Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 15:20
  • Data zakończenia: 13 maja 2025 15:50

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. W kartach danych handlowych
B. Na tabliczce identyfikacyjnej
C. W instrukcji obsługi
D. Na dokumencie gwarancyjnym
Wytyczne dotyczące konserwacji urządzeń mechatronicznych są niezwykle istotne dla ich prawidłowego funkcjonowania. Karty informacji handlowej, tabliczki znamionowe oraz karty gwarancyjne, mimo że zawierają pewne użyteczne informacje, nie są właściwymi źródłami dotyczących zakresu i częstotliwości prac konserwacyjnych. Karty informacji handlowej zazwyczaj skupiają się na danych technicznych, takich jak parametry wydajności czy specyfikacje. Nie dostarczają one jednak szczegółowych instrukcji dotyczących konserwacji, co może prowadzić do pomijania istotnych aspektów utrzymania urządzenia. Tabliczki znamionowe mają na celu identyfikację urządzenia, podając jego model oraz parametry techniczne, ale również nie zawierają informacji na temat wymagań konserwacyjnych. Karty gwarancyjne natomiast koncentrują się przede wszystkim na warunkach gwarancji i odpowiedzialności producenta w przypadku awarii, co również nie obejmuje szczegółowych wskazówek dotyczących konserwacji. Użytkownicy często popełniają błąd, sądząc, że jakiekolwiek dokumenty związane z urządzeniem mogą być wystarczające do określenia zasad konserwacji. W rzeczywistości, ignorowanie właściwych źródeł informacji, takich jak instrukcje obsługi, może prowadzić do niewłaściwej eksploatacji i zwiększonego ryzyka awarii, co w dłuższej perspektywie zwiększa koszty eksploatacji oraz może powodować przestoje w produkcji. Zrozumienie, gdzie szukać odpowiednich informacji, jest kluczowe dla efektywnego zarządzania urządzeniami mechatronicznymi.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. uszkodzenia łożysk
B. zwarcia w uzwojeniach stojana lub wirnika
C. przerw w obwodzie zasilania silnika
D. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

W specyfikacji silnika można znaleźć oznaczenie S2 40. Pracując z układem wykorzystującym ten silnik, trzeba mieć na uwadze, aby

A. silnik pracował z obciążeniem nie mniejszym niż 40% mocy znamionowej
B. czas działania nie przekraczał 40 min., a czas postoju był do momentu, gdy silnik się schłodzi.
C. temperatura otoczenia w trakcie pracy nie była wyższa niż 40°C
D. wilgotność otoczenia w trakcie pracy nie była wyższa niż 40%
Odpowiedź wskazująca na czas pracy silnika wynoszący maksymalnie 40 minut oraz wymagany czas postoju do momentu ostygnięcia jest zgodna z zasadami eksploatacji silników oznaczonych jako S2. W tego rodzaju silnikach, okres pracy krótkotrwałej, jak i czas odpoczynku, są kluczowe dla ich efektywności oraz żywotności. Oznaczenie S2 40 informuje, że silnik może działać przez 40 minut z pełnym obciążeniem, po czym konieczne jest, aby miał czas na schłodzenie. Przykładem zastosowania tych zasad jest praca silnika w aplikacjach, gdzie wymagana jest jego cykliczna praca, jak w przenośnych narzędziach elektrycznych. Zgodnie z normami IEC 60034, stosowanie się do tych zasad pozwala na uniknięcie przegrzewania, co zwiększa niezawodność urządzenia oraz zmniejsza ryzyko awarii. Warto również zauważyć, że odpowiednie szacowanie cyklów pracy i odpoczynku stanowi element dobrej praktyki inżynieryjnej, co przekłada się na oszczędności w kosztach utrzymania i wydłużenie czasu eksploatacji. Dbanie o te wartości jest nie tylko wymagane, ale i korzystne z perspektywy użytkownika.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. rzutowy
B. zespołowy
C. częściowy
D. złożeniowy
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. przetrzeć komutator mokrą szmatką
B. wyczyścić komutator i szczotki
C. oczyścić komutator i wypolerować papierem ściernym
D. nałożyć na komutator olej lub smar
Podejścia zaproponowane w pozostałych odpowiedziach mogą prowadzić do poważnych problemów z działaniem silnika prądu stałego. Przede wszystkim, przetarcie komutatora wilgotną szmatką może wydawać się logicznym rozwiązaniem, jednak w praktyce wprowadza wilgoć, która nie tylko nie usuwa zabrudzeń, ale również może prowadzić do korozji. Wilgoć w komutatorze sprzyja powstawaniu zwarć, co może uszkodzić szczotki oraz prowadzić do awarii silnika. Smarowanie komutatora olejem lub smarem to kolejny błędny krok, ponieważ olej i smar mogą pozostawić lepkie resztki, które przyciągają brud i kurzu, co z czasem pogarsza sytuację i może prowadzić do większych zanieczyszczeń. Umycie komutatora i szczotek również nie jest zalecane, ponieważ woda używana w tym procesie może pozostać na powierzchni, co prowadzi do problemów z przewodnictwem elektrycznym i dodatkowo sprzyja korozji. Te nieprawidłowe metody są często wynikiem błędnego przekonania, że można radzić sobie z zabrudzeniami w prosty sposób, jednak nie uwzględniają one specyfiki i wymogów dotyczących konserwacji komutatorów. Właściwe podejście powinno obejmować regularne czyszczenie i stosowanie odpowiednich technik, takich jak polerowanie papierem ściernym, aby zapewnić długoterminową wydajność i niezawodność operacyjną silników prądu stałego.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Kierunek obrotu wirnika silnika indukcyjnego trójfazowego można zmienić poprzez

