Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 czerwca 2025 18:46
  • Data zakończenia: 16 czerwca 2025 18:47

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem A
B. Symbolem B
C. Symbolem T
D. Symbolem P
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 2

Które z instrukcji dotyczących obsługi frezarki jest niewłaściwe?

A. Należy zakładać i stabilizować narzędzia w rękawicach roboczych
B. Należy chłodzić obrabiany element podczas obróbki za pomocą mokrych szmat
C. W trakcie obróbki materiałów odpryskowych i pylących należy nosić okulary ochronne oraz półmaski przeciwpyłowe
D. Śruby mocujące narzędzia oraz imadła maszynowe i dociski śrubowe należy dociskać ręcznie, unikając używania przedłużek do kluczy
Chłodzenie obrabianego elementu podczas obróbki przy pomocy specjalnych płynów chłodzących jest kluczowym elementem zapewniającym prawidłowe działanie frezarki. Podczas intensywnej obróbki mechanicznej, temperatura narzędzia oraz obrabianego materiału może osiągnąć bardzo wysokie wartości, co prowadzi do ich uszkodzenia, zniekształceń, a nawet przyspieszonego zużywania się narzędzi. Użycie odpowiednich płynów chłodzących, które mają za zadanie nie tylko obniżenie temperatury, ale także usuwanie wiórów oraz zanieczyszczeń, jest zgodne z najlepszymi praktykami w branży. Warto pamiętać, że chłodzenie mokrymi szmatkami jest niewystarczające, ponieważ nie zapewnia odpowiedniej penetracji w obszary robocze, co może prowadzić do powstawania punktów przegrzewania. Aby uzyskać najlepsze rezultaty, należy stosować płyny chłodzące zgodne z normami ISO, które posiadają odpowiednie właściwości smarne i chłodzące oraz są bezpieczne dla zdrowia operatora.

Pytanie 3

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Deasemblerem
B. Kompilatorem
C. Asemblerem
D. Debuggerem
Debugger to naprawdę przydatne narzędzie dla programistów, bo pozwala im dokładnie śledzić, co się dzieje w kodzie. Jego główną funkcją jest to, że można zobaczyć, jak program działa krok po kroku, co bardzo pomaga w zrozumieniu zmian w zmiennych i logice aplikacji. Na przykład, gdy coś nie działa jak powinno albo występuje błąd, można wstrzymać program w danym momencie, żeby sprawdzić, co poszło nie tak. Programista ma wtedy możliwość zbadać wartości zmiennych, zobaczyć, które instrukcje już się wykonały i gdzie leży problem. To bardzo cenne w pracy, bo pozwala na szybsze znalezienie błędów i ich naprawę, co jest zgodne z tym, co mówią najlepsi w branży – testowanie i debugowanie kodu to klucz do sukcesu. Używając debuggera, można również ustawić punkty przerwania, które zatrzymują działanie programu w określonym miejscu. Dzięki temu łatwiej jest znaleźć problemy, szczególnie w bardziej skomplikowanych aplikacjach.

Pytanie 4

Na diagramach systemów hydraulicznych przyłącze rury odpływowej rozdzielacza oznacza się symbolem literowym

A. P
B. T
C. A
D. B
Odpowiedź T jest poprawna, ponieważ w symbolice hydraulicznej oznaczenie literowe T odnosi się do przyłącza przewodu odpływowego w układach hydraulicznych. T jest skrótem od angielskiego terminu 'tank line', co wskazuje na przewód, którym olej hydrauliczny wraca do zbiornika. To kluczowe w projektowaniu układów hydraulicznych, ponieważ odpowiednie oznaczenia zapewniają właściwą identyfikację linii oraz ich funkcji w systemie. Używanie standardowych symboli, takich jak T dla linii powrotnej, jest istotne dla zrozumienia schematów przez techników i inżynierów, co przyczynia się do minimalizacji błędów w instalacjach. W praktyce, znajomość tych oznaczeń jest niezbędna podczas serwisowania i diagnozowania układów hydraulicznych, co wpływa na efektywność i bezpieczeństwo ich użytkowania. Standardy branżowe, takie jak ISO 1219, określają zasady oznaczania komponentów hydraulicznych, co ułatwia komunikację i współpracę w ramach zespołów projektowych.

Pytanie 5

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. 12 VDC
B. 12 VAC
C. w zakresie od 100 do 240 VAC
D. w zakresie od 100 do 240 VDC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '12 VDC' jest prawidłowa, ponieważ oznacza napięcie stałe, które zasilacz dostarcza do podłączonych urządzeń. W kontekście zasilaczy, oznaczenie 'OUTPUT 12 VDC' sugeruje, że napięcie wyjściowe wynosi 12 woltów w trybie prądu stałego, co jest powszechnie stosowane w wielu urządzeniach elektronicznych, takich jak kamery, routery czy systemy alarmowe. Zrozumienie napięcia wyjściowego zasilacza jest kluczowe dla zapewnienia kompatybilności z urządzeniami, które wymagają określonego napięcia do prawidłowego funkcjonowania. Przy projektowaniu układów zasilania istotne jest również przestrzeganie norm bezpieczeństwa, takich jak IEC 60950, które określają, jak powinny być skonstruowane zasilacze i jakie mają mieć zabezpieczenia. W zastosowaniach praktycznych, użycie zasilaczy o odpowiednich parametrach zapewnia nie tylko efektywność energetyczną, ale również długoterminową stabilność i niezawodność systemu.

