Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 13 maja 2025 14:22
  • Data zakończenia: 13 maja 2025 14:39

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. do celów prawnych
B. do celów projektowych
C. uzupełniających
D. katastralnych
Odpowiedź "do celów prawnych" jest poprawna, ponieważ mapy te mają kluczowe znaczenie w regulacji stanu prawnego nieruchomości. Służą one do przedstawiania granic działek, ich powierzchni oraz wszelkich obciążeń prawnych, takich jak hipoteki czy służebności. Mapy do celów prawnych są wykorzystywane w procesach notarialnych, a także w postępowaniach sądowych, gdzie ważne jest dokładne określenie stanu prawnego nieruchomości. Przykładem zastosowania takich map może być procedura podziału działki, gdzie precyzyjne ustalenie granic jest niezbędne do prawidłowego podziału. W praktyce wykorzystuje się je w dokumentacji związanej z obrotem nieruchomościami, co jest zgodne z normami i standardami, takimi jak Ustawa o geodezji i kartografii, która reguluje kwestie związane z tworzeniem i wykorzystywaniem map w obrocie nieruchomościami.

Pytanie 2

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinien być pomiarowy
C. powinno znajdować się stanowisko instrumentu
D. powinien znajdować się obserwator
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 3

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. alidadą
B. limbusem
C. celownikiem
D. spodarką
Często dochodzi do mylenia pojęć związanych z teodolitami oraz ich elementami. Celownik w teodolicie to nie podziałka kątowa, lecz urządzenie optyczne, które pozwala na precyzyjne celowanie w określony punkt. W związku z tym, funkcja celownika różni się od limbusa, który, jak wcześniej wspomniano, jest odpowiedzialny za pomiar kątów. Spodarka, z kolei, to element teodolitu służący do przechylania instrumentu w płaszczyźnie poziomej, co również nie ma związku z podziałką kątową. Alida to zespół elementów umożliwiających ustawienie i stabilizację teodolitu, ale nie jest bezpośrednio związana z mierzeniem kątów. Mylenie tych terminów może prowadzić do błędów w pomiarach i interpretacji wyników, co podkreśla znaczenie dokładnego zrozumienia funkcji poszczególnych elementów teodolitu. Wiedza na temat limbusa oraz jego zastosowania jest kluczowa dla geodetów, którzy muszą być świadomi, że nie tylko sama pomiarowa technika, ale również znajomość wszystkich komponentów i ich właściwości wpływa na jakość dokonywanych pomiarów.

Pytanie 4

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Wcięć kątowych
B. Biegunowa
C. Ortogonalna
D. Domiarów prostokątnych
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 5

Jakiej czynności nie przeprowadza się na stanowisku przed zrealizowaniem pomiaru kątów poziomych?

A. Regulacji ostrości krzyża kresek
B. Centrowania teodolitu
C. Regulacji ostrości obrazu
D. Dokonania pomiaru wysokości teodolitu
Pomiar wysokości teodolitu przed rozpoczęciem pomiarów kątów poziomych nie jest czynnością standardowo wykonywaną na stanowisku. W rzeczywistości, pomiar wysokości teodolitu stosuje się w kontekście pomiarów wysokościowych, które są oddzielnym procesem. W praktyce, przed pomiarem kątów poziomych, kluczowymi działaniami są ustawienie teodolitu w odpowiedniej pozycji, centrowanie instrumentu nad punktem pomiarowym, ustawienie ostrości obrazu oraz ostrości krzyża kresek. Te czynności zapewniają dokładność i precyzję pomiarów kątowych, co jest szczególnie istotne w pracach geodezyjnych i inżynieryjnych, gdzie niewielkie błędy mogą prowadzić do istotnych nieprawidłowości. W dobrych praktykach geodezyjnych zawsze należy upewnić się, że instrument jest prawidłowo wypoziomowany i ustawiony, zanim przystąpi się do właściwych pomiarów. Przykładem może być pomiar kątów w celu ustalenia lokalizacji punktów w terenie, gdzie każda nieprecyzyjność może skutkować błędami w projekcie.