A. zmianę liczby par biegunów magnetycznych
B. zmianę kolejności faz w sieci zasilającej silnik
C. zmianę częstotliwości napięcia zasilającego
D. szeregowe podłączenie dodatkowego rezystora do jednego z uzwojeń
Zmiana kolejności faz w silniku indukcyjnym trójfazowym jest kluczowym sposobem na zmianę kierunku obrotów wirnika. Każda z trzech faz dostarcza prąd o różnej różnicy faz, co generuje zmieniające się pole magnetyczne w stojanie. Te różnice faz prowadzą do obrotu pola magnetycznego, a tym samym również wirnika. Przykładowo, w zastosowaniach przemysłowych, kiedy silnik musi zmieniać kierunek obrotów w odpowiedzi na zmieniające się warunki pracy, zmiana kolejności zasilania jest najczęściej stosowaną metodą, ponieważ jest efektywna i prosta do zaimplementowania. Standardy branżowe, takie jak IEC 60034, również podkreślają tę metodę jako bezpieczną i efektywną w aplikacjach, gdzie wymagana jest dynamiczna kontrola kierunku obrotów. Dzięki zrozumieniu tej zasady, inżynierowie mogą lepiej projektować systemy napędowe i optymalizować je w zależności od wymagań aplikacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z poniższych elementów jest niezbędny do prawidłowego działania układu pneumatycznego?

A. Transformator
B. Sprężarka
C. Akumulator
D. Rezystor
Sprężarka jest kluczowym elementem w układzie pneumatycznym, ponieważ to ona wytwarza i dostarcza sprężone powietrze, które jest medium roboczym w takich systemach. Bez sprężarki nie byłoby możliwe generowanie ciśnienia potrzebnego do działania siłowników, zaworów czy innych elementów pneumatycznych. W praktyce sprężone powietrze jest używane w wielu gałęziach przemysłu, takich jak motoryzacja, produkcja czy budownictwo. Na przykład, w warsztatach samochodowych sprężone powietrze napędza narzędzia pneumatyczne, które są bardziej wydajne i trwałe niż ich elektryczne odpowiedniki. W przemyśle produkcyjnym sprężarki są używane do zasilania linii produkcyjnych, gdzie szybkość i precyzja działania urządzeń pneumatycznych mają kluczowe znaczenie. Dobrze zaprojektowany układ pneumatyczny, oparty na odpowiednio dobranej sprężarce, jest nie tylko efektywny, ale również energooszczędny, co przekłada się na niższe koszty eksploatacji. Sprężarki są zgodne z różnymi standardami i normami, które zapewniają ich bezpieczne i efektywne działanie, co jest istotne w kontekście ich szerokiego zastosowania w przemyśle.

Pytanie 22

W jaki sposób należy ująć w spisie elementów zamieszczonym na schemacie montażowym mechanizmu informację o śrubie z gwintem metrycznym drobnozwojowym o średnicy 10 mm?

