Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 24 kwietnia 2025 06:20
  • Data zakończenia: 24 kwietnia 2025 06:22

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Absorpcja gazu realizowana jest w sposób przeciwprądowy, przekazując gaz do cieczy (absorbenta) w kolumnie wypełnionej. Która zasada technologiczna wpływa na tę metodę przeprowadzania procesu?

A. Zasadą odzysku ciepła
B. Zasadą wykonywania jedynie niezbędnej pracy
C. Zasadą maksymalnego wykorzystania produktów ubocznych
D. Zasadą maksymalnej powierzchni kontaktu gazu z cieczą
Wybór odpowiedzi związanej z zasadą wykorzystywania produktów ubocznych, wykonywania tylko niezbędnej pracy czy odzyskiwania ciepła nie odnosi się bezpośrednio do istoty procesu absorpcji gazu w cieczy. Kluczowym celem absorpcji jest efektywne przemieszczanie masy między fazami – gazem a cieczą. W kontekście procesów przemysłowych, zasada jak najlepszego wykorzystania produktów ubocznych dotyczy bardziej kwestii zarządzania odpadami oraz optymalizacji procesów produkcyjnych, a nie samego mechanizmu absorpcji. Podobnie zasada wykonywania tylko pracy niezbędnej koncentruje się na efektywności energetycznej, jednak nie tłumaczy dlaczego wybór przepływu przeciwprądowego jest korzystny dla absorpcji. Z kolei zasada odzyskiwania ciepła ma zastosowanie w procesach, gdzie zarządzanie temperaturą jest kluczowe, ale nie stanowi podstawy działania kolumny absorpcyjnej. Typowym błędem myślowym jest postrzeganie tych zasad jako bezpośrednio związanych z wydajnością procesów absorpcyjnych, podczas gdy kluczowe znaczenie ma maksymalizacja powierzchni zetknięcia gazu i cieczy, co pozwala na uzyskanie wyższej efektywności wymiany masy. Ta zasada jest fundamentem projektowania kolumn absorpcyjnych, a nie ogólnych zasad dotyczących efektywności energetycznej czy zarządzania produktami ubocznymi.

Pytanie 2

Aby precyzyjnie określić temperatury topnienia i krzepnięcia roztworów, powinno się użyć

A. kriometru
B. pirometru optycznego
C. ebuliometru
D. bomby kalorymetrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kriometr jest narzędziem specjalistycznym, które służy do precyzyjnego pomiaru temperatury topnienia i krzepnięcia roztworów. Działa na zasadzie analizy zmiany temperatury, gdy substancja przechodzi ze stanu ciekłego w stały (topnienie) lub odwrotnie (krzepnięcie). W praktyce kriometr wykorzystuje się w chemii analitycznej, w procesach badań materiałowych oraz w przemyśle spożywczym, gdzie kontrola temperatury ma kluczowe znaczenie dla zapewnienia jakości produktów. Dzięki zastosowaniu kriometru, można uzyskać dokładne wyniki, co jest niezbędne do oceny czystości chemikaliów oraz do określenia właściwości fizykochemicznych substancji. W branży chemicznej standardy, takie jak ISO, podkreślają znaczenie precyzyjnych pomiarów w badaniach laboratoryjnych, co czyni kriometr narzędziem o wysokiej wartości. Przykładem zastosowania kriometru jest analiza roztworów soli, gdzie znajomość temperatury krzepnięcia jest kluczowa dla uzyskania informacji o stężeniu roztworu i jego właściwościach. Współczesne kriometry są zautomatyzowane, co zwiększa dokładność i powtarzalność pomiarów.

