Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 27 maja 2025 11:25
  • Data zakończenia: 27 maja 2025 11:46

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. ofertowy
B. powykonawczy
C. inwestorski
D. końcowy
Kosztorys ofertowy jest kluczowym dokumentem w procesie planowania inwestycji, takiej jak instalacja fotowoltaiczna. Obejmuje on szczegółowe zestawienie kosztów poszczególnych elementów projektu, co pozwala właścicielowi domu na dokonanie świadomego wyboru. Kosztorys ofertowy przedstawia zarówno koszty materiałów, jak i robocizny, co jest niezbędne do oceny opłacalności inwestycji. W praktyce, kosztorys ten jest podstawą do negocjacji z wykonawcą i może być użyty w celu uzyskania finansowania zewnętrznego, na przykład kredytu na instalację OZE. Warto również zauważyć, że standardy branżowe, takie jak normy PN-ISO 9001, zalecają prowadzenie kosztorysów na etapie planowania jako elementu zapewnienia jakości. Dzięki temu właściciele domów mogą lepiej przygotować się do potencjalnych wydatków i uniknąć nieprzewidzianych kosztów podczas realizacji projektu. Przygotowując kosztorys ofertowy, warto współpracować z doświadczonymi specjalistami, co zwiększa szanse na uzyskanie rzetelnych i konkurencyjnych ofert.

Pytanie 2

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Amorficzne
B. Hybrydowe
C. Polikrystaliczne
D. Monokrystaliczne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 3

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 16 barów.
B. 18 barów.
C. 6 barów.
D. 4 bary.
Odpowiedź 6 barów jest poprawna, ponieważ zgodnie z danymi producenta rur ogrzewania podłogowego, maksymalne ciśnienie robocze dla rur wykonanych z materiałów PE-RT/EVOH/PE-RT i PE-RT/AL/PE-RT wynosi PN 6, co odpowiada 6 barom. Tabela producenta wskazuje, że ciśnienie to dotyczy rur o średnicach DN/OD 16 oraz 18 mm, które mogą pracować w temperaturach od 20 do 60°C. W praktyce, przy doborze rur do systemu ogrzewania podłogowego, ważne jest, aby nie przekraczać wskazanych wartości ciśnienia roboczego, ponieważ może to prowadzić do uszkodzenia instalacji, a także obniżenia jej efektywności. Dobór odpowiedniego ciśnienia jest istotny nie tylko dla bezpieczeństwa, ale również dla zapewnienia efektywności energetycznej systemu grzewczego. W branży stosuje się różne normy, takie jak PN-EN 1264, które regulują wymagania dotyczące systemów ogrzewania podłogowego, w tym maksymalne ciśnienia robocze.

Pytanie 4

Jak powinny być przechowywane rury miedziane?

A. pod zadaszeniem na drewnianym podeście
B. w czystych i suchych pomieszczeniach
C. na otwartym terenie budowy bez ochrony
D. w pomieszczeniach bez dostępu do powietrza
Magazynowanie rur miedzianych w pomieszczeniach czystych i suchych jest kluczowe dla ochrony ich właściwości fizycznych oraz chemicznych. Miedź, jako materiał, jest podatna na korozję, zwłaszcza w obecności wilgoci i zanieczyszczeń. Utrzymywanie rur w suchym środowisku zapobiega osadzaniu się wilgoci na ich powierzchni, co mogłoby prowadzić do korozji pittingowej. Ponadto, czyste pomieszczenia minimalizują ryzyko zanieczyszczenia rur pyłem, brudem czy substancjami chemicznymi, które mogą wpłynąć na ich trwałość i integralność. W praktyce, dla projektów budowlanych, zaleca się stosowanie specjalistycznych magazynek, które zapewniają odpowiednią wentylację i ochronę przed szkodliwymi czynnikami. Dobre praktyki branżowe również sugerują regularne kontrole stanu magazynowanych materiałów, aby w porę zauważyć i eliminować ewentualne zagrożenia dla ich jakości. Tego typu procedury są zgodne z normami ISO 9001, które podkreślają znaczenie zarządzania jakością w przechowywaniu materiałów budowlanych.

Pytanie 5

Brak diodek blokujących w systemie off-grid może prowadzić do

A. przeładowania akumulatora
B. przepływu prądu przez ogniwo w czasie zacienienia
C. uszkodzenia ogniwa w przypadku intensywnego zacienienia ogniwa
D. całkowitego wyczerpania akumulatora
Wiele osób może mylnie uważać, że brak diody blokującej w systemie off-grid prowadzi do uszkodzenia ogniwa podczas silnego zacienienia, jednak nie jest to do końca prawda. W rzeczywistości, silne zacienienie nie powoduje uszkodzenia samego ogniwa, ale raczej wpływa na jego wydajność, co może prowadzić do niepożądanych zjawisk, takich jak przepływ prądu w przeciwnym kierunku. Również koncepcja całkowitego rozładowania akumulatora nie ma bezpośredniego związku z brakiem diody blokującej, ponieważ akumulatory w dobrze zaprojektowanych systemach posiadają zabezpieczenia przed nadmiernym rozładowaniem. Z kolei przeładowanie akumulatora jest konsekwencją braku odpowiednich regulatorów ładowania, a nie braku diody blokującej. Typowe błędy myślowe związane z tymi nieporozumieniami często polegają na niewłaściwym zrozumieniu funkcji diod, regulatorów i wpływu zacienienia na systemy PV. W kontekście projektowania systemów off-grid, kluczowe jest zrozumienie, że zabezpieczenia oraz odpowiednie komponenty muszą być właściwie dobrane i rozmieszczone, aby zapewnić optymalną pracę i bezpieczeństwo systemu. Właściwe podejście do projektowania powinno uwzględniać standardy branżowe, które wskazują na konieczność użycia odpowiednich elementów zabezpieczających, aby system działał w sposób niezawodny.

Pytanie 6

Rury polietylenowe przeznaczone do budowy kolektora gruntowego powinny być transportowane oraz przechowywane w formie kręgów. Jaka jest maksymalna wysokość ich składowania?