Pytanie 6

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Teodolitu oraz tyczki
B. Teodolitu oraz łaty niwelacyjnej
C. Niwelatora oraz łaty niwelacyjnej
D. Niwelatora oraz tyczki
Wybór niepoprawnych zestawów przyrządów geodezyjnych często wynika z niepełnego zrozumienia metod pomiarowych. Na przykład, niwelator i tyczka są używane do pomiarów wysokości, ale nie pozwalają na precyzyjne pomiary kątów, co jest kluczowe w tachimetrii. Niwelator służy głównie do poziomowania i ustalania różnic wysokości, lecz nie może być użyty do określenia kątów poziomych. Dlatego jego użycie w kontekście tachimetrii jest niewłaściwe, gdyż nie dostarcza wszystkich niezbędnych danych do pełnej analizy geodezyjnej. Podobnie, teodolit i łata niwelacyjna, choć skutecznie współdziałają w pomiarach kątów i różnic wysokości, nie są skonfigurowane do pracy w ramach tachimetrii, która wymaga innego podejścia. Użycie teodolitu i tyczki również prowadzi do nieprawidłowych wyników, ponieważ tyczki służą do zaznaczania punktów w terenie, ale nie mają funkcji pomiarowych, które są kluczowe w tej metodzie. Przy pomiarach geodezyjnych niezwykle istotne jest zrozumienie, że każdy przyrząd geodezyjny ma swoje specyficzne zastosowanie, a ich niewłaściwe łączenie prowadzi do błędów pomiarowych oraz nieefektywności w realizacji projektów budowlanych. Zrozumienie tych różnic jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników w geodezji.

Pytanie 7

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. punktem celowania a horyzontem instrumentu
B. reperami a punktem celowania
C. punktem celowania a stanowiskiem instrumentu
D. sąsiednimi reperami
Przewyższenie w niwelacji trygonometrycznej to kluczowy element w procesie pomiarów geodezyjnych, odnoszący się do różnicy wysokości pomiędzy punktem celowania a horyzontem instrumentu. Oznacza to, że aby poprawnie określić różnice wysokości na danym terenie, geodeta musi zrozumieć, jak działa instrument niwelacyjny. Horyzont instrumentu jest poziomą linią, która służy jako odniesienie do pomiarów, a punkt celowania to punkt, w który kieruje się niwelator. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektach budowlanych, infrastrukturze drogowej oraz w geodezyjnych pomiarach terenowych. Prawidłowe określenie przewyższenia jest kluczowe dla zapewnienia, że konstrukcje będą zgodne z wymaganiami projektowymi, a także w celu uniknięcia błędów, które mogłyby prowadzić do problemów w przyszłości. W geodezji stosuje się standardy takie jak normy PN-EN 2878, które wskazują na metodyki pomiarów i interpretacji wyników, co jest istotne w kontekście precyzyjnych prac geodezyjnych oraz inżynieryjnych.

Pytanie 8

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 201,06 m
B. HP = 203,36 m
C. HP = 197,96 m
D. HP = 200,26 m
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 9

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. al.
B. dr.
C. ul.
D. pl.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 10

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. kontrolowane
B. odniesienia
C. kontrolne
D. wiążące
Odpowiedź 'kontrolowane' jest poprawna, ponieważ punkty kontrolowane to specyficzne punkty umieszczane na monitorowanym obiekcie, które służą do obserwacji i analizy zmian w ich położeniu. Używane są w różnych dziedzinach, takich jak inżynieria, geodezja czy monitorowanie konstrukcji, aby ocenić deformacje, ruchy czy inne zmiany w czasie. Przykładowo, w budownictwie punkty kontrolowane mogą być wykorzystane do monitorowania osiadania fundamentów budynku po jego wybudowaniu. Zastosowanie takich punktów jest zgodne z najlepszymi praktykami branżowymi, takimi jak standardy geodezyjne, które sugerują regularne pomiary oraz dokumentację wyników, co ułatwia analizę zmian oraz identyfikację ewentualnych problemów w konstrukcji. W kontekście systemów monitorowania, punkty kontrolowane pozwalają na automatyzację procesów i poprawiają dokładność pomiarów poprzez zastosowanie technologii takich jak GPS czy skanowanie laserowe, które mogą być zintegrowane z systemami zarządzania obiektami.