Pytanie 3

Podczas pracy przenośnika taśmowego zaobserwowano, że transportowany materiał zsuwa się w stronę leja załadunkowego. Aby wyeliminować tę nieprawidłowość, należy

A. zwiększyć prędkość ruchu taśmy przenośnika
B. ograniczyć ilość materiału podawanej na taśmę
C. powiększyć odległość od urządzenia rozładunkowego
D. zmniejszyć kąt nachylenia taśmy przenośnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmniejszenie kąta pochylenia taśmy przenośnika jest kluczowym działaniem, które może znacząco wpłynąć na stabilność transportowanego materiału. Zbyt stromy kąt może prowadzić do zsuwania się ładunku, co jest szczególnie problematyczne, gdy materiał ma skłonności do przesuwania się pod wpływem grawitacji. Zmniejszając kąt, zwiększamy siłę tarcia między materiałem a taśmą, co może pomóc w jego stabilizacji. W praktyce, odpowiedni kąt nachylenia dla taśm przenośnikowych zwykle mieści się w przedziale od 15 do 20 stopni, w zależności od rodzaju transportowanego materiału. Dobrą praktyką w branży jest regularne monitorowanie tego parametru oraz dostosowywanie go do charakterystyki transportowanych ładunków, aby uniknąć problemów z zsuwaniem się materiału. Ponadto, zgodnie z normami bezpieczeństwa i efektywności transportu, zaleca się, aby projektowanie systemów przenośnikowych uwzględniało nie tylko kąt nachylenia, ale także rodzaj użytej taśmy, co ma kluczowe znaczenie dla optymalizacji całego procesu transportowego.

Pytanie 4

Który ze składników wykorzystywany jest jako katalizator w reakcji estryfikacji?

A. kwas siarkowy
B. woda destylowana
C. wodorotlenek sodu
D. tlenek wapnia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W reakcji estryfikacji, kwas siarkowy pełni rolę katalizatora. To bardzo ważne w reakcji chemicznej, ponieważ estrowanie polega na połączeniu alkoholu z kwasem karboksylowym, co prowadzi do powstania estru i wody. Kwas siarkowy działa jako katalizator kwasowy, przyspieszając proces poprzez protonowanie grupy karbonylowej kwasu, co czyni ją bardziej elektrofilową. To ułatwia atak nukleofilowy alkoholu. W praktyce, dodanie kwasu siarkowego nie tylko przyspiesza reakcję, ale także zwiększa jej wydajność. To istotne zwłaszcza w przemyśle chemicznym, gdzie czas i efektywność są kluczowe. Warto zauważyć, że katalizatory, takie jak kwas siarkowy, nie zużywają się w trakcie reakcji, co czyni je ekonomicznie korzystnymi. Dodatkowo, stosowanie kwasu siarkowego jako katalizatora jest standardem w wielu procesach przemysłowych, ze względu na jego dostępność i skuteczność. Kwas siarkowy jest więc kluczowym składnikiem w technologii chemicznej, szczególnie w kontekście produkcji estrów, które mają szerokie zastosowanie od perfum po tworzywa sztuczne.

Pytanie 5

Na czym polega między innymi proces przygotowania pieca koksowniczego do remontu?

A. Na przedmuchiwaniu komór sprężonym azotem do momentu osiągnięcia temperatury otoczenia
B. Na usunięciu pozostałości poprodukcyjnych z komór oraz ich zalaniu emulsją olejowo-wodną
C. Na opróżnieniu komór z pozostałości poprodukcyjnych i ochłodzeniu do temperatury otoczenia
D. Na wypaleniu resztek poprodukcyjnych w komorach oraz umyciu ich wodą pod ciśnieniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przygotowanie pieca koksowniczego do remontu polega na zapewnieniu, że komory pieca są całkowicie opróżnione z pozostałości poprodukcyjnych, co jest niezbędne do przeprowadzenia skutecznych prac konserwacyjnych. Opróżnienie komór to kluczowy krok, ponieważ resztki węgla, smoły i innych materiałów mogą prowadzić do nieefektywnego działania pieca oraz mogą powodować dalsze komplikacje w trakcie prac remontowych. Po opróżnieniu komór ważne jest ich schłodzenie do temperatury otoczenia, co umożliwia bezpieczną pracę zespołów remontowych. Proces ten jest zgodny z najlepszymi praktykami w branży, które zalecają utrzymanie odpowiednich warunków bezpieczeństwa i higieny pracy. Przykładowo, w przypadku prac na piecu, który nie został odpowiednio schłodzony, istnieje ryzyko poparzeń czy uszkodzeń sprzętu przez wysokie temperatury. Przestrzeganie procedur chłodzenia i przygotowania komór pieca nie tylko zwiększa bezpieczeństwo, ale także efektywność prowadzonych prac, co przekłada się na dłuższą żywotność pieca oraz zmniejszenie kosztów eksploatacji.