Pytanie 6

Aby zweryfikować, czy w uzwojeniu cewki nie wystąpiła przerwa, należy przeprowadzić pomiar

A. rezystancji izolacji cewki
B. rezystancji uzwojenia cewki
C. dobroci cewki
D. napięcia na zaciskach cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji w cewce to naprawdę ważna sprawa, jeśli chodzi o sprawdzanie, w jakim stanie ona jest. Kiedy cewka działa jak powinna, to rezystancja uzwojenia powinna pokazywać określoną wartość, zgodną z tym, co podaje producent. Jeśli natomiast cewka ma przerwę, to ta rezystancja może być bliska zeru albo nawet bardzo niska, co oznacza, że coś jest nie tak z obwodem. Z mojego doświadczenia, technicy często robią takie pomiary w trakcie rutynowych kontroli, żeby mieć pewność, że wszystko działa jak należy, zanim się zacznie używać cewki. Normy branżowe, jak IEC 60076, sugerują, że testowanie rezystancji uzwojenia powinno być stałym punktem w procedurach konserwacyjnych sprzętu elektrycznego. Te działania naprawdę mogą pomóc uniknąć poważniejszych problemów, które mogłyby prowadzić do awarii i kosztownych przestojów w pracy.

Pytanie 7

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Sprawdzenie jakości farby na urządzeniach
B. Sprawdzenie szczelności połączeń
C. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
D. Malowanie rurociągów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 8

Który komponent powinno się wykorzystać do galwanicznego oddzielenia wyjścia z PLC od elementów, które są nim sterowane?

A. Transoptor
B. Dławik
C. Transformator
D. Kondensator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transoptor to element elektroniczny zaprojektowany w celu zapewnienia galwanicznej separacji sygnałów, co jest kluczowe w zastosowaniach automatyki i sterowania. Dzięki zastosowaniu transoptora, sygnały wejściowe są izolowane od sygnałów wyjściowych, co chroni wrażliwe komponenty sterujące przed niepożądanym wpływem zakłóceń lub awarii w obwodach wykonawczych. Przykładem zastosowania transoptora może być sytuacja, gdy sygnał z czujnika (np. fotokomórka) musi zostać przekazany do PLC, ale z uwagi na różnice poziomów napięcia lub ryzyko zakłóceń, konieczne jest zastosowanie izolacji. W takich przypadkach transoptor działa jako mostek, który pozwala na bezpieczne przekazywanie sygnału bez ryzyka uszkodzenia urządzenia. Ponadto, transoptory są wykorzystywane w systemach komunikacyjnych, gdzie wymagane jest zabezpieczenie przed zakłóceniami przesyłanymi przez medium transmisyjne. Przykładem dobrych praktyk w branży jest stosowanie transoptorów w kontrolerach, gdzie ich zastosowanie zwiększa niezawodność i bezpieczeństwo całego systemu.

Pytanie 9

Jaki parametr siłownika zainstalowanego w prasie pneumatycznej ma wpływ na maksymalną wartość wysunięcia stempla?

A. Maksymalne ciśnienia zasilania
B. Średnica cylindra
C. Skok siłownika
D. Średnica tłoczyska

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skok siłownika jest kluczowym parametrem, który bezpośrednio wpływa na maksymalny wysuw stempla w prasie pneumatycznej. Oznacza on maksymalną odległość, jaką tłoczysko siłownika może przebyć od pozycji spoczynkowej do końca swojego ruchu. W praktyce oznacza to, że im większy skok siłownika, tym większy zakres ruchu stempla, co jest niezbędne w wielu zastosowaniach, takich jak formowanie, prasowanie czy tłoczenie. Zrozumienie tego parametru jest szczególnie istotne w kontekście projektowania urządzeń przemysłowych, gdzie optymalizacja wydajności jest kluczowa. W branży stosuje się różne normy dotyczące projektowania siłowników, takie jak ISO 15552, które definiują standardy dotyczące wymiarów i wydajności siłowników pneumatycznych. Dzięki tym standardom inżynierowie mogą dobierać odpowiednie komponenty, zapewniając efektywność i bezpieczeństwo urządzeń. Właściwy dobór skoku siłownika ma również wpływ na efektywność energetyczną całego systemu, co przekłada się na niższe koszty eksploatacji.

Pytanie 10

W systemie alarmowym, który jest aktywowany za pomocą pilota radiowego, zasięg jego działania znacznie się zmniejszył. Jakie może być najprawdopodobniejsze źródło tego problemu?

A. Rozładowana bateria w pilocie
B. Rozkodowanie pilota
C. Zniszczenie przycisku w pilocie
D. Niewłaściwe kierowanie pilota na odbiornik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozładowana bateria w pilocie jest najczęstszą przyczyną zmniejszenia zasięgu działania zdalnego sterowania w systemach alarmowych. Piloty działają na zasadzie wysyłania sygnału radiowego, który jest odbierany przez centralę alarmową. W miarę jak bateria się rozładowuje, moc sygnału znacząco maleje, co skutkuje osłabieniem zasięgu. W praktyce, użytkownicy powinni regularnie kontrolować stan baterii swoich pilotów, a także stosować wysokiej jakości akumulatory, które zapewniają stabilne zasilanie przez dłuższy czas. Ważne jest również, aby przy wymianie baterii stosować się do instrukcji producenta, co pozwoli uniknąć problemów z kompatybilnością. Zgodnie z dobrymi praktykami, zaleca się wymianę baterii co 6-12 miesięcy, aby zapewnić niezawodne działanie systemu alarmowego. Ponadto, użytkownicy powinni być świadomi, że inne czynniki, takie jak zakłócenia elektromagnetyczne czy przeszkody w postaci ścian, mogą również wpływać na zasięg, jednak w przypadku znacznej redukcji zasięgu, rozładowana bateria jest najprawdopodobniejszym czynnikiem.