A. M10
B. TR10
C. S20
D. M10x1
Odpowiedź M10x1 jest prawidłowa, ponieważ spełnia standardy oznaczania śrub z gwintem metrycznym drobnozwojowym, które są powszechnie stosowane w przemyśle. Oznaczenie 'M10' wskazuje na średnicę zewnętrzną śruby wynoszącą 10 mm, co jest kluczowym parametrem dla zapewnienia odpowiedniego dopasowania w połączeniach mechanicznych. Dodatkowo, liczba '1' w oznaczeniu oznacza liczbę zwojów na milimetr, co jest istotną informacją dla oceny siły połączenia i możliwości użycia w konkretnych aplikacjach. Gwinty drobnozwojowe są szczególnie użyteczne w zastosowaniach wymagających większej precyzji, takich jak w precyzyjnych mechanizmach czy w przemyśle lotniczym i motoryzacyjnym. Warto również pamiętać, że standardy ISO 261 oraz ISO 965 definiują szczegółowe zasady dotyczące oznaczania gwintów metrycznych, co podkreśla znaczenie poprawnego zapisu w dokumentacji technicznej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby uzyskać możliwość regulacji prędkości posuwu napędu wałków, który jest zasilany silnikiem bocznikowym prądu stałego, należy zastosować

A. cyklokonwerter.
B. falownik.
C. sterowany prostownik tyrystorowy.
D. prostownik diodowy.
Użycie falownika, cyklokonwertera lub prostownika diodowego w kontekście zasilania silnika bocznikowego prądu stałego ma swoje ograniczenia, które mogą prowadzić do nieprawidłowej regulacji prędkości posuwu. Falowniki, choć efektywne w zastosowaniach z silnikami prądu przemiennego, nie są odpowiednie do silników prądu stałego, ponieważ nie dostarczają stałego napięcia, co jest kluczowe dla ich prawidłowego działania. Cyklokonwertery z kolei, mimo że mogą być używane do konwersji prądu stałego na prąd przemienny, są bardziej skomplikowane w implementacji i często nieefektywne w zastosowaniach wymagających regulacji prędkości silnika prądu stałego. Prostowniki diodowe, chociaż mogą zasilać silnik prądu stałego, nie umożliwiają regulacji napięcia w czasie rzeczywistym, co jest niezbędne dla precyzyjnego sterowania prędkością. Typowym błędem myślowym jest założenie, że jakiekolwiek urządzenie do konwersji mocy będzie odpowiednie do regulacji prędkości. W rzeczywistości, dla silników prądu stałego kluczowe jest dostarczenie odpowiednio przetworzonego napięcia, co zapewniają jedynie sterowane prostowniki tyrystorowe, zdolne do dynamicznej regulacji parametrów pracy silnika.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Co opisuje pojęcie 'histereza' w kontekście przetworników ciśnienia?

A. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik
B. Maksymalne ciśnienie robocze przetwornika
C. Różnica między wartościami mierzonego sygnału przy zwiększaniu i zmniejszaniu ciśnienia
D. Czas reakcji przetwornika na zmianę ciśnienia
Histereza w kontekście przetworników ciśnienia to zjawisko polegające na różnicy w wartościach sygnału wyjściowego dla tego samego ciśnienia, zależnie od tego, czy ciśnienie to zostało osiągnięte poprzez jego zwiększanie czy zmniejszanie. Jest to istotny parametr, który wpływa na dokładność pomiarów. W praktyce, gdy ciśnienie wzrasta, sygnał wyjściowy przyjmuje inną wartość niż w przypadku, gdy ciśnienie maleje do tej samej wartości. Dlatego, podczas kalibracji i eksploatacji przetworników, wartość histerezy jest uwzględniana, aby zapewnić precyzyjne odczyty. Dobre praktyki inżynierskie zalecają zwracanie uwagi na specyfikację histerezy, szczególnie w aplikacjach, gdzie dokładność jest kluczowa, jak w systemach sterowania czy monitorowania procesów. Zrozumienie histerezy pozwala lepiej dostosować systemy pomiarowe do wymagań aplikacji i zminimalizować potencjalne błędy pomiarowe wynikające z tego zjawiska.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Czasowy TON (o opóźnionym załączaniu)
B. Szybki licznika (HSC)
C. Czasowy TOF (o opóźnionym wyłączaniu)
D. Dzielnik częstotliwości
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 37

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 600 kPa
B. 0,58 MPa
C. 650 kPa
D. 630 000 Pa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.