Pytanie 6

Zanim podejmiemy decyzję o koksowaniu odpowiednio wyselekcjonowanej mieszanki różnych rodzajów węgla, konieczne jest pobranie próbki tej mieszanki

A. aspiratorem i poddać ją analizie na zawartość siarki
B. czerpakiem i poddać ją analizie sitowej
C. dmuchawą przemysłową i poddać ją analizie na zawartość siarki
D. zgłębnikiem i poddać ją analizie sitowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, czyli pobranie próbki mieszaniny węgla zgłębnikiem i poddanie jej analizie sitowej, jest kluczowym krokiem w procesie przygotowywania koksu. Zgłębnik to narzędzie, które pozwala na uzyskanie reprezentatywnej próbki, co jest niezbędne do oceny jakości węgla. Analiza sitowa umożliwia określenie rozkładu granulacji węgla, co wpływa na jego zachowanie w procesie koksowania. Granulometria ma istotne znaczenie, ponieważ różne frakcje węgla mogą mieć różne właściwości reologiczne i chemiczne, co z kolei może wpłynąć na efektywność procesu koksowania oraz jakość uzyskanego koksu. Przykładowo, zbyt gruba frakcja może prowadzić do nieodpowiedniego spalania, a zbyt drobna do tworzenia nadmiernej ilości pyłów, co ma negatywny wpływ na środowisko. Dlatego zgodnie z normami branżowymi, takie jak ISO 3310 dotyczące klasyfikacji granulometrycznej, istotne jest, aby proces pobierania próbek i analiza były przeprowadzane w sposób zgodny z ustalonymi standardami.

Pytanie 7

Materiał, w którym proces odparowywania wilgoci zachodzi z całej objętości, opuszczający suszarkę taśmową, wykazuje zbyt dużą wilgotność. Który z parametrów powinien zostać zmieniony, aby uzyskać odpowiednio niską wilgotność suszonego materiału?

A. Zwiększyć prędkość przesuwu taśmy
B. Podnieść temperaturę powietrza
C. Skrócić czas, w jakim materiał znajduje się w suszarce
D. Wprowadzić powietrze we współprądzie z materiałem w trakcie suszenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podniesienie temperatury powietrza w suszarce taśmowej jest kluczowym parametrem, który wpływa na proces odparowywania wilgoci z materiału. Wyższa temperatura powietrza zwiększa energię kinetyczną cząsteczek, co przyspiesza proces parowania. W praktyce, w zależności od rodzaju materiału, standardowe temperatury mogą wynosić od 50°C do 150°C. Podwyższenie temperatury skutkuje lepszym transferem ciepła i masy, co pozwala na skuteczniejsze usuwanie wilgoci. Zastosowanie tej metody jest zgodne z dobrą praktyką w przemyśle, gdzie kontrola temperatury jest niezbędna dla osiągnięcia optymalnych parametrów procesu suszenia. Na przykład, w przemyśle spożywczym, gdzie wilgotność surowców jest kluczowa, podniesienie temperatury może znacząco poprawić jakość finalnego produktu poprzez redukcję ryzyka rozwoju mikroorganizmów oraz poprawę trwałości. Warto również zaznaczyć, że wyższa temperatura ma wpływ na obniżenie czasu przebywania materiału w suszarce, co przyczynia się do zwiększenia wydajności procesu.