A. 1,8 m
B. 2,2 m
C. 1,5 m
D. 2,0 m
Wybór wyższej wysokości składowania niż 1,5 m, jak w przypadku 1,8 m, 2,0 m lub 2,2 m, jest nieodpowiedni i może prowadzić do poważnych problemów. Przede wszystkim, składowanie rur na większej wysokości zwiększa ryzyko ich deformacji z powodu nacisku własnego ciężaru oraz ewentualnych ruchów wiatru czy wstrząsów. W praktyce, jeśli rury są przechowywane w kręgach na wysokości przekraczającej 1,5 m, może to skutkować ich uszkodzeniem, co w konsekwencji wpłynie na ich integralność strukturalną i zdolność do spełniania wymagań projektowych. Ponadto, zbyt wysokie składowanie zagraża również bezpieczeństwu pracowników, którzy mogą być narażeni na niebezpieczeństwo podczas manipulacji przy takich kręgach. Wiele osób może myśleć, że zwiększenie wysokości składowania może zaoszczędzić miejsce, jednak w praktyce, takie podejście jest krótkowzroczne i może prowadzić do kosztownych uszkodzeń i opóźnień w realizacji projektu. Dlatego kluczowe jest, aby przestrzegać ściśle określonych norm i wytycznych w celu zapewnienia bezpieczeństwa i jakości materiałów budowlanych.

Pytanie 7

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. ochrony akumulatorów przed całkowitym wyładowaniem
B. przekształcania prądu stałego na prąd przemienny
C. kontrolowania procesu ładowania akumulatorów
D. ochrony systemu przed przetężeniem
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 8

Jakie materiały wykorzystuje się w instalacji do ogrzewania wody w basenie, zrealizowanej w technologii klejonej?

A. PVC
B. PE
C. PP
D. PEX
PVC (polichlorek winylu) jest materiałem powszechnie stosowanym w instalacjach do podgrzewania wody basenowej, ze względu na swoje korzystne właściwości. PVC charakteryzuje się wysoką odpornością na korozję i chemikalia, co jest kluczowe w środowisku basenowym, gdzie woda może zawierać różne substancje chemiczne, takie jak środki dezynfekujące. Dodatkowo, PVC ma dobre właściwości izolacyjne, co przyczynia się do efektywności systemu grzewczego. W praktyce, rury PVC są często używane w instalacjach basenowych, zarówno w systemach cyrkulacyjnych, jak i grzewczych. Zgodnie z normami branżowymi, stosowanie PVC w tych zastosowaniach jest zgodne z zaleceniami, co sprawia, że jest to materiał rekomendowany przez specjalistów w dziedzinie budownictwa i hydrauliki. Warto również zauważyć, że PVC jest łatwy w montażu i oferuje długą żywotność, co czyni go ekonomicznym wyborem w dłuższej perspektywie czasowej.

Pytanie 9

Jakie narzędzia należy zastosować do łączenia rur PE Ø 32 mm podczas instalacji poziomego kolektora, obok gratownika zewnętrznego i wewnętrznego oraz nożyc do cięcia rur?

A. piły metalowej
B. pilnika w kształcie trójkąta
C. kształtek zaciskowych 11/4"
D. klucza łańcuchowego 1"
Kształtki zaciskowe 11/4" są kluczowym elementem w montażu rur PE, zwłaszcza przy instalacji kolektorów poziomych. Te kształtki umożliwiają solidne i szczelne połączenie rur, co jest niezbędne w systemach hydraulicznych i instalacjach wodociągowych. Wykorzystanie kształtek zaciskowych pozwala na łatwe i efektywne złączenie rur, minimalizując ryzyko wycieków, które mogą prowadzić do poważnych uszkodzeń oraz kosztownych napraw. Stosowanie tych kształtek jest zgodne z normami branżowymi, które zalecają użycie komponentów kompatybilnych z materiałem rur, co w przypadku PE jest kluczowe dla zapewnienia długotrwałości i wytrzymałości instalacji. Przykładem zastosowania kształtek zaciskowych 11/4" może być ich użycie w systemach nawadniania, gdzie efektywne połączenia są niezbędne do utrzymania odpowiedniego ciśnienia i przepływu wody. Przed przystąpieniem do montażu warto również zwrócić uwagę na odpowiednie przygotowanie rur, takie jak ich odtłuszczenie oraz użycie gratownika do wygładzenia krawędzi, co dodatkowo zwiększa szczelność połączenia.

Pytanie 10

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. północną
B. wschodnią
C. zachodnią
D. południową
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 11

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C

A. 45,00 zł
B. 12,00 zł
C. 60,00 zł
D. 30,00 zł
Poprawna odpowiedź to 30,00 zł, co wynika z prawidłowego zastosowania wzoru na obliczenie miesięcznych kosztów pokrycia strat energii. Aby obliczyć miesięczne koszty, należy wziąć pod uwagę dobowe straty energii, które w przypadku zbiornika SB-200 wynoszą 2 kWh. Następnie, mnożymy tę wartość przez liczbę dni w miesiącu, co daje 60 kWh (2 kWh x 30 dni). Koszt energii elektrycznej wynosi 0,50 zł za kWh, co prowadzi do obliczenia 60 kWh x 0,50 zł = 30 zł. Zrozumienie tego procesu jest kluczowe, ponieważ pozwala na realistyczne oszacowanie kosztów eksploatacyjnych systemów grzewczych i zbiorników. Wiedza ta jest istotna w kontekście optymalizacji kosztów operacyjnych oraz efektywności energetycznej. W praktyce, aby zminimalizować straty energii, można stosować różne metody izolacji zbiorników oraz monitorowania temperatury, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 12

Aby naprawić pęknięcie na prostym odcinku poziomego wymiennika gruntowego wykonanego z rur polietylenowych, należy zastosować mufę

A. gwintowaną
B. lutowaną
C. spawaną
D. zgrzewaną
Mufy gwintowane nie są odpowiednie do łączenia rur polietylenowych, ponieważ nie zapewniają one odpowiedniej szczelności i mogą być podatne na wycieki. Rury wykonane z polietylenu mają inną charakterystykę materiałową niż metale, dla których przeznaczone są połączenia gwintowane. Użycie muf gwintowanych prowadzi do błędów w realizacji projektów, ponieważ nie są one w stanie wytrzymać obciążeń dynamicznych. Z kolei mufy lutowane są techniką stosowaną dla rur miedzianych i metalowych, gdzie materiał lutowniczy łączy dwa elementy. W przypadku polietylenu, który jest materiałem termoplastycznym, lutowanie nie jest metodą właściwą, ponieważ może prowadzić do osłabienia materiału. Mufy spawane z kolei, choć stosowane w innych technologiach, wymagają wysokich temperatur i odpowiedniego przygotowania, co w przypadku rur polietylenowych jest niewykonalne bez odpowiedniego sprzętu i technologii. Często błędne założenie, że dowolna metoda łączenia sprawdzi się w każdej sytuacji, prowadzi do poważnych problemów eksploatacyjnych, takich jak nieszczelności i konieczność kosztownych napraw. Dlatego ważne jest, aby przy wyborze metody naprawy kierować się specyfiką materiału oraz wymaganiami technicznymi danego systemu.