Pytanie 11

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Wysokości punktów terenu
B. Domiary prostokątne
C. Sytuacyjne szczegóły terenowe
D. Numery obiektów budowlanych
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 12

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. słupy betonowe
B. rurki stalowe
C. trzpienie metalowe
D. paliki drewniane
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 13

Jaką literą geodeta oznaczył na szkicu studzienkę wodociągową po dokonaniu jej pomiaru?

A. k
B. w
C. z
D. s
Odpowiedź 'w' to strzał w dziesiątkę. W geodezji studzienka wodociągowa ma oznaczenie 'w' na szkicach. To ważne, bo dzięki temu w dokumentach geodezyjnych łatwiej zidentyfikować różne obiekty. Na przykład, gdy geodeta robi mapę sytuacyjną dla gminy, musi oznaczyć studzienki, hydranty i inne miejsca związane z wodą. Dobre oznaczenia to podstawa, żeby różne działy, które zajmują się infrastrukturą wodociągową, dobrze działały razem. Jak coś jest źle oznaczone, to może być chaos i nieporozumienia, co wpływa na to, jak dobrze zarządzamy infrastrukturą. W skrócie, trzymanie się reguł jest kluczowe w tej branży.

Pytanie 14

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 600 m
B. 250 m
C. 150 m
D. 400 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 15

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 400,0 cm2
B. 0,4 cm2
C. 4,0 cm2
D. 40,0 cm2
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 16

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czarnym
B. brązowym
C. żółtym
D. czerwonym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 17

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do II grupy
B. Tylko do I grupy
C. Do I i II grupy
D. Do II i III grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 18

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 22,20 m
B. 2,22 m
C. 55,50 m
D. 5,55 m
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 19

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 90°
B. 180°
C. 200°
D. 360°
Odpowiedź 90° jest poprawna, ponieważ podczas dokładnego poziomowania teodolitu, alidade musi być obrócona o kąt prosty względem linii ustawczych, aby uzyskać odpowiednią orientację. Obrót o 90° umożliwia precyzyjne sprawdzenie poziomu w kierunku prostopadłym do linii, na której zainstalowano teodolit. W praktyce, obrócenie alidade o ten kąt umożliwia wykonanie pomiarów w dwóch prostopadłych kierunkach, co jest istotne dla uzyskania dokładnych wyników. W standardach branżowych, takich jak normy ISO dotyczące pomiarów geodezyjnych, wskazuje się na znaczenie precyzyjnego poziomowania i wykorzystania alidady do potwierdzenia poprawności ustawienia urządzenia. W przypadku pomiarów budowlanych lub inżynieryjnych, prawidłowe poziomowanie teodolitu jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych poprawek i opóźnień. Dlatego znajomość technik obrotu alidade oraz ich zastosowanie w praktyce jest niezbędna dla każdego geodety.

Pytanie 20

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Przyłącze wodociągowe
B. Ogrodzenie stałe.
C. Plac zabaw.
D. Sygnał drogowy.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 21

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. palików drewnianych.
B. bolców.
C. trzpieni.
D. znaków z kamienia.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 22

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -3,043 m
B. +4,055 m
C. +3,043 m
D. -4,055 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 23

Jakie urządzenie umożliwia przeprowadzenie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa?