Pytanie 11

Który z poniższych typów czujników używany jest do wykrywania pozycji tłoka siłownika beztłoczyskowego, na którym zamontowane są magnesy?

A. Ultradźwiękowy
B. Kontaktronowy
C. Tensometryczny
D. Indukcyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik kontaktronowy to urządzenie, które działa na zasadzie reakcji na pole magnetyczne, które zmienia się w wyniku ruchu tłoka siłownika beztłoczyskowego z zamontowanymi magnesami. Urządzenie to składa się z dwóch styków zamkniętych w szklanej obudowie, które otwierają się lub zamykają w momencie oddziaływania z polem magnetycznym. Dzięki tej zasadzie działania, czujnik kontaktronowy jest idealnym rozwiązaniem do monitorowania położenia tłoka, ponieważ umożliwia precyzyjne określenie jego pozycji bez kontaktu mechanicznego, co eliminuje zużycie elementów mechanicznych. W praktyce, czujniki te są szeroko stosowane w automatyzacji przemysłowej, zwłaszcza w aplikacjach wymagających wysokiej niezawodności, takich jak systemy pneumatyczne i hydrauliczne. Warto również zauważyć, że czujniki kontaktronowe są zgodne z różnymi standardami przemysłowymi, co czyni je popularnym wyborem w wielu aplikacjach inżynieryjnych.

Pytanie 12

Aby umożliwić wymianę informacji między urządzeniami sieciowymi, niezbędne jest zaangażowanie wszystkich elementów w sieci komunikacyjnej o określonej topologii

A. magistrali
B. pierścienia
C. gwiazdy
D. drzewa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Topologia pierścienia wymaga, aby każde urządzenie w sieci brało udział w przesyłaniu danych, co czyni ją unikalną w porównaniu do innych topologii. W sieci opartej na tej topologii wszystkie urządzenia są połączone w zamknięty krąg, co oznacza, że dane poruszają się w jednym kierunku, przechodząc przez każde urządzenie aż do dotarcia do końcowego odbiorcy. Przykładem zastosowania topologii pierścienia mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. Dzięki temu, że każde urządzenie może przekazywać dane dalej, zwiększa się efektywność komunikacji, ale także wzrasta ryzyko awarii całej sieci w przypadku przerwania połączenia. Dlatego w projektowaniu takich sieci zaleca się stosowanie dodatkowych rozwiązań, jak np. mechanizmy detekcji błędów i redundancji, aby zminimalizować skutki ewentualnych awarii.

Pytanie 13

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. złożeniowy
B. rzutowy
C. zespołowy
D. częściowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 14

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy konstrukcyjne
B. Elementy sygnalizacyjne
C. Elementy napędowe
D. Elementy sterujące

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Konstrukcyjne elementy urządzeń mechatronicznych, takie jak ramy, wsporniki i inne elementy nośne, są szczególnie narażone na działanie czynników zewnętrznych, co może prowadzić do ich korozji. Cynkowanie jest skuteczną metodą ochrony przed tym procesem, ponieważ tworzy na powierzchni warstwę cynku, która działa jako bariera dla wilgoci i innych korozjogennych substancji. Dzięki cynkowaniu, elementy te mogą zachować swoje właściwości mechaniczne oraz estetyczne przez długi czas, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykładem może być przemysł budowlany, gdzie elementy konstrukcyjne, takie jak belki czy słupy, muszą być odporne na trudne warunki atmosferyczne. Dobre praktyki branżowe zalecają regularne przeglądy oraz konserwację takich elementów, aby zapewnić ich długowieczność i niezawodność. W standardzie ISO 1461 opisano wymagania dotyczące cynkowania ogniowego, co zapewnia zgodność z międzynarodowymi normami jakości.

Pytanie 15

Jaką rozdzielczość ma przetwornik A/C o 10-bitowej głębokości w sterowniku PLC, gdy zakres pomiarowy wynosi 0÷10 V?

A. 49,4 mV/bit
B. 9,8 mV/bit
C. 100,5 mV/bit
D. 1,1 mV/bit

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 9,8 mV/bit jest poprawna, ponieważ rozdzielczość przetwornika analogowo-cyfrowego (A/C) oblicza się na podstawie wzoru, który uwzględnia zarówno zakres pomiarowy, jak i liczbę bitów przetwornika. W tym przypadku, mając zakres 0-10 V oraz 10-bitowy przetwornik, obliczamy rozdzielczość jako 10 V / (2^10), co daje wynik 9,8 mV/bit. Oznacza to, że każdy bit przetwornika reprezentuje zmianę napięcia równą 9,8 mV. W praktyce, taka rozdzielczość jest kluczowa w systemach automatyki i sterowania, gdzie precyzyjny pomiar parametrów fizycznych, takich jak temperatura, ciśnienie czy poziom wody, jest niezbędny do prawidłowego funkcjonowania zautomatyzowanych procesów. Użycie 10-bitowego przetwornika A/C w aplikacjach przemysłowych pozwala na uzyskanie zadowalającej precyzji przy jednoczesnej prostocie implementacji i kosztach, co czyni go popularnym wyborem w wielu standardach branżowych, takich jak IEC 61131 dla systemów PLC.