Pytanie 13

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 5 000,00 zł
B. 37,50 zł
C. 12,50 zł
D. 750,00 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 14

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,25 W/(m2-K)
B. 0,35 W/(m2-K)
C. 0,50 W/(m2K)
D. 0,10 W/(m2-K)
Współczynnik przenikania ciepła jest kluczowym parametrem w analizie efektywności energetycznej budynków. Odpowiedzi wskazujące na wartości inne niż 0,25 W/(m2-K) wynikają z nieprawidłowego zrozumienia relacji między całkowitym oporem cieplnym a współczynnikiem U. Często występującym błędem jest mylenie pojęć oporu cieplnego i przenikania ciepła. Wartości takie jak 0,35, 0,50 czy 0,10 W/(m2-K) mogą sugerować, że nie uwzględniono, iż U jest odwrotnością R. Na przykład, dla wartości 0,50 W/(m2-K) można by błędnie sądzić, że przegroda ma lepsze właściwości izolacyjne, podczas gdy w rzeczywistości jest to wartość wyższa niż rzeczywista efektywność izolacji. Ponadto, typowym błędem jest również brak zrozumienia, że niższe wartości U są korzystniejsze w kontekście oszczędności energii. W praktyce, w projektach budowlanych dąży się do osiągnięcia jak najniższych wartości U, co jest zgodne z przepisami dotyczącymi efektywności energetycznej budynków. Warto przy tym pamiętać, że w kontekście przepisów budowlanych oraz norm, takich jak PN-EN 10077-1, istotne jest obliczanie tych wartości w sposób zgodny z aktualnymi standardami i wymaganiami, co dodatkowo podkreśla znaczenie znajomości tych relacji w pracy inżyniera budowlanego.

Pytanie 15

Osoba inwestująca w system fotowoltaiczny, który ma zapewnić energię elektryczną dla domu jednorodzinnego i umożliwić sprzedaż nadwyżki prądu do sieci energetycznej, powinna dysponować

A. odbiornikiem energii, akumulatorem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
B. akumulatorem, inwerterem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
C. odbiornikiem energii, akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
D. akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, panelami fotowoltaicznymi
Odpowiedź ta jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy potrzebne do stworzenia efektywnego systemu fotowoltaicznego, który zaspokaja potrzeby energetyczne domu jednorodzinnego oraz umożliwia sprzedaż nadmiaru energii do sieci. Odbiornik energii jest kluczowy, ponieważ to on wykorzystuje energię wytwarzaną przez panele fotowoltaiczne. Akumulator jest niezbędny do magazynowania nadwyżek energii, co pozwala na jej wykorzystanie w czasie, gdy produkcja energii jest niższa, na przykład w nocy. Inwerter konwertuje prąd stały generowany przez panele na prąd zmienny, co jest wymagane do zasilania urządzeń domowych oraz wprowadzenia energii do sieci. Kontroler ładowania dba o prawidłowe ładowanie akumulatora, co zwiększa jego żywotność i efektywność. Liczniki energii umożliwiają ścisłe monitorowanie zarówno energii wyprodukowanej, jak i zużytej, co jest istotne dla rozliczeń z lokalnym dostawcą energii. Przykładem zastosowania takiego systemu może być dom, który w ciągu dnia produkuje więcej energii, niż zużywa, a nadwyżkę sprzedaje, co zmniejsza koszty rachunków za prąd oraz przyczynia się do ochrony środowiska poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 16

Utrzymanie równomiernego ciśnienia w gazowym zbiorniku można osiągnąć poprzez składowanie biogazu z wykorzystaniem

A. zbiornika niskociśnieniowego
B. zbiornika ciśnieniowego
C. dzwonu gazowego
D. zbiornika komory fermentacyjnej
Pojemnik komory gnilnej, zbiornik ciśnieniowy i zbiornik niskociśnieniowy to rozwiązania, które mają swoje specyficzne zastosowania, ale nie są optymalne do utrzymania stałego ciśnienia w kontekście magazynowania biogazu. Pojemnik komory gnilnej to element, w którym zachodzi proces fermentacji beztlenowej, jednak nie jest on zaprojektowany do regulacji ciśnienia w sposób ciągły. Jego głównym celem jest zapewnienie odpowiednich warunków do przetwarzania materiału organicznego, ale nie kontrolowania gazu wytwarzanego w tym procesie. Zbiornik ciśnieniowy, z drugiej strony, wymaga skomplikowanych systemów zabezpieczeń i regulacji, aby uniknąć niebezpieczeństw związanych z nadmiernym ciśnieniem. Utrzymanie biogazu pod ciśnieniem wiąże się z ryzykiem eksplozji, co czyni to podejście nieodpowiednim dla stabilnego magazynowania. Zbiornik niskociśnieniowy również nie jest w stanie efektywnie zarządzać ciśnieniem, co prowadzi do problemów z wypuszczaniem gazu i może skutkować stratami materiałowymi. Kluczowym błędem jest myślenie, że te zbiorniki mogą pełnić taką samą funkcję jak dzwon gazowy, co ignoruje ich podstawowe różnice i ograniczenia w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 17

Za zaworem rozprężnym w układzie pompy ciepła obserwuje się następujące wartości termodynamiczne:

A. niskie ciśnienie – niska temperatura
B. wysokie ciśnienie – niska temperatura
C. wysokie ciśnienie – wysoka temperatura
D. niskie ciśnienie – wysoka temperatura
Odpowiedź "niskie ciśnienie – niska temperatura" jest poprawna, ponieważ po przejściu przez zawór rozprężny w układzie pompy ciepła następuje obniżenie ciśnienia czynnika chłodniczego, co prowadzi do jego rozprężenia i obniżenia temperatury. Zjawisko to jest zgodne z zasadą zachowania energii oraz zasadami termodynamiki, a szczególnie z równaniami stanu gazów. W praktyce, po rozprężeniu, czynnik chłodniczy w stanie niskociśnieniowym i niskotemperaturowym wchodzi do parownika, gdzie absorbuje ciepło z otoczenia. Działanie to ma kluczowe znaczenie w kontekście efektywności energetycznej systemów grzewczych. W projektowaniu instalacji, kluczowe jest zrozumienie tych procesów, aby optymalizować ich funkcjonowanie. Na przykład, w standardach ASHRAE dotyczących systemów HVAC, podkreśla się znaczenie prawidłowego doboru i ustawienia zaworu rozprężnego dla zapewnienia efektywności energetycznej oraz minimalizacji strat ciepła.