A. Mikrometr
B. Noniusz
C. Mikroskop skalowy
D. Mikroskop wskaźnikowy
Noniusz jest urządzeniem pomiarowym, które pozwala na dokonywanie precyzyjnych odczytów, ale nie osiąga takiej dokładności jak mikroskop wskaźnikowy. Najczęściej stosowany jest w połączeniu z suwmiarkami lub innymi narzędziami, co umożliwia pomiar długości z dokładnością do 0,1 mm, a nie 0,1 najmniejszej działki limbusa, co jest wymagane w tym przypadku. Mikrometr, z kolei, to narzędzie skonstruowane do precyzyjnych pomiarów grubości i średnic, jednak jego dokładność, choć wysoka, nie jest wystarczająca do zadania związanego z szacunkowym odczytem najmniejszej działki limbusa. Mikroskop skalowy, choć również użyteczny w precyzyjnych pomiarach, to w praktyce nie ma takiej samej funkcjonalności jak mikroskop wskaźnikowy i często nie jest wykorzystywany do oceny szacunkowej. Typowym błędem myślowym przy wyborze narzędzia pomiarowego jest skupianie się na ogólnej precyzji zamiast na specyficznych parametrach wymaganych w danym zastosowaniu. Użytkownicy często nie zdają sobie sprawy, że różne urządzenia mają swoje specyficzne obszary zastosowania, co prowadzi do wyboru narzędzi, które są nieodpowiednie do wymaganej dokładności pomiarów.

Pytanie 24

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Sektorowa
B. Kierunkowa
C. Reiteracyjna
D. Repetycyjna
Metoda kierunkowa jest najbardziej korzystna w przypadku, gdy obserwacji podlega pięć celowych, ponieważ pozwala na precyzyjne pomiary kątów poziomych z zachowaniem dużej efektywności. Ta technika polega na pomiarze kąta w odniesieniu do wybranego kierunku, co minimalizuje błędy pomiarowe, które mogą wystąpić przy wielokrotnych pomiarach. W praktyce, metoda kierunkowa umożliwia szybkie i dokładne zbieranie danych, co jest kluczowe w geodezji i inżynierii lądowej. W sytuacji, gdy mamy do czynienia z wieloma celami, jak w tym przypadku, podejście kierunkowe przyczynia się do optymalizacji procesu pomiarowego poprzez ograniczenie liczby pomiarów niezbędnych do uzyskania wymaganej precyzji. Warto również zaznaczyć, że ta metoda jest zgodna z normami lokacyjnymi oraz standardami pomiarów geodezyjnych, co stanowi dodatkowy atut w kontekście profesjonalnych aplikacji inżynieryjnych i budowlanych. Stosując metodę kierunkową, praktycy mogą skutecznie zarządzać czasem i zasobami, co jest szczególnie ważne w projektach o ograniczonym budżecie i czasie realizacji.

Pytanie 25

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = Ap − Ak + n∙200g
B. [β] = (n+2)∙200g
C. [β] = Ak − Ap + n∙200g
D. [β] = (n−2)∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 26

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,001 m
B. 0,004 m
C. 0,02 m
D. 0,01 m
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 27

Za zbieranie, zarządzanie i kontrolowanie przyjmowanych dokumentów do centralnego zasobu geodezyjnego i kartograficznego oraz udostępnianie jego informacji odpowiedzialny jest

A. starosta
B. wojewódzki inspektor nadzoru geodezyjnego i kartograficznego
C. marszałek województwa
D. Główny Geodeta Kraju
Główny Geodeta Kraju jest kluczowym organem w polskim systemie geodezyjnym i kartograficznym, odpowiedzialnym za gromadzenie, prowadzenie oraz kontrolę opracowań w centralnym zasobie geodezyjnym i kartograficznym. Jego zadania są ściśle związane z zapewnieniem spójności i aktualności danych, co jest niezbędne dla wielu dziedzin, takich jak planowanie przestrzenne, inżynieria czy ochrona środowiska. Na przykład, w procesie tworzenia dokumentacji dotyczącej inwestycji budowlanych, Główny Geodeta Kraju dostarcza dane geodezyjne, które są podstawą dla prawidłowego projektowania i realizacji obiektów budowlanych. Ponadto, zgodnie z obowiązującymi standardami, Główny Geodeta Kraju współpracuje z innymi instytucjami publicznymi oraz organami samorządowymi, co pozwala na efektywniejsze udostępnianie danych oraz ich wykorzystanie w praktyce. Dzięki tej współpracy możliwe jest również wprowadzenie innowacji oraz dostosowanie standardów do zmieniających się potrzeb rynku.