Pytanie 16

Jakie urządzenie powinno być użyte, aby zredukować natężenie prądu rozruchowego silnika indukcyjnego, który napędza systemy mechatroniczne?

A. Ochrona przed przeciążeniem
B. Włącznik z opóźnieniem
C. Układ miękkiego startu
D. Sterownik PLC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ miękkiego startu to kluczowe urządzenie stosowane w systemach napędowych, które znacząco redukuje prąd rozruchowy silników indukcyjnych. Jego działanie polega na stopniowym zwiększaniu napięcia, co pozwala na kontrolowane uruchamianie silnika. Dzięki temu unika się nagłych skoków prądu, które mogą prowadzić do uszkodzeń zarówno samego silnika, jak i pozostałych elementów instalacji elektrycznej. W praktyce, układ miękkiego startu jest często stosowany w aplikacjach wymagających dużej mocy, takich jak pompy, wentylatory czy prasy hydrauliczne. Wprowadzenie tego rozwiązania przyczynia się nie tylko do przedłużenia żywotności silnika, ale także do obniżenia kosztów eksploatacji związanych z awariami. Dodatkowo, zastosowanie układów miękkiego startu wpisuje się w standardy efektywności energetycznej, co jest kluczowe w dobie zwracania uwagi na oszczędność energii. Warto podkreślić, że w przypadku silników z napędem mechatronicznym, układ ten umożliwia lepszą synchronizację z pozostałymi komponentami systemu, co przyczynia się do zwiększenia ich wydajności.

Pytanie 17

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Download
B. Write
C. Upload
D. Erase Memory

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 18

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. Linker
B. SCADA
C. Kompilator
D. CAD/CAM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 19

Jakie parametry są najczęściej regulowane w systemach mechatronicznych z wykorzystaniem regulacji PID?

A. Dźwięk, drgania, przyspieszenie
B. Kolor, natężenie światła, zapach
C. Wilgotność, napięcie, waga
D. Prędkość, temperatura, ciśnienie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulacja PID, czyli proporcjonalno-całkująco-różniczkująca, jest jednym z najczęściej stosowanych algorytmów sterowania w mechatronice i automatyce. Jest używana do precyzyjnego utrzymania zadanych wartości parametrów procesowych, takich jak prędkość, temperatura czy ciśnienie. Przykładowo, w przemyśle produkcyjnym PID może kontrolować temperaturę pieca poprzez regulację dopływu paliwa lub prędkość taśmociągu poprzez kontrolę silnika napędowego. PID działa na zasadzie minimalizacji różnicy (błędu) pomiędzy wartością zadaną a rzeczywistą, wykorzystując trzy składowe: proporcjonalną, całkującą i różniczkującą, co pozwala na szybkie i stabilne osiągnięcie wartości zadanej. Algorytmy PID są powszechnie stosowane ze względu na swoją prostotę, efektywność i zdolność do adaptacji w różnych warunkach, a także na bazie ich solidnego wsparcia teoretycznego i łatwości implementacji w systemach cyfrowych.

Pytanie 20

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. stosowania tylko przewodów nieekranowanych
B. układania przewodów komunikacyjnych równolegle do przewodów zasilających
C. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
D. wykorzystania przewodów o dużej pojemności wzajemnej żył

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prowadzenie przewodów komunikacyjnych równolegle do przewodów zasilających jest kluczowym zaleceniem w kontekście minimalizacji zakłóceń elektromagnetycznych. Takie podejście pozwala na skuteczne oddzielanie sygnałów komunikacyjnych od potencjalnych źródeł zakłóceń, co jest szczególnie istotne w aplikacjach mechatronicznych, gdzie stabilność działania urządzeń ma kluczowe znaczenie. W praktyce, stosowanie tej metody przyczynia się do zwiększenia jakości przesyłu danych i zmniejszenia ryzyka błędów komunikacyjnych. W branży automatyki istnieje wiele standardów, takich jak IEC 61158, które podkreślają znaczenie odpowiedniego prowadzenia przewodów w kontekście interoperacyjności i niezawodności systemów. Warto również pamiętać, że zgodnie z wytycznymi producentów, stosowanie tej techniki w instalacjach przemysłowych umożliwia lepsze dostosowanie do zmieniających się warunków pracy oraz poprawia ogólną wydajność systemów. Dlatego właściwe prowadzenie przewodów komunikacyjnych powinno być integralnym elementem projektowania i implementacji systemów mechatronicznych.

Pytanie 21

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
B. Przekazać sterownik do serwisu
C. Skontrolować stan czujnika krańcowego
D. Zweryfikować zasilanie silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie stanu czujnika krańcowego jako pierwsza czynność w diagnozowaniu problemów z automatycznymi bramami przesuwnymi jest niezwykle istotne. Czujnik krańcowy pełni kluczową rolę w systemie, informując sterownik o tym, że brama osiągnęła maksymalną pozycję otwartą lub zamkniętą. Jeśli czujnik nie działa prawidłowo, brama nie otrzyma sygnału do zatrzymania, co może prowadzić do niebezpiecznych sytuacji. Dobrą praktyką jest regularne serwisowanie systemu, w tym sprawdzanie funkcjonowania czujników, co może zapobiec poważnym usterkom. W przypadku stwierdzenia uszkodzenia czujnika, jego wymiana jest zalecana, aby zapewnić pełną funkcjonalność bramy. Co więcej, w standardach bezpieczeństwa dla automatycznych bram, takich jak normy EN 13241-1, podkreśla się znaczenie sprawności czujników, co ma kluczowe znaczenie dla ochrony osób i mienia w pobliżu bramy.