Pytanie 8

Silnie egzotermiczne reakcje okresowego nitrowania benzenu w warunkach ciśnienia atmosferycznego trwają przez kilka godzin, a ich temperatura początkowa nie powinna przekraczać 30°C. W przypadku nagłego, niekontrolowanego wzrostu temperatury, należy

A. zwiększyć szybkość dozowania mieszaniny nitrującej
B. zwiększyć natężenie przepływu cieczy chłodzącej
C. zmniejszyć prędkość obrotową mieszadła
D. zmniejszyć natężenie przepływu cieczy chłodzącej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie przepływu chłodziwa, gdy temperatura nagle rośnie w procesie nitrowania benzenu, to naprawdę ważna sprawa. Musimy zadbać o bezpieczeństwo i kontrolować reakcję chemiczną. W takich procesach egzotermicznych, jak nitrowanie, wydobywa się dużo ciepła, co może prowadzić do niebezpiecznego wzrostu temperatury. Dlatego większy przepływ chłodziwa pomaga lepiej odprowadzać to ciepło. To szczególnie istotne, jak temperatura zbliża się do granicy, bo to może być ryzykowne. Przykładem mogą być przemysłowe wymienniki ciepła, które pomagają w regulacji temperatury reakcji. W inżynierii chemicznej jest też dobrze monitorować temperaturę i ciśnienie na bieżąco, żeby szybko reagować w razie problemów. No i zgodnie z normami bezpieczeństwa, każdy system powinien mieć automaty do kontrolowania przepływu chłodziwa i alarmy, które poinformują o nieprawidłowościach.

Pytanie 9

Aby przeprowadzić częściową deflegmację oparów wydobywających się z kolumny rektyfikacyjnej, konieczne jest zastosowanie

A. wymiennika płaszczowo-rurowego
B. kolumny z wypełnieniem stałym
C. kolumny z wypełnieniem ruchomym
D. wymiennika bezprzeponowego wodnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiennik płaszczowo-rurowy jest kluczowym urządzeniem stosowanym w procesach przemysłowych, w tym w częściowej deflegmacji oparów z kolumn rektyfikacyjnych. Jego konstrukcja, polegająca na umieszczeniu rur w płaszczu, pozwala na efektywne wymienianie ciepła pomiędzy dwoma płynami, co jest niezbędne w celu kondensacji par i odzysku cennych składników. Praktycznym przykładem zastosowania wymienników płaszczowo-rurowych jest ich wykorzystanie w przemyśle petrochemicznym, gdzie są stosowane do chłodzenia par w procesach destylacji. Dzięki ich wysokiej efektywności cieplnej i kompaktowej budowie, są one często preferowane w porównaniu do innych typów wymienników ciepła. Ponadto, zgodnie z normami ASME oraz dobrymi praktykami inżynieryjnymi, wymienniki te są projektowane z myślą o minimalizacji strat cieplnych, co czyni je idealnym rozwiązaniem do efektywnej deflegmacji oparów. Zrozumienie zasad działania i zastosowania wymienników płaszczowo-rurowych jest istotne dla inżynierów procesowych, aby skutecznie optymalizować procesy produkcji i zwiększać ich rentowność.

Pytanie 10

Jaki jest główny cel użycia wymiennika ciepła w procesach chemicznych?

A. Zwiększanie ciśnienia gazu
B. Przenoszenie ciepła między dwoma mediami
C. Katalizowanie reakcji chemicznych
D. Zmniejszanie objętości cieczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymienniki ciepła są kluczowymi urządzeniami w przemyśle chemicznym, które umożliwiają efektywne przenoszenie ciepła między dwoma mediami. To przenoszenie ciepła jest niezbędne w wielu procesach produkcyjnych, gdzie konieczne jest ogrzewanie lub chłodzenie płynów. W praktyce zastosowanie wymienników ciepła pozwala na optymalizację energetyczną procesów, co prowadzi do zmniejszenia zużycia energii i kosztów operacyjnych. Na przykład, podczas produkcji chemikaliów, ciepło odpadowe generowane w jednym etapie procesu może być wykorzystane do ogrzewania innego medium, co zwiększa efektywność całego procesu. Zastosowanie wymienników ciepła jest zgodne z zasadami zrównoważonego rozwoju i efektywności energetycznej. Dodatkowo, dobrze zaprojektowane wymienniki ciepła mogą poprawić kontrolę nad procesami chemicznymi, umożliwiając precyzyjne utrzymanie wymaganych temperatur reakcji, co jest kluczowe dla jakości i bezpieczeństwa produkcji.