Pytanie 28

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:500
B. 1:5000
C. 1:2000
D. 1:1000
Odpowiedzi, które wskazują na skale 1:1000, 1:500 oraz 1:2000, mogą prowadzić do nieporozumień w kontekście zastosowania map zasadniczych i ich oznaczeń. Skala 1:1000 jest często stosowana w przypadku map do celów budowlanych i lokalizacyjnych, co może wzbudzać mylne przekonanie, że jest odpowiednia dla mapy zasadniczej. Jednakże, w kontekście mapy oznaczonej kodem 6.115.27.4, skala 1:1000 jest zbyt szczegółowa, a tego typu mapy nie są standardowo klasyfikowane jako mapy zasadnicze. Podobnie, skala 1:500, choć przydatna dla bardzo lokalnych analiz, jest również nieodpowiednia w tym przypadku, ponieważ nie odpowiada standardowym klasyfikacjom map zasadniczych, które są bardziej skoncentrowane na ogólnym przedstawieniu obszarów. Z kolei skala 1:2000, chociaż bliska prawidłowej skali, również nie spełnia wymogów, ponieważ nie dostarcza wystarczającej szczegółowości dla typowych zastosowań map zasadniczych. Warto zauważyć, że stosowanie niewłaściwych skal w analizach przestrzennych może prowadzić do błędnych interpretacji danych, co w konsekwencji wpływa na decyzje administracyjne czy inwestycyjne. Dlatego kluczowe jest, aby zawsze odnosić się do odpowiednich norm oraz standardów branżowych, które precyzyjnie definiują zasady tworzenia i użycia map, co pozwoli uniknąć typowych błędów myślowych i nieporozumień.

Pytanie 29

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cosAA-B linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m

A. cosAA-B = 2,0024
B. cosAA-B = 2,2382
C. cosAA-B = 0,4468
D. cosAA-B = 0,4994
Wartość współczynnika kierunkowego cosAA-B = 0,4468 jest prawidłowa, ponieważ odpowiada stosunkowi przyrostu współrzędnych w osi X do długości linii pomiarowej A-B. W praktyce, współczynnik ten jest kluczowy w metodzie ortogonalnej, która jest szeroko stosowana w geodezji oraz inżynierii lądowej. Metoda ortogonalna polega na precyzyjnym pomiarze współrzędnych punktów, co jest istotne dla zapewnienia dokładności w planowaniu i realizacji projektów budowlanych. Użycie prawidłowego współczynnika kierunkowego jest fundamentem dla dalszych obliczeń, takich jak określenie położenia punktów w przestrzeni. Dobrze wykonane obliczenia pozwalają na uniknięcie błędów, które mogą prowadzić do poważnych konsekwencji w realizacji projektów. Standardy takie jak PN-EN ISO 17123-1:2010 określają metody pomiarowe, które powinny być przestrzegane, aby uzyskać wiarygodne wyniki. Dlatego znajomość i umiejętność obliczania współczynnika kierunkowego jest niezbędna dla profesjonalistów w tej dziedzinie.