Pytanie 22

Jak często powinny być realizowane przeglądy techniczne urządzeń oraz systemów mechatronicznych?

A. Zgodnie z ustalonym harmonogramem przeglądów.
B. Przynajmniej raz do roku.
C. Co dwa lata.
D. Systematycznie, co pięć lat.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Zgodnie z planem przeglądów' jest prawidłowa, ponieważ przeglądy techniczne urządzeń i systemów mechatronicznych powinny być realizowane zgodnie z ustalonym harmonogramem, który najczęściej jest określany przez producenta. Plan przeglądów uwzględnia specyfikę działania danego urządzenia, jego intensywność eksploatacji oraz warunki środowiskowe, w jakich pracuje. Przykładowo, w przypadku systemów automatyki przemysłowej, regularne przeglądy mogą obejmować sprawdzenie stanu czujników, przetestowanie oprogramowania oraz kontrolę elementów mechanicznych. Dobre praktyki branżowe wskazują, że przestrzeganie ustalonego planu przeglądów nie tylko zapewnia niezawodność i długowieczność systemów, ale także ma kluczowe znaczenie dla bezpieczeństwa pracy. Dodatkowo, stosowanie się do zasad wynikających z norm ISO, takich jak ISO 9001, podkreśla znaczenie regularnej konserwacji i przeglądów w systemach zarządzania jakością.

Pytanie 23

Jakiej litery używamy do oznaczania na schematach systemów sterowania wyjść sterownika PLC?

A. W
B. I
C. Q
D. X

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Litera Q jest standardowo używana do oznaczania wyjść w systemach sterowania opartych na sterownikach PLC, ponieważ pochodzi od angielskiego słowa "output". W praktyce oznaczenie to jest niezwykle ważne dla zachowania przejrzystości oraz jednoznaczności schematów. Użycie litery Q pomaga inżynierom i technikom w szybkiej identyfikacji elementów wyjściowych w skomplikowanych układach sterujących. Na przykład, w wielu projektach automatyzacji przemysłowej, takich jak sterowanie silnikami, zaworami czy innymi urządzeniami wykonawczymi, oznaczenia Q ułatwiają dokumentację oraz diagnostykę. Stosowanie standardów w oznaczeniach, takich jak IEC 61131-3, gwarantuje, że schematy są zgodne z przyjętymi normami branżowymi, co ułatwia współpracę między zespołami inżynieryjnymi oraz zapewnia efektywność komunikacji w projektach. Dodatkowo, stosując jednolite oznaczenia, inżynierowie mogą szybciej wprowadzać zmiany w układzie, co zwiększa elastyczność i skraca czas realizacji projektów.

Pytanie 24

Początkowo operator frezarki powinien

A. kilkakrotnie szybko uruchomić i wyłączyć frezarkę w celu sprawdzenia prawidłowego działania silnika
B. ocenić stan frezu oraz jego mocowanie
C. sprawdzić kondycję techniczną łożysk silnika i w razie potrzeby je nasmarować
D. wyczyścić łożyska silnika, styki przekaźników oraz styczników w systemie sterowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawną odpowiedzią jest sprawdzenie stanu frezu i jego mocowania, ponieważ jest to kluczowy krok w zapewnieniu prawidłowego funkcjonowania frezarki. Frez jest narzędziem skrawającym, które wymagane jest do efektywnego usuwania materiału. Jego uszkodzenie lub niewłaściwe mocowanie mogą prowadzić do wadliwego przetwarzania materiału, co z kolei wpływa na jakość wykonanych detali oraz wydajność produkcji. Przykładowo, jeśli frez nie jest prawidłowo zamocowany, może dojść do jego wibracji, co prowadzi do nadmiernego zużycia narzędzia oraz ryzyka uszkodzenia maszyny. Dobrym praktyką przed rozpoczęciem pracy jest przeprowadzenie wizualnej kontroli frezu oraz zastosowanie odpowiednich narzędzi do pomiaru, takich jak suwmiarka, aby upewnić się, że jego średnica oraz długość są zgodne z wymaganiami. Dodatkowo, warto pamiętać o regularnych przeglądach stanu technicznego, co jest zgodne z normami ISO dotyczącymi zarządzania jakością w procesach produkcyjnych.

Pytanie 25

Co obejmuje zakres pomiarowy czujnika?

A. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
B. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
C. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
D. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.

Pytanie 26

Który z parametrów wskazuje na efektywność sprężarki pneumatycznej?