Pytanie 18

Inwerter to sprzęt instalowany w systemie

A. biogazowni
B. fotowoltaicznej
C. pompy ciepła
D. słonecznej grzewczej
Inwerter jest kluczowym elementem instalacji fotowoltaicznej, służącym do przekształcania prądu stałego (DC) generowanego przez panele słoneczne na prąd zmienny (AC), który może być używany w domowych instalacjach elektrycznych oraz wprowadzany do sieci energetycznej. Jego działanie opiera się na przetwarzaniu energii słonecznej w sposób umożliwiający jej wykorzystanie w codziennym życiu. Przykładowo, w systemach fotowoltaicznych na dachach budynków, inwertery są odpowiedzialne za optymalizację produkcji energii, co przekłada się na niższe rachunki za prąd i zwiększenie efektywności energetycznej. Zgodnie z normami, inwertery powinny spełniać standardy jakości, takie jak IEC 62109, które gwarantują bezpieczeństwo i niezawodność ich działania. Właściwy dobór inwertera, jego moc oraz funkcje, takie jak monitoring wydajności, mają kluczowe znaczenie dla efektywności całego systemu, co podkreśla ich rolę w nowoczesnych instalacjach OZE.

Pytanie 19

Dla budynku jednorodzinnego zalecana instalacja powinna mieć około 3 kW zainstalowanej mocy (12 paneli fotowoltaicznych o mocy 250 W). Materiały niezbędne do realizacji instalacji PV sieciowej o mocy 1 kW kosztują 8 000 zł. Montaż systemu na dachu wymaga pracy dwóch pracowników przez 12 godzin każdy według stawki 20 zł za 1 roboczogodzinę. Firma wykonawcza dolicza marżę w wysokości 25% kosztów materiałów. Jaki jest całkowity koszt montażu instalacji PV sieciowej?

A. 30 300 zł
B. 10 240 zł
C. 8 240 zł
D. 30 480 zł
No więc, dobra robota z wyborem odpowiedzi! 30 480 zł to całkiem konkretna kwota i dobrze to obliczyłeś. Jak to się ma do kosztów montażu instalacji fotowoltaicznej, to mamy tu sporo szczegółów. Koszt materiałów na 1 kW to 8 000 zł, to takie podstawowe dane. Pamiętaj też, że trzeba doliczyć robociznę - dwóch pracowników, każdy pracuje 12 godzin za 20 zł na godzinę, co daję nam 480 zł. Nie zapomnij, że firma też dorzuca swoją marżę, a tu jest 25% od materiałów, co daje dodatkowe 2 000 zł. Jak to wszystko zsumujesz, to wychodzi właśnie te 30 480 zł. To świetny przykład na to, jak ważna jest wiedza o kosztach przy planowaniu takich projektów. Zrozumienie tego wszystkiego pomaga w lepszej organizacji budżetu. No, a to, że to wszystko uwzględniłeś, to naprawdę dobrze o Tobie świadczy.

Pytanie 20

Aby pompy ciepła funkcjonujące w systemie ogrzewania mogły przez cały okres eksploatacji skutecznie pełnić swoje zadania, konieczne jest zapewnienie regularnych przeglądów technicznych, które powinny być realizowane przynajmniej raz

A. na pięć lat po zakończeniu sezonu grzewczego
B. w roku przed rozpoczęciem sezonu grzewczego
C. w roku po zakończeniu sezonu grzewczego
D. na pięć lat przed rozpoczęciem sezonu grzewczego
Odpowiedź „w roku przed sezonem grzewczym” jest prawidłowa, ponieważ regularne przeglądy techniczne pomp ciepła są kluczowe dla ich niezawodności i efektywności. Przeglądy powinny być przeprowadzane przed rozpoczęciem sezonu grzewczego, aby zidentyfikować ewentualne usterki i zapewnić optymalne działanie urządzenia. Dobrym przykładem zastosowania tej praktyki jest wykonanie przeglądu całego systemu, w tym sprawdzenie stanu wymiennika ciepła, układu chłodniczego oraz poziomu czynnika chłodniczego. Ponadto, zgodnie z normą PN-EN 14511, producent pomp ciepła zaleca regularne przeglądy w celu oceny efektywności energetycznej oraz zmniejszenia ryzyka awarii. Przegląd można również połączyć z konserwacją, co pozwala na przedłużenie żywotności urządzenia oraz redukcję kosztów eksploatacyjnych. Regularne działania serwisowe przed sezonem grzewczym pozwalają na wczesne wykrycie problemów, co jest niezbędne do zapewnienia komfortu cieplnego w budynku.

Pytanie 21

Opis projektu instalacji wodnej wskazuje, że ma być zrealizowana z polipropylenu. Jakie oznaczenie posiada ten materiał?

A. PEX/Al/PEX
B. Cu
C. PP
D. PE
Odpowiedź "PP" jest poprawna, ponieważ polipropylen jest materiałem szeroko stosowanym w instalacjach wodnych, charakteryzującym się wysoką odpornością na chemikalia oraz niską przewodnością cieplną. Rozwiązania z polipropylenu są często wykorzystywane w systemach ciepłej i zimnej wody użytkowej, a także w instalacjach grzewczych. Dzięki swoim właściwościom, takim jak odporność na korozję oraz łatwość w montażu, polipropylen pozwala na tworzenie trwałych i niezawodnych instalacji. Jest to materiał, który spełnia standardy jakościowe, takie jak PN-EN 1451-1, co potwierdza jego przydatność w zastosowaniach budowlanych. W praktyce, rury polipropylenowe są łączone za pomocą technologii zgrzewania, co zapewnia szczelność i wytrzymałość połączeń. Warto również zauważyć, że polipropylen jest materiałem lekkim, co ułatwia transport i montaż, a jego dostępność na rynku sprawia, że jest chętnie wybieranym rozwiązaniem przez wykonawców instalacji wodnych.