Pytanie 11

Aby przetransportować żwir na wysokość około 20 m, należy zastosować przenośnik

A. ślimakowy
B. taśmowy
C. kubełkowy
D. zgarniakowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenośniki kubełkowe są idealnym rozwiązaniem do transportu materiałów sypkich, takich jak żwir, na dużą wysokość, w tym przypadku około 20 metrów. Zasada działania przenośników kubełkowych opiera się na wykorzystaniu kubełków zamocowanych na taśmie, które napełniają się materiałem na dole przenośnika i są następnie podnoszone w górę przez system taśmowy. Dzięki swojej konstrukcji, przenośniki te są w stanie efektywnie transportować materiały, minimalizując straty i zapobiegając ich uszkodzeniu. W branży budowlanej oraz górniczej przenośniki kubełkowe są powszechnie stosowane nie tylko do transportu żwiru, ale także piasku czy kamieni. Warto zaznaczyć, że ich wydajność i elastyczność w zastosowaniach sprawiają, że są preferowanym wyborem w zakładach zajmujących się przetwarzaniem surowców, gdzie konieczne jest podnoszenie materiałów na znaczne wysokości. Dobrą praktyką jest również regularne serwisowanie tych urządzeń, co zapewnia ich długotrwałe i niezawodne działanie w trudnych warunkach operacyjnych.

Pytanie 12

Który typ mieszalnika wymaga wprowadzenia do komory mieszania składników w postaci stałej oraz sprężonego powietrza?

A. Przesypowy bębnowy
B. Dwustożkowy
C. Fluidyzacyjny
D. Przesypowy dwustożkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mieszalnik fluidyzacyjny to urządzenie, które wykorzystuje zjawisko fluidyzacji do mieszania składników w fazie stałej. W tym procesie materiał stały jest wprowadzany do komory mieszania, a następnie poddawany działaniu sprężonego powietrza, które powoduje, że cząstki materii unoszą się w powietrzu, co umożliwia ich równomierne mieszanie. Dzięki temu procesowi, składniki mają możliwość swobodnego ruchu, co prowadzi do uzyskania jednorodnej mieszanki. Zastosowanie mieszalników fluidyzacyjnych jest powszechne w przemyśle chemicznym i farmaceutycznym, gdzie wymagana jest wysoka jakość mieszania oraz minimalizacja segregacji składników. W przypadku mieszalników fluidyzacyjnych kluczowym aspektem jest kontrola parametrów takich jak prędkość przepływu powietrza czy ciśnienie, co pozwala na optymalizację procesu i uzyskanie pożądanych rezultatów. Przemiany fizyczne zachodzące w tych mieszalnikach są zgodne z zasadami inżynierii procesowej, co potwierdza ich efektywność i niezawodność w zastosowaniach przemysłowych.

Pytanie 13

Jakie środki osobistego zabezpieczenia powinien posiadać pracownik pracujący przy wielkim piecu?

A. Hełm ochronny, kombinezon żaroodporny, rękawice ochronne, buty ochronne
B. Hełm ochronny, maskę przeciwpyłową, buty ochronne, fartuch gumowy
C. Fartuch ochronny, gogle, hełm ochronny, ochronniki słuchu
D. Kombinezon żaroodporny, rękawice lateksowe, gogle, nauszniki przeciwhałasowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na hełm ochronny, kombinezon żaroodporny, rękawice ochronne i buty ochronne, jest poprawna, ponieważ te środki ochrony indywidualnej są niezbędne w pracy przy wielkim piecu. Hełm ochronny chroni głowę przed opadającymi przedmiotami oraz potencjalnymi uderzeniami. Kombinezon żaroodporny jest kluczowy, ponieważ przedłużona ekspozycja na wysokie temperatury oraz iskry może prowadzić do poparzeń. Rękawice ochronne zapewniają ochronę dłoni przed wysokimi temperaturami oraz substancjami chemicznymi, które mogą występować w trakcie pracy. Buty ochronne z metalowymi noskami chronią stopy przed ciężkimi przedmiotami oraz zapewniają przyczepność na śliskich powierzchniach. Te środki ochrony są zgodne z normami bezpieczeństwa, takimi jak EN 397 dla hełmów oraz EN 531 dla odzieży żaroodpornej, co podkreśla ich znaczenie w zachowaniu bezpieczeństwa w miejscu pracy.