A. Sprawność [%]
B. Strumień objętości [m3/min]
C. Ciśnienie [bar]
D. Prędkość obrotowa wału [obr./min]

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Strumień objętości [m3/min] jest kluczowym parametrem określającym wydajność sprężarki pneumatycznej, ponieważ reprezentuje ilość powietrza, którą urządzenie jest w stanie dostarczyć w ciągu jednej minuty. Wydajność sprężarki ma bezpośredni wpływ na jej zastosowanie w różnych procesach przemysłowych, takich jak obróbka materiałów, zasilanie narzędzi pneumatycznych czy systemy transportu pneumatycznego. Wysoka wydajność sprężarki jest istotna w aplikacjach, gdzie wymagana jest ciągła i stabilna dostawa powietrza, na przykład w liniach produkcyjnych. Standardy branżowe, takie jak ISO 8573, określają wymagania dotyczące jakości powietrza i wydajności sprężarek, co podkreśla znaczenie strumienia objętości jako wskaźnika efektywności. W praktyce, przed wyborem sprężarki, warto dokładnie oszacować potrzebny strumień objętości, aby dobrać odpowiedni model, co pozwoli na optymalizację kosztów eksploatacji i zapewnienie odpowiedniego wsparcia dla procesów produkcyjnych.

Pytanie 27

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Siłownik hydrauliczny
B. Silnik pneumatyczny
C. Silnik hydrauliczny
D. Siłownik pneumatyczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siłownik hydrauliczny, który charakteryzuje się parametrami podanymi w pytaniu, jest urządzeniem wykorzystywanym w różnych zastosowaniach przemysłowych, gdzie wymagane są duże siły oraz precyzyjna kontrola ruchu. Średnica tłoka wynosząca 42 mm oraz ciśnienie nominalne na poziomie 24 MPa wskazują na znaczną moc, którą może generować ten siłownik. Skok tłoka wynoszący 150 mm oraz maksymalna prędkość tłoka 10 m/s sugerują, że jest to urządzenie przeznaczone do dynamicznego i efektywnego działania, co jest typowe dla aplikacji w automatyzacji procesów. Siłowniki hydrauliczne są powszechnie stosowane w maszynach budowlanych, systemach podnoszenia oraz w przemysłowych liniach produkcyjnych, gdzie wymagane jest przenoszenie ciężkich ładunków z dużą precyzją. W branży hydraulicznej standardy ISO 4413 oraz ISO 9001 podkreślają znaczenie jakości i bezpieczeństwa w projektowaniu i użytkowaniu takich urządzeń. Dobrze zaprojektowany siłownik hydrauliczny nie tylko zwiększa efektywność operacyjną, ale również zapewnia długotrwałą niezawodność i mniejsze ryzyko awarii.

Pytanie 28

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. L
B. R
C. N
D. S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 29

Jak powinna przebiegać poprawna kolejność instalacji systemu sprężonego powietrza z wykorzystaniem przewodów poliamidowych?

A. Cięcie przewodu, gratowanie krawędzi, pomiar długości odcinka przewodu, montaż złączki
B. Pomiar długości odcinka przewodu, cięcie przewodu, gratowanie krawędzi, montaż złączki
C. Gratowanie krawędzi, pomiar długości odcinka przewodu, cięcie przewodu, montaż złączki
D. Cięcie przewodu, gratowanie krawędzi, montaż złączki, pomiar długości odcinka przewodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na właściwą kolejność działań przy instalacji sprężonego powietrza z przewodów poliamidowych. Wymierzenie długości odcinka przewodu jest kluczowym pierwszym krokiem, który zapewnia, że użyty materiał będzie odpowiedni do planowanej instalacji. Zbyt krótki przewód może uniemożliwić prawidłowe podłączenie złączek, natomiast zbyt długi może powodować zbędne straty ciśnienia i trudności w dalszej obróbce. Cięcie przewodu powinno następować po dokonaniu pomiarów, aby uzyskać dokładny odcinek. Gratowanie krawędzi jest niezbędne, aby usunąć wszelkie ostre krawędzie, które mogą uszkodzić uszczelki lub stwarzać zagrożenie dla użytkowników. Ostateczny etap to montaż złączki, który wykonujemy po odpowiednim przygotowaniu przewodu, aby zapewnić szczelność i bezpieczeństwo połączenia. Przestrzeganie tej kolejności jest zgodne z najlepszymi praktykami w branży oraz standardami bezpieczeństwa.

Pytanie 30

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MD14
B. MB14
C. ML14
D. MW14

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
ML14 jest poprawną odpowiedzią, ponieważ w kontekście adresacji zmiennych w sterownikach PLC, termin ten oznacza 'Marker Long'. Działa to na zasadzie przypisania odpowiedniego typu danych do konkretnego adresu w pamięci. Zmienne 64-bitowe, takie jak w tym przypadku, są klasyfikowane jako długie słowa, dlatego poprawne jest użycie oznaczenia ML. Liczba 14 oznacza, że zmienna zaczyna się od 14-tego bajtu w pamięci markerów i zajmuje osiem kolejnych bajtów, co jest zgodne z zasadami adresacji w systemach PLC. Ważne jest, aby mieć na uwadze, że różne typy danych są adresowane różnymi prefiksami; na przykład, MD oznacza zmienną 32-bitową, MW to zmienna 16-bitowa, a MB to zmienna 8-bitowa. Znajomość tych oznaczeń jest kluczowa w programowaniu PLC, ponieważ niewłaściwe adresowanie może prowadzić do błędów w działaniu programu. W praktyce, podczas tworzenia programów w PLC, zawsze należy upewnić się, że adresy zmiennych odpowiadają ich typowi, aby zapewnić poprawne działanie oraz optymalną wydajność urządzenia. Dobrą praktyką jest również dokumentowanie, jakie typy zmiennych i adresy są używane w projekcie, co ułatwia późniejsze zarządzanie i debugging.