Pytanie 22

Aby przetransportować kolektor słoneczny na dach niskiego budynku jednorodzinnego, należy wykorzystać

A. żuraw
B. drabinę
C. rusztowanie
D. wyciąg
Z mojej perspektywy, wyciąg to najlepszy sposób na przeniesienie kolektora słonecznego na dach niskiego domku jednorodzinnego. Dzięki niemu można bezpiecznie i skutecznie podnieść ciężkie rzeczy. To naprawdę ważne, bo z jednej strony chronimy kolektor przed zniszczeniem, a z drugiej, mamy kontrolę nad tym, co się dzieje podczas podnoszenia. W praktyce, na budowach często korzysta się z wyciągów do transportu różnych materiałów. To też jest zgodne z zasadami BHP, które kładą duży nacisk na bezpieczeństwo w pracy. No i nie zapominajmy, że dzięki wyciągowi potrzebujemy mniej ludzi do przenoszenia ciężkich przedmiotów, co oszczędza czas i redukuje ryzyko wypadków. A jeśli chodzi o instalację kolektorów na dachu, to wyciąg pozwala na precyzyjne ustawienie paneli w najlepszej pozycji. A to jest kluczowe dla ich wydajności energetycznej.

Pytanie 23

Przyczyną wydostawania się czynnika z zaworu bezpieczeństwa w systemach solarnych może być

A. niewielka objętość przeponowego naczynia wzbiorczego
B. wysoka wilgotność powietrza
C. zapowietrzenie systemu
D. niewystarczające stężenie płynu solarnego
Zbyt mała objętość przeponowego naczynia wzbiorczego w instalacjach solarnych może prowadzić do nieprawidłowego działania systemu, co skutkuje wypływem czynnika chłodzącego z zaworu bezpieczeństwa. Naczynie wzbiorcze pełni kluczową rolę w kompensacji zmian objętości płynu solarnego, które są spowodowane rozszerzalnością cieplną. W przypadku niewystarczającej objętości, ciśnienie w instalacji może wzrosnąć powyżej dozwolonego poziomu, co aktywuje zawór bezpieczeństwa. Utrzymanie odpowiedniej objętości naczynia wzbiorczego jest zgodne z normą PN-EN 12828, która określa zasady projektowania i eksploatacji systemów grzewczych. Praktycznie oznacza to, że każdy projektant instalacji solarnych powinien dokładnie obliczyć wymagane parametry naczynia wzbiorczego, uwzględniając maksymalne i minimalne temperatury pracy, aby zapewnić stabilność i bezpieczeństwo całego systemu. Warto również regularnie kontrolować stan naczynia oraz jego ciśnienie, co pomoże zminimalizować ryzyko wystąpienia awarii i zapewnić efektywność energetyczną systemu.

Pytanie 24

Współczynnik wydajności pompy ciepła COP określa się jako

A. różnica między pobraną mocą elektryczną a mocą grzewczą
B. iloraz mocy grzewczej uzyskanej do mocy elektrycznej pobranej
C. suma mocy elektrycznej oraz grzewczej
D. iloczyn uzyskanej mocy grzewczej i mocy elektrycznej pobranej
Współczynnik efektywności pompy ciepła, znany jako COP (Coefficient of Performance), jest kluczowym wskaźnikiem efektywności systemów grzewczych i chłodniczych. Definiuje się go jako iloraz uzyskanej mocy grzewczej do pobranej mocy elektrycznej. Taka definicja jest istotna, ponieważ pozwala ocenić, jak efektywnie urządzenie przekształca energię elektryczną w ciepło. Na przykład, jeśli pompa ciepła pobiera 1 kWh energii elektrycznej i wytwarza 4 kWh energii cieplnej, jej COP wynosi 4. Dzięki temu wskaźnikowi można porównywać różne modele pomp ciepła oraz oceniać, które z nich są najbardziej efektywne w danym zastosowaniu. Wysoki współczynnik COP jest korzystny nie tylko z perspektywy finansowej, ale także ekologicznej, gdyż wskazuje na mniejsze zużycie energii i niższe emisje CO2. W odniesieniu do dobrych praktyk branżowych, zaleca się regularne monitorowanie COP, co pozwala na optymalizację pracy systemów oraz ich właściwe serwisowanie.

Pytanie 25

Czym jest pelet?

A. słomą w pakach
B. paliwem otrzymywanym z przetworzonego drewna
C. osadem pochodzącym z oczyszczania ścieków
D. paliwem wytwarzanym z węgla brunatnego
Pelet to materiał energetyczny w postaci małych, sprasowanych granulek, który powstaje w wyniku przetwarzania surowców drzewnych, takich jak trociny, wióry czy zrębki. Proces produkcji peletów obejmuje ich suszenie, a następnie prasowanie pod wysokim ciśnieniem, co pozwala na uzyskanie zwartej struktury oraz zwiększenie gęstości energetycznej. Pelet jest uznawany za paliwo ekologiczne, ponieważ jego spalanie generuje znacznie mniejsze ilości dwutlenku węgla w porównaniu z paliwami kopalnymi. W praktyce, pelet jest wykorzystywany w piecach na pelet, kotłach i piecach kominkowych, co sprawia, że stanowi alternatywę dla gazu, oleju opałowego czy węgla. Warto również zauważyć, że produkcja peletów musi spełniać określone normy jakościowe, takie jak ENplus lub DINplus, które zapewniają odpowiednią kaloryczność oraz niską zawartość popiołu, co jest kluczowe dla efektywności energetycznej i ochrony środowiska.

Pytanie 26

Podczas wymiany separatora powietrza w grupie solarnej należy go zamontować na

A. zasilaniu kolektora przed pompą
B. powrocie z kolektora za zaworem odcinającym
C. zasilaniu kolektora za pompą
D. powrocie z kolektora przed zaworem odcinającym
Montaż separatora powietrza w niewłaściwych miejscach, takich jak zasilanie kolektora przed pompą, może prowadzić do poważnych problemów z wydajnością systemu grzewczego. Umiejscowienie separatora na zasilaniu przed pompą oznacza, że woda z kolektora, która może zawierać powietrze, będzie napotykać na dodatkowy opór, co może skutkować zmniejszoną efektywnością przepływu. W takiej konfiguracji powietrze może pozostawać w instalacji, co zwiększa ryzyko awarii oraz obniża wydajność całego systemu. Podobnie, montaż separatora na powrocie z kolektora przed zaworem odcinającym jest błędem, ponieważ w sytuacji, gdy zachodzi potrzeba konserwacji, nie można odciąć przepływu wody, co uniemożliwia bezpieczne wyjęcie separatora z instalacji. Z kolei umiejscowienie separatora na zasilaniu kolektora za pompą nie jest zalecane, ponieważ może to prowadzić do problemów z usuwaniem powietrza, gdyż separator nie będzie w stanie efektywnie działać w obecności wody pod ciśnieniem. Dlatego kluczowe jest zrozumienie, że miejsce montażu separatora powietrza ma zasadnicze znaczenie dla całego systemu i powinno być zgodne z zaleceniami producentów oraz praktykami branżowymi w celu zapewnienia optymalnej wydajności oraz trwałości instalacji.