Pytanie 14

Jak przebiega pobieranie próbek gazów odlotowych z instalacji produkującej kwas azotowy(V)?

A. Z wykorzystaniem kurka probierczego
B. Z wykorzystaniem sondy ciśnieniowej
C. Metodą sedymentacyjną
D. Metodą aspiracyjną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pobór próbki gazów odlotowych z instalacji do produkcji kwasu azotowego(V) odbywa się metodą aspiracyjną, co jest zgodne z zasadami analizy gazów w procesach przemysłowych. Metoda ta polega na wykorzystaniu różnicy ciśnień do przemieszczenia gazu przez układ próbkowy. Umożliwia to uzyskanie reprezentatywnej próbki gazu, która oddaje rzeczywiste warunki panujące w instalacji. W praktyce, podczas poboru próbki, stosuje się odpowiednie urządzenia, takie jak aspiratory bądź pompy próżniowe, które zapewniają kontrolowany przepływ gazu. Metoda aspiracyjna jest zgodna z normami ISO 10780 dla pobierania próbek gazów oraz z zaleceniami dotyczącymi bezpieczeństwa, co jest szczególnie istotne w kontekście pracy z substancjami chemicznymi. Dodatkowo, dokładność poboru próbek ma kluczowe znaczenie dla późniejszych analiz, takich jak pomiar stężenia NOx, co jest istotne dla oceny efektywności procesu oraz wpływu na środowisko. Użycie tej metody minimalizuje ryzyko zanieczyszczenia próbki i błędów pomiarowych, co jest kluczowe w monitorowaniu emisji gazów w przemyśle chemicznym.

Pytanie 15

Jak przeprowadzić pomiar gęstości frakcji pobranej z kolumny rektyfikacyjnej do analizy dynamicznej?

A. Przelać próbkę do wysokiego naczynia, zanurzyć w cieczy areometr i odczytać wynik po ustaleniu poziomu
B. Przelać próbkę do krystalizatora, włożyć do niego areometr i po upływie określonego czasu odczytać wynik
C. Umieścić elektrodę wodorową bezpośrednio w strumieniu cieczy wypływającej z kranu probierczego i zrealizować pomiar wartości
D. Zainstalować czujnik psychometru bezpośrednio w strumieniu cieczy wypływającej z kranu probierczego i dokonać pomiaru wartości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar gęstości frakcji pobranej z kolumny rektyfikacyjnej jest kluczowym elementem analizy ruchowej, pozwalającym na monitorowanie procesu separacji składników. Przelać próbkę do wysokiego naczynia i zanurzyć w cieczy areometr jest najlepszym podejściem, gdyż zapewnia optymalne warunki do dokładnego pomiaru. Areometr, dzięki swojej konstrukcji, pozwala na precyzyjne określenie gęstości cieczy na podstawie zasady Archimedesa. Podczas pomiaru ważne jest upewnienie się, że ciecz, w której umieszczany jest areometr, jest wystarczająco głęboka, by uniknąć wpływu na wynik, jaki miałoby zbyt małe zanurzenie. Stąd też, użycie wysokiego naczynia jest istotne. Przykładowo, w przemyśle chemicznym takie pomiary są kluczowe w ocenie czystości frakcji lub wydajności procesu rektyfikacji. Dobrą praktyką jest przeprowadzenie kalibracji areometru w znanych gęstościach, co pozwala na zapewnienie dokładności pomiarów. Dodatkowo, warto pamiętać o temperaturze, która wpływa na gęstość cieczy i może wymagać odpowiednich korekcji. Kluczowe jest również dokumentowanie wyników, aby zapewnić ich wiarygodność w kontekście jakości analizy.

Pytanie 