, technicy mogą efektywnie monitorować jakość wody i przeprowadzać analizy zgodnie z przyjętymi normami. W przypadku badań środowiskowych, czerpaki pozwalają na pobieranie prób wody z różnych głębokości, co jest istotne dla analizy jakości wód w zbiornikach wodnych.

Pytanie 24

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. wodną
B. przeciwpożarową
C. parową
D. ściekową
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 5 miesięcy
B. 7 miesięcy
C. 1 miesiąc
D. 3 miesiące
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. komplet sit.
B. wytrząsarkę.
C. wirówkę.
D. krystalizator.
W laboratoriach chemicznych oddzielanie osadu, takiego jak AgCl (chlorek srebra), od cieczy macierzystej to proces kluczowy w wielu analizach. Użycie wirówki jest najskuteczniejszym sposobem na osiągnięcie tego celu. Wirówka działa na zasadzie odśrodkowej siły, która powoduje, że cząsteczki o większej gęstości, takie jak osad AgCl, są wypychane do dołu probówki, podczas gdy ciecz, która jest mniej gęsta, pozostaje na górze. To pozwala na łatwe oddzielenie obu frakcji bez potrzeby stosowania dodatkowych metod mechanicznych. Przykładem zastosowania wirówki w laboratoriach jest przygotowanie próbek do analizy spektrofotometrycznej, gdzie precyzyjne oddzielenie osadu pozwala na dokładniejszy pomiar stężenia substancji w cieczy. Zgodnie z normami laboratoryjnymi, prawidłowe użycie wirówki zwiększa efektywność i dokładność analiz, co jest szczególnie istotne w kontekście badań jakościowych i ilościowych.

Pytanie 32

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. ciśnieniowe.
B. mikrofalowe.
C. suche.
D. mokre.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 33

Do narzędzi pomiarowych zalicza się

A. cylinder
B. naczynko wagowe
C. zlewkę
D. kolbę stożkową
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. koniecznością dokładnego wymieszania roztworu
C. opóźnieniem w ustaleniu się kontrakcji objętości
D. potrzebą wyrównania temperatury roztworu z otoczeniem
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 36

Aby przygotować zestaw do filtracji, należy zebrać

A. biuretę, statyw metalowy, zlewkę
B. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. bagietkę, zlewkę, łapę metalową, statyw metalowy
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 37

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. piasku
B. gaśnicy pianowej
C. wody
D. gaśnicy śniegowej
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 38

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Ciągłej ciało stałe – ciecz
B. Okresowej ciecz – ciecz
C. Okresowej ciało stałe – ciecz
D. Ciągłej ciecz – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 39

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. 2KClO3 → 2KCl + 3O2
B. NaOH + HCl → NaCl + H2O
C. CaCO3 → CaO + CO2
D. BaCl2 + H2SO4 → BaSO4 + 2HCl
Reakcja 2KClO3 → 2KCl + 3O2 pokazuje, jak chloran potasu (KClO3) rozkłada się na chlorek potasu (KCl) i tlen (O2). W tym procesie zmieniają się stopnie utlenienia. Chlor w chloranie potasu ma stopień utlenienia +5, a w chlorku potasu już tylko +1. Tlen w cząsteczkach O2 z kolei ma stopień utlenienia 0. Ta zmiana w stopniach utlenienia to przykład redukcji (dla chloru) i utlenienia (dla tlenu). Z mojego doświadczenia, to zrozumienie zmian jest istotne w kontekście reakcji redoks, które są podstawowe w chemii, szczególnie w syntezach organicznych czy produkcji energii. Wiedza o stopniach utlenienia pomaga przewidywać reakcje chemiczne i ich praktyczne zastosowania, co jest ważne, zwłaszcza w chemii analitycznej i przemysłowej.

Pytanie 40

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. krystalizację
B. sublimację
C. ługowanie
D. resublimację
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.