Pytanie 27

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. kierownik budowy
B. projektant
C. inwestor
D. użytkownik
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 28

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. homopolimeru polietylenu
B. polietylenu o średniej gęstości
C. polietylenu o niskiej gęstości
D. polietylenu o wysokiej gęstości
Niepoprawne odpowiedzi na to pytanie opierają się na mylnych założeniach dotyczących właściwości różnych rodzajów polietylenu. Polietylen średniej gęstości (PE-MD) oraz polietylen niskiej gęstości (PE-LD) różnią się przede wszystkim gęstością i strukturą molekularną, co wpływa na ich zastosowanie. PE-MD jest rzadziej stosowany w aplikacjach wymagających dużej wytrzymałości, a jego zastosowanie jest ograniczone do lżejszych konstrukcji. Z kolei PE-LD, który jest bardziej elastyczny, jest używany głównie do produkcji folii i opakowań, a nie do rur przemysłowych, które muszą wykazywać dużą odporność na ciśnienie i działanie chemikaliów. Homopolimer polietylenu nie jest terminem powszechnie używanym w kontekście rur, ponieważ w praktyce odnosi się to do polimerów, które mogą mieć różne właściwości w porównaniu do kopolimerów. W kontekście instalacji, wybór odpowiedniego materiału jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów, a nieznajomość różnic w materiałach może prowadzić do awarii i wysokich kosztów napraw. Dobrze zrozumiane różnice między rodzajami polietylenu są niezbędne dla inżynierów i projektantów, aby podejmować właściwe decyzje w zakresie doboru materiałów do konkretnych aplikacji.

Pytanie 29

Zasobnik na wodę użytkową w solarnej instalacji powinien być zlokalizowany

A. z dala od kotła c.o.
B. w połowie drogi pomiędzy kotłem a kolektorem
C. w sąsiedztwie kotła c.o.
D. w pobliżu kolektora słonecznego
Zasobnik wody użytkowej w instalacji solarnej powinien znajdować się blisko kotła c.o. z kilku powodów. Przede wszystkim, odpowiednia lokalizacja zasobnika minimalizuje straty ciepła, które mogą wystąpić na drodze między zasobnikiem a kotłem. Im krótsza droga dla wody, tym efektywniejszy jest transfer ciepła, co przekłada się na zmniejszenie kosztów energii oraz poprawę ogólnej wydajności systemu. Ponadto, bliskość zasobnika do kotła c.o. ułatwia również integrację obu urządzeń, co jest kluczowe dla sprawnego zarządzania energetycznego w budynku. W praktyce, instalacje, które umieszczają zasobniki wody użytkowej w pobliżu kotłów, często korzystają z lepszej koordynacji działania obu systemów, co prowadzi do większej oszczędności energii i lepszej dostępności ciepłej wody. Zgodnie z normami branżowymi oraz dobrymi praktykami, takie podejście zapewnia nie tylko optymalne wykorzystanie energii słonecznej, ale również dbałość o efektywność całego układu grzewczego.

Pytanie 30

W celu określenia liczby godzin pracy zatrudnionych w kosztorysie szczegółowym stosuje się

A. katalog nakładów rzeczowych
B. dziennik budowy
C. oferta sprzedaży producenta
D. harmonogram robót
Harmonogram robót, choć istotny w zarządzaniu projektem budowlanym, nie pełni funkcji określenia ilości godzin pracy w sposób szczegółowy. Harmonogram jest narzędziem, które pokazuje czas trwania poszczególnych etapów pracy oraz zależności między nimi, ale nie dostarcza szczegółowych danych dotyczących konkretnych nakładów rzeczowych. Z kolei dziennik budowy to dokument, który rejestruje postęp prac oraz wszelkie zdarzenia na budowie, ale także nie zawiera szczegółowych informacji o czasach pracy. Może być użyty do monitorowania realizacji harmonogramu, jednak nie jest narzędziem do bezpośredniego wyliczania godzin pracy. Oferta sprzedaży producenta dotyczy produktów i usług, które mogą być wykorzystane w projekcie, ale nie zawiera informacji o czasie pracy pracowników ani o nakładach rzeczowych. Powszechnym błędem jest mylenie tych narzędzi, co może prowadzić do nieprawidłowych oszacowań kosztów. Kluczowym elementem skutecznego kosztorysowania jest zrozumienie, jakie dokumenty dostarczają odpowiednich informacji i jak je prawidłowo wykorzystywać w praktyce.

Pytanie 31

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. panele równolegle
B. akumulatory szeregowo
C. panele szeregowo
D. akumulatory równolegle
Poprawna odpowiedź to akumulatory połączone równolegle, co umożliwia uzyskanie niezmiennego napięcia 12 V przy zwiększonej pojemności. Takie połączenie pozwala na zachowanie napięcia każdego z akumulatorów na poziomie 12 V, co jest kluczowe dla urządzeń zasilanych tym napięciem. W praktyce, łącząc akumulatory równolegle, sumujemy ich pojemności, co zwiększa czas pracy zestawu fotowoltaicznego, a jednocześnie nie zmienia napięcia wyjściowego. Na przykład, dwa akumulatory 12 V o pojemności 100 Ah po połączeniu równolegle dadzą 12 V i 200 Ah, co oznacza, że urządzenia mogą być zasilane przez dłuższy czas. Tego rodzaju połączenie jest zgodne z najlepszymi praktykami w dziedzinie energii odnawialnej, zapewniając stabilność zasilania oraz dłuższą żywotność akumulatorów. Równoległe połączenie akumulatorów jest powszechnie stosowane w systemach solarnych, co pozwala na efektywniejsze zarządzanie energią oraz minimalizowanie ryzyka nadmiernego rozładowania jednego z akumulatorów.

Pytanie 32

Dwuosobowa ekipa monterów wykonała instalację solarną w czasie 8 godzin. Stawka za jedną godzinę pracy wynosi 25 zł. Do kosztów robocizny doliczono wydatki pośrednie równe 50% kosztów robocizny. Dodatkowo, obliczono zysk w wysokości 10% od całkowitej sumy robocizny oraz wydatków pośrednich. Jaka jest wartość prac?