Pytanie 30

Kontrolę tyczenia, polegającą na weryfikacji długości boków oraz przekątnych pojedynczych prostokątów, kwadratów lub ich zestawień, wykonuje się w trakcie prac niwelacyjnych

A. tras
B. siatkową
C. punktów rozproszonych
D. profili
Odpowiedź 'siatkową' jest poprawna, ponieważ kontrola tyczenia w kontekście niwelacji polega na weryfikacji dokładności wymiarów prostokątów i kwadratów, które tworzą siatkę geodezyjną. Siatkę geodezyjną stosuje się w pracach budowlanych oraz inżynieryjnych, aby zapewnić, że wszystkie elementy budowli są prawidłowo umiejscowione w przestrzeni. Kontrola boków i przekątnych pozwala na wykrycie ewentualnych błędów w geometrii, co jest kluczowe dla stabilności konstrukcji. W praktyce, inżynierowie i geodeci najczęściej wykorzystują instrumenty jak teodolity oraz niwelatory do precyzyjnego pomiaru. W standardach branżowych, takich jak norma PN-EN 1990, podkreśla się znaczenie precyzyjnego niwelowania w kontekście zapewnienia bezpieczeństwa obiektów budowlanych. Wprowadzenie jakościowych kontroli w postaci tyczenia siatek geodezyjnych jest zatem kluczowym elementem procesu budowlanego, który minimalizuje ryzyko błędów konstrukcyjnych i poprawia efektywność realizacji projektów.

Pytanie 31

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Punktów rozproszonych
B. Reperów
C. Trygonometryczna
D. Geometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 32

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. poboczniki
B. przeniesienia
C. kierunkowe
D. podcentra
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 33

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 300°
B. 0° – 200°
C. 0° – 400°
D. 0° – 100°
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 34

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z urzędu miasta
B. z ewidencji gruntów oraz budynków
C. z państwowego zasobu geodezyjnego i kartograficznego
D. z urzędu wojewódzkiego
Odpowiedź "z państwowego zasobu geodezyjnego i kartograficznego" jest prawidłowa, ponieważ to właśnie ten zasób stanowi kompleksowe źródło aktualnych i wiarygodnych danych geodezyjnych i kartograficznych, które są niezbędne do aktualizacji mapy zasadniczej. W Polsce państwowy zasób geodezyjny i kartograficzny jest gromadzony i udostępniany przez Główny Urząd Geodezji i Kartografii (GUGiK), a jego zawartość obejmuje m.in. dane o granicach nieruchomości, infrastrukturze oraz elementach zagospodarowania przestrzennego. Przykładowo, przy aktualizacji mapy zasadniczej, geodeta powinien korzystać z ortofotomap oraz modelu 3D, które są dostępne w ramach tego zasobu. Warto też zaznaczyć, że korzystanie z państwowego zasobu geodezyjnego i kartograficznego jest zgodne z obowiązującymi przepisami prawa, w tym Ustawą z dnia 17 maja 1989 r. – Prawo geodezyjne i kartograficzne, co zapewnia rzetelność i aktualność pozyskiwanych danych, co jest kluczowe dla precyzyjnego odwzorowania rzeczywistości na mapach.

Pytanie 35

Która z podanych prac geodezyjnych nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Inwentaryzacja po zakończeniu budowy
B. Pomiar ilości mas ziemnych
C. Podział działki
D. Zaktualizowanie mapy zasadniczej
Pomiar objętości mas ziemnych to proces, który nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (ODGiK), ponieważ nie jest to praca geodezyjna, która zmienia stan nieruchomości w sposób wymagający aktualizacji dokumentacji publicznej. W praktyce, taki pomiar ma zastosowanie głównie w budownictwie i inżynierii lądowej, gdzie wykonuje się go w celu określenia ilości ziemi do wykopania lub nasypania podczas budowy. Przykładem może być budowa drogi, gdzie dokładne oszacowanie mas ziemnych jest kluczowe dla kosztorysowania oraz planowania dalszych prac. Warto podkreślić, że takie pomiary często są wykonywane zgodnie z normami PN-EN 1991-1-1 i są integralną częścią procesu projektowego, ale nie wymagają formalnego zgłoszenia do organów administracyjnych, co upraszcza procedury dla wykonawców.

Pytanie 36

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
B. poprawność prowadzenia dziennika pomiarowego
C. poprawność przy kartowaniu pikiet na mapę
D. poprawność prowadzenia szkicu polowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 37

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,50 m
B. 22,20 m
C. 2,22 m
D. 5,55 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.