Pytanie 31

Aby zmienić wartość skoku gwintu, należy dostosować wartość numeryczną obok litery adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. Q (promień wodzący)
B. F (prędkość posuwu)
C. T (wybór narzędzia)
D. D (korektor narzędzia)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaznaczyłeś odpowiedź F dotycząca prędkości posuwu, co jest całkowicie trafne. Ten parametr F w kodzie G jest kluczowy, bo steruje prędkością, z jaką narzędzie się porusza podczas skanowania G31. Gdy zmieniamy skok gwintu w CNC, zwłaszcza przy toczeniu, musimy naprawdę uważać na prędkość posuwu, bo to ma ogromny wpływ na jakość gwintu. Jeśli posuw będzie za szybki, może wyjść zbyt płytki skok, a jak będzie za wolny, to narzędzia się szybciej zużyją i jakość wykonania będzie kiepska. Warto wziąć pod uwagę standardy przemysłowe, które mówią o tym, że prędkość posuwu powinna być dopasowana do materiału, którego używamy, i kształtu narzędzia, żeby wszystko działało jak najlepiej. Jak obrabiamy metale ferromagnetyczne i nieżelazne, to dobrze jest zerknąć na tabele prędkości skrawania, żeby wiedzieć, jakie wartości zastosować do konkretnej pracy. To klucz do dłuższej trwałości narzędzi i lepszego wykończenia detali.

Pytanie 32

Jakiej z wymienionych funkcji nie może realizować pracownik obsługujący prasę hydrauliczną, która jest sterowana przy pomocy sterownika PLC?

A. Modernizować urządzenia
B. Inicjować programu sterującego
C. Konfigurować parametrów urządzenia
D. Weryfikować stanu osłon urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Modernizacja sprzętu, jak na przykład pras hydraulicznych z PLC, to złożony proces, który wymaga sporej wiedzy technicznej i odpowiednich uprawnień. Operator maszyny skupia się głównie na jej obsłudze, a nie na wprowadzaniu większych zmian konstrukcyjnych. Wiesz, że według norm bezpieczeństwa, modyfikacje powinny być przeprowadzane przez osoby z odpowiednimi kwalifikacjami? Na przykład, zmiany w parametrach hydraulicznych czy wymiana kluczowych części to rzeczy, które wymagają dokładnych analiz, a do tego operatorzy nie są przeszkoleni. To oni uruchamiają programy sterujące, ustawiają parametry i monitorują stan osłon. Dbają o codzienną eksploatację maszyny, co przekłada się na bezpieczeństwo i efektywność pracy. Dlatego stwierdzenie "Modernizować urządzenia." jest jak najbardziej słuszne, bo w końcu to nie jest zadanie dla każdego.

Pytanie 33

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. ogólnego remontu maszyny
B. przeglądu technicznego w trakcie przestoju
C. planowych napraw bieżących bez rozkładania całej maszyny
D. planowych napraw średnich realizowanych po demontażu całej maszyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przeglądu technicznego w czasie przestoju jako momentu na usunięcie nieszczelności w układzie smarowania lub cieczy chłodzącej jest trafny z wielu powodów. Nieszczelności te mogą prowadzić do poważnych problemów operacyjnych, takich jak przegrzewanie się maszyny czy jej uszkodzenie, co w konsekwencji może skutkować wstrzymaniem produkcji. Przegląd techniczny w czasie przestoju to idealny moment na przeprowadzenie dokładnej inspekcji, ponieważ pozwala na zidentyfikowanie i naprawienie problemów bez ryzyka wpływu na wydajność pracy. W ramach przeglądu można również przeprowadzić dodatkowe czynności, takie jak uzupełnienie płynów eksploatacyjnych czy wymiana zużytych elementów. Dobre praktyki branżowe wskazują na konieczność przeprowadzania takich inspekcji w regularnych odstępach czasowych, co podnosi bezpieczeństwo i efektywność pracy urządzeń hydraulicznych. Dlatego odpowiedź na to pytanie potwierdza świadomość znaczenia regularnych przeglądów w kontekście utrzymania ruchu maszyn.

Pytanie 34

Wskaż operator używany w języku IL, który musi być uwzględniony w programie sterującym, aby zrealizować instrukcję skoku do etykiety FUN_1?

A. JMP FUN_1
B. RET FUN_1
C. CAL FUN_1
D. LD FUN_1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Operator JMP (jump) w języku IL (Instruction List) odgrywa kluczową rolę w programowaniu sterowników PLC, umożliwiając bezwarunkowe skoki do wskazanych etykiet. Użycie JMP jest szczególnie istotne w sytuacjach, gdy istnieje potrzeba wykonania fragmentu kodu w odpowiedzi na określony warunek lub zdarzenie. Na przykład, w przypadku pętli kontrolnych, operator ten pozwala na powrót do początku pętli, co jest niezbędne dla płynności działania programu. JMP jest zgodny z normą IEC 61131-3, która definiuje języki programowania PLC, co czyni go standardowym rozwiązaniem w branży. Dobrą praktyką jest korzystanie z etykiet, które są jasno zdefiniowane i opisują funkcjonalność, co ułatwia zrozumienie kodu. Przykładem zastosowania może być system automatyki w zakładzie produkcyjnym, gdzie operator JMP kieruje przepływem programu w oparciu o zmieniające się warunki, takie jak sygnały z czujników czy stany maszyn.