A. 560 zł
B. 550 zł
C. 660 zł
D. 600 zł
Aby obliczyć wartość robót związanych z instalacją solarną, należy najpierw określić całkowity koszt robocizny. Dwóch monterów pracowało przez 8 godzin, co daje łącznie 16 roboczogodzin (2 monterów x 8 godzin). Przy stawce 25 zł za roboczogodzinę, całkowity koszt robocizny wynosi 16 roboczogodzin x 25 zł = 400 zł. Następnie należy uwzględnić koszty pośrednie, które wynoszą 50% robocizny, co daje dodatkowe 200 zł (50% z 400 zł). Łączne koszty robocizny oraz koszty pośrednie wynoszą więc 400 zł + 200 zł = 600 zł. Na końcu doliczamy zysk, który wynosi 10% od tej sumy. 10% z 600 zł to 60 zł, co daje całkowitą wartość robót równą 600 zł + 60 zł = 660 zł. Takie podejście do kalkulacji kosztów jest zgodne z zasadami rachunkowości budowlanej oraz dobrymi praktykami w zakresie wyceny robót budowlanych, gdzie uwzględnia się wszystkie aspekty kosztowe, aby osiągnąć realistyczną i dokładną wycenę projektu.

Pytanie 33

Jaki powinien być minimalny czas trwania testu szczelności kolektora słonecznego?

A. 10 minut
B. 12 minut
C. 5 minut
D. 15 minut
Minimalny czas trwania próby szczelności kolektora słonecznego wynoszący 15 minut jest zgodny z zaleceniami wielu standardów branżowych, w tym normy EN 12975 dotyczącej kolektorów słonecznych. Taki okres jest wystarczający, aby upewnić się, że wszelkie potencjalne wycieki powietrza lub cieczy zostały wykryte, a także aby system osiągnął stabilny stan pracy. Przykładowo, w praktyce inżynierskiej, próby szczelności przeprowadza się poprzez zastosowanie ciśnienia wyższego od normalnego, co pozwala na identyfikację miejsc nieszczelnych. W przypadku kolektorów słonecznych, prawidłowe przeprowadzenie próby szczelności jest kluczowe dla zapewnienia ich efektywności oraz długowieczności. Nieprawidłowe uszczelnienia mogą prowadzić do strat energii, a w skrajnych przypadkach do poważnych uszkodzeń systemu. Dlatego kluczowe jest przestrzeganie zalecanych czasów trwania prób, co zapewnia zgodność z procedurami jakości oraz bezpieczeństwa.

Pytanie 34

Współczynnik efektywności COP pompy ciepła o parametrach podanych w tabeli przy podgrzewaniu wody do temperatury 40°C przy temperaturze otoczenia 3°C wynosi

Parametry pompy
ParametrJednostka miaryWartość
Moc cieplna*kW12,5
Moc elektryczna doprowadzona do sprężarki*kW2,5
Pobór prądu*A6,5
Moc cieplna**kW15,5
Moc elektryczna doprowadzona do sprężarki**kW3,5
Pobór prądu*A6,7
* temp. otoczenia 3°C, temp. wody 40°C
** temp. otoczenia 8°C, temp. wody 50°C

A. 0,2
B. 12,5
C. 4,4
D. 5,0
Współczynnik efektywności COP, czyli ten nasz Coefficient of Performance, to naprawdę ważna sprawa, jeśli chodzi o pompy ciepła. Mówiąc prosto, pokazuje, ile ciepła pompa potrafi dostarczyć w porównaniu do energii elektrycznej, którą zużywa. Gdy mamy temperaturę na zewnątrz 3°C, a woda jest podgrzewana do 40°C, to COP wynosi 5,0. To oznacza, że pompa jakby pięciokrotnie więcej ciepła wydobywa niż sama zużywa energii. Fajnie, co? Takich wyników można się spodziewać, bo pompy ciepła działają tak, że korzystają z energii cieplnej, która jest w otoczeniu. W praktyce, pompy ciepła z takim wysokim COP są mega efektywne – zarówno dla naszej planety, jak i dla portfela. W nowoczesnych systemach grzewczych to wręcz must-have. Zgodnie z normami branżowymi, takimi jak EN 14511, projektuje się takie pompy, żeby maksymalizować COP. Dzięki temu zużycie energii jest mniejsze, a emisja CO2 też spada. Dlatego dobrze jest wybierać pompy ciepła z myślą o COP, bo to klucz do komfortu użytkowników.

Pytanie 35

Ośmiu paneli fotowoltaicznych o maksymalnej mocy P=250 Wp i napięciu U=12 V zostało połączonych równolegle. Instalacja ta cechuje się następującymi parametrami

A. P=250 Wp, U=96 V
B. P=2 000 Wp, U=12 V
C. P=2 000 Wp, U=96 V
D. P=250 Wp, U=12 V
Odpowiedź P=2 000 Wp, U=12 V jest poprawna, ponieważ w układzie równoległym moc paneli fotowoltaicznych sumuje się, natomiast napięcie pozostaje stałe. W przypadku ośmiu paneli o mocy 250 Wp każdy, całkowita moc instalacji wynosi 8 x 250 Wp = 2000 Wp, co jest zgodne z pierwszą odpowiedzią. Napięcie w układzie równoległym pozostaje na poziomie 12 V, co również potwierdza prawidłowość tej odpowiedzi. Takie połączenie jest powszechnie stosowane w systemach fotowoltaicznych, gdzie stabilne napięcie jest kluczowe dla zasilania urządzeń o różnych wymaganiach energetycznych. W praktyce, takie układy są wykorzystywane w instalacjach domowych, gdzie zapewniają odpowiednią moc przy zachowaniu niskiego napięcia, co zwiększa bezpieczeństwo użytkowania. Zgodnie z normami IEC 61215 i IEC 61730, instalacje fotowoltaiczne powinny być projektowane tak, aby zapewnić maksymalną efektywność energetyczną oraz bezpieczeństwo, co również znajduje potwierdzenie w tej odpowiedzi.

Pytanie 36

Jakie cechy posiada słoma jako biopaliwo?