Pytanie 38

Osnowy geodezyjne klasyfikuje się na różne grupy na podstawie ich precyzji oraz metody zakładania, jakich używa się do ich tworzenia?

A. poziome bazowe, podstawowe wysokościowe, sytuacyjne
B. podstawowe, podstawowe bazowe, pomiarowe
C. fundamentalne, podstawowe bazowe, sytuacyjne
D. podstawowe fundamentalne, podstawowe bazowe, szczegółowe
Odpowiedź 'podstawowe fundamentalne, podstawowe bazowe, szczegółowe' jest poprawna, ponieważ odzwierciedla klasyfikację osnow geodezyjnych w kontekście ich dokładności oraz metod zakładania. Osnowy fundamentalne stanowią podstawę dla innych sieci geodezyjnych, zapewniając najwyższy poziom dokładności i stabilności. Przykładem ich zastosowania są pomiary, które tworzą ogólnokrajowe systemy odniesienia, na podstawie których prowadzi się dalsze prace geodezyjne. Osnowy bazowe to sieci, które są wykorzystywane do precyzyjnych pomiarów lokalnych, a osnowy szczegółowe są stosowane do opracowywania map oraz w projektach budowlanych, gdzie wymagana jest wysoka precyzja. Klasyfikacja ta jest zgodna z normami międzynarodowymi oraz krajowymi, które nakładają obowiązek stosowania odpowiednich sieci geodezyjnych w zależności od skali i dokładności projektów geodezyjnych.

Pytanie 39

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,30 m
B. 0,10 m
C. 0,20 m
D. 0,50 m
Pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej to sprawa dość poważna, więc wymagana dokładność 0,10 m to w sumie nic dziwnego. Jak wiemy, precyzyjne pomiary są mega ważne w geodezji. Na przykład, jeśli właz jest w miejscu, gdzie jest dużo zabudowań, to każda zmiana w układzie drogowym może wpłynąć na to, jak studzienki są lokalizowane. Jak się pomyli w pomiarze, to później mogą być problemy z dostępem do tych studzienek, a to nie jest to, co chcemy. Przykłady standardów, jak norma PN-EN ISO 17123, pokazują, że taka dokładność to nie jest tylko wymysł, ale konieczność w inwentaryzacji budynków. Starając się trzymać tych wytycznych, dajemy sobie szansę na bezpieczną i efektywną pracę z infrastrukturą, która jest pod ziemią.

Pytanie 40

Jaką wartość ma rzędna Hp dla pokrywy studzienki kanalizacyjnej, gdy zmierzona wysokość osi celowej Hc wynosi 202,21 m, a odczyt wartości podziału łaty niwelacyjnej z kreski środkowej lunety niwelatora to s = 1,140?

A. Hp = 203,35 m
B. Hp = 202,01 m
C. Hp = 201,07 m
D. Hp = 202,32 m
Poprawna odpowiedź to Hp = 201,07 m, co wynika z zastosowania prawidłowej metody obliczania rzędnej pokrywy studzienki kanalizacyjnej. Rzędna pokrywy studzienki (Hp) jest obliczana na podstawie wysokości osi celowej (Hc) oraz odczytu wartości podziału łaty (s). Wzór na obliczenie rzędnej pokrywy studzienki można zapisać jako: Hp = Hc - s. W naszym przypadku, podstawiając wartości, otrzymujemy: Hp = 202,21 m - 1,140 m = 201,07 m. Jest to standardowa metoda stosowana w geodezji, zapewniająca dokładność pomiarów oraz zgodność z normami branżowymi. Zrozumienie tych zasad jest kluczowe, szczególnie w kontekście projektowania infrastruktury oraz prac budowlanych, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla bezpieczeństwa i funkcjonalności obiektów. Przykładem zastosowania takiej wiedzy w praktyce może być wyznaczanie poziomów wód gruntowych czy projektowanie systemów odwadniających, gdzie dokładne rzędne mają istotny wpływ na efektywność działania tych systemów.