Pytanie 35

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
B. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 36

Jaki program jest używany do projektowania obiektów w 3D?

A. FluidSim
B. AutoCad
C. PCschematic
D. Paint

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
AutoCad to zaawansowane oprogramowanie CAD (Computer-Aided Design), które jest szeroko stosowane w branżach inżynieryjnych oraz architektonicznych do tworzenia rysunków technicznych, projektów oraz modelowania 3D. Dzięki rozbudowanej funkcjonalności, AutoCad umożliwia nie tylko rysowanie obiektów w przestrzeni trójwymiarowej, ale także ich edytowanie i wizualizację. W praktyce, architekci wykorzystują AutoCad do projektowania budynków, co pozwala im na łatwe wprowadzanie zmian oraz generowanie szczegółowych rysunków wykonawczych. Inżynierowie mechanicy mogą używać tego programu do projektowania skomplikowanych mechanizmów czy urządzeń, co wymaga precyzyjnego modelowania i analizy. Warto również zaznaczyć, że AutoCad dorównuje międzynarodowym standardom branżowym, co czyni go niezastąpionym narzędziem w profesjonalnym projektowaniu oraz dokumentacji technicznej, a jego umiejętności są wysoko cenione na rynku pracy.

Pytanie 37

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Użytkowej
B. Programu
C. Roboczej
D. Systemowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "Systemowej", ponieważ odwołania do stanów fizycznych wejść sterownika PLC są zarządzane w bloku pamięci systemowej. To właśnie w tym obszarze pamięci gromadzone są informacje o aktualnym stanie wszystkich wejść i wyjść urządzenia, co jest kluczowe dla prawidłowego działania aplikacji sterującej. Przykładowo, w aplikacjach automatyki przemysłowej, gdzie czas reakcji jest istotny, programista musi mieć pewność, że wszystkie odczyty stanów wejść są wykonywane w czasie rzeczywistym. Wykorzystanie pamięci systemowej pozwala na efektywne przetwarzanie informacji, co w konsekwencji prowadzi do szybszego podejmowania decyzji przez systemy sterujące. Dobrą praktyką w programowaniu PLC jest regularne monitorowanie i aktualizacja stanów wejść, aby zminimalizować ryzyko błędów operacyjnych. Dodatkowo, zgodnie z normami branżowymi, takie jak IEC 61131, zarządzanie pamięcią systemową powinno być dobrze udokumentowane, aby zapewnić łatwość w diagnostyce i konserwacji systemu.

Pytanie 38

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Wyłączania
B. Wzbudzonym
C. Niewzbudzonym
D. Przełączania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.

Pytanie 39

Jak zwiększenie częstotliwości napięcia zasilającego podawanego z falownika wpłynie na działanie silnika trójfazowego?

A. Moment obciążenia silnika się zwiększy
B. Obroty silnika wzrosną
C. Obroty silnika się zmniejszą
D. Maksymalny moment napędowy silnika ulegnie zmniejszeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie częstotliwości podawanego z falownika napięcia zasilającego bezpośrednio wpływa na obroty silnika trójfazowego. Zasada ta wynika z podstawowych praw elektrotechniki, które mówią o tym, że częstotliwość zasilania ma kluczowe znaczenie dla prędkości obrotowej silników asynchronicznych. W przypadku silnika trójfazowego, jego obroty można obliczyć ze wzoru: n = (120 * f) / p, gdzie n to obroty na minutę, f to częstotliwość zasilania w hercach, a p to liczba par biegunów. W praktyce oznacza to, że zwiększając częstotliwość zasilania, przy zachowaniu stałej liczby par biegunów, silnik będzie pracował z wyższymi obrotami. W zastosowaniach przemysłowych, takich jak napędy w wentylatorach, pompach czy taśmach transportowych, regulacja obrotów silnika poprzez falownik pozwala na optymalizację wydajności energetycznej oraz dostosowanie prędkości do aktualnych potrzeb procesu. Dzięki temu można osiągnąć nie tylko wyższą efektywność, ale również wydłużenie żywotności urządzeń, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 40

Wskaż właściwy sposób adresacji zmiennej 32-bitowej w obszarze pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 102

A. MB102
B. MD102.
C. ML102.
D. MW102.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
MD102 jest prawidłową odpowiedzią, ponieważ adresuje zmienną 32-bitową (marker dwubajtowy) w systemach PLC, takich jak Siemens. W nomenklaturze PLC oznaczenie MD wskazuje na standardowy sposób adresowania zmiennych, które zajmują 4 bajty pamięci, więc adres 102 odnosi się do pierwszego bajtu tej zmiennej. Zmienne 32-bitowe są często stosowane w aplikacjach wymagających precyzyjnego przechowywania danych, takich jak zliczanie, akumulacja i inne operacje arytmetyczne w procesach przemysłowych. Używanie odpowiednich oznaczeń jest istotne dla zapewnienia, że programy działają zgodnie z zamierzeniami, a także dla przyszłej konserwacji i rozwoju systemów. Przykładowo, w programowaniu PLC, gdzie istotne jest efektywne zarządzanie zasobami pamięci, prawidłowe adresowanie zmiennych 32-bitowych minimalizuje ryzyko błędów związanych z odczytem lub zapisem danych, co jest szczególnie ważne w zautomatyzowanych liniach produkcyjnych, gdzie błędy mogą prowadzić do poważnych strat. Znajomość takich konwencji jest zatem kluczowa dla każdego inżyniera automatyki.