A. niska kaloryczność wynosząca około 15 MJ/kg
B. znaczna emisja CO2 do atmosfery podczas spalania
C. duża kaloryczność wynosząca około 25 MJ/kg
D. wysoka odporność na wilgoć
Wybór odpowiedzi dotyczący dużej odporności słomy na zawilgocenie jest nieprecyzyjny, ponieważ słoma jako materiał organiczny ma ograniczone właściwości hydrofobowe. W rzeczywistości, wilgotność słomy ma kluczowy wpływ na jej wartość energetyczną oraz wydajność spalania. Zwiększona zawartość wody obniża kaloryczność paliwa, prowadząc do mniejszej efektywności energetycznej. Ponadto, odpowiedzi dotyczące dużej emisji CO2 w czasie spalania są mylące; w procesie spalania biopaliw, takich jak słoma, ilość emisji jest znacznie niższa w porównaniu do paliw kopalnych, co wynika z cyklu węglowego, w którym CO2 uwalniane podczas spalania jest w równym stopniu wchłaniane przez rośliny w procesie fotosyntezy. Odpowiedzi wskazujące na wysoką kaloryczność wynoszącą 25 MJ/kg są również nieprawidłowe, gdyż sugerują, że słoma może konkurować pod względem wartości energetycznej z bardziej skoncentrowanymi źródłami, co jest mylące. Kluczowym błędem w myśleniu jest ignorowanie właściwych danych dotyczących składników chemicznych słomy oraz ich wpływu na procesy energetyczne. Zrozumienie tych aspektów jest istotne dla efektywnego wykorzystania biopaliw w praktyce oraz dla dbałości o środowisko.

Pytanie 37

Połączenie zaciskowe przewodów solarnych z twardymi rurami miedzianymi jest wykonane nieprawidłowo, gdy

A. nie oznaczono pełnego wsunięcia rury do kielicha złączki
B. połączenie nie zostało oznaczone jako zaciśnięte
C. brak daty opisującej połączenie
D. nie podano numeru porządkowego do opisu połączenia
Oznaczenie połączenia datą, numerem porządkowym oraz informacja o zaciśnięciu, mimo że mogą być użyteczne w kontekście dokumentacji, nie mają kluczowego znaczenia dla jakości samego połączenia zaciskowego. W praktyce, oznaczenie daty wykonania połączenia może być ważne dla celów serwisowych lub kontrolnych, jednak nie wpływa bezpośrednio na trwałość i funkcjonalność połączenia. Z kolei brak oznaczenia jako 'zaciśnięte' może wynikać z niewłaściwych procedur dokumentacyjnych, ale nie prowadzi bezpośrednio do fizycznych problemów z połączeniem. Oznaczenia tego typu są bardziej praktyczne w kontekście zarządzania projektami niż technicznych aspektów montażu. Właściwe wykonanie połączenia, na co wskazuje kluczowe znaczenie pełnego wsunięcia rury do kielicha, jest podstawowym elementem bezpieczeństwa i efektywności instalacji. Użytkownicy często pomijają ten aspekt, koncentrując się na kwestiach administracyjnych, co prowadzi do nieprawidłowych wniosków. Dlatego istotne jest, aby dokładnie rozumieć znaczenie każdego kroku w procesie montażu, a nie tylko skupić się na dokumentacji. Właściwe połączenia wymagają kompleksowego podejścia, w którym wszystkie aspekty, w tym techniczne, administracyjne i serwisowe, są odpowiednio zintegrowane.

Pytanie 38

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. zaworu rozprężnego
B. skraplacza
C. parownika
D. zaworu odcinającego
Wybór odpowiedzi, że wymiennik gruntowy w pompach ciepła z bezpośrednim odparowaniem pełni rolę zaworu rozprężnego, skraplacza lub zaworu odcinającego, wynika z nieprawidłowego zrozumienia zasad działania i funkcji tych elementów w systemie. Zawór rozprężny jest kluczowym komponentem w układzie chłodniczym, którego zadaniem jest obniżenie ciśnienia czynnika chłodniczego, co umożliwia jego odparowanie. Jednak w przypadku pomp ciepła z bezpośrednim odparowaniem, funkcję tę pełni sam wymiennik gruntowy, który pozwala na bezpośrednie odparowanie czynnika w kontakcie z ziemią. Skraplacz natomiast jest odpowiedzialny za skraplanie czynnika chłodniczego, co odbywa się w procesie oddawania ciepła do otoczenia, ale ta funkcja nie ma zastosowania w wymienniku gruntowym. Z kolei zawór odcinający służy do regulacji przepływu czynnika w układzie, co nie jest związane z procesem wymiany ciepła. Nieprawidłowe rozumienie tych funkcji może prowadzić do błędów w projektowaniu systemu, co w konsekwencji wpływa na jego efektywność i wydajność. Warto zaznaczyć, że pompy ciepła z bezpośrednim odparowaniem wykorzystują unikalne właściwości termodynamiczne, które sprawiają, że wymiennik gruntowy działa jako parownik, a nie jako inne komponenty układu. Kluczowe w tym kontekście jest zrozumienie, że każde z tych elementów ma swoją specyficzną rolę, co jest szczególnie istotne w kontekście projektowania systemów HVAC zgodnie z obowiązującymi normami i dobrymi praktykami branżowymi.

Pytanie 39

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Stal
B. Krzem
C. Aluminium
D. Miedź
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 40

Jaką funkcję pełni zbiornik buforowy?

A. przechowywać biopaliwo
B. przechowywać nadmiar ciepłej wody
C. wyrównywać ciśnienie w systemie centralnego ogrzewania
D. wyrównywać ciśnienie w systemie solarnym
Zbiornik buforowy pełni kluczową rolę w systemach ogrzewania, szczególnie w instalacjach solarnych oraz centralnego ogrzewania. Jego głównym zadaniem jest magazynowanie nadmiaru ciepłej wody, co umożliwia efektywne wykorzystanie energii, a także stabilizację pracy systemu. Przykładowo, w instalacjach solarnych, w ciągu dnia, kiedy produkcja ciepła jest wysoka, zbiornik buforowy gromadzi nadmiar ciepłej wody. Dzięki temu, w godzinach wieczornych, gdy zapotrzebowanie na ciepło wzrasta, możliwe jest wykorzystanie zgromadzonej energii, co przekłada się na oszczędności oraz efektywność energetyczną. Zgodnie z normami branżowymi, odpowiednie zaprojektowanie i umiejscowienie zbiornika buforowego pozwala na optymalizację pracy całego systemu grzewczego i zwiększa jego żywotność. W praktyce, niezależnie od typu źródła ciepła, użycie zbiornika buforowego jest standardem, który przyczynia się do bardziej zrównoważonego i ekologicznego podejścia do ogrzewania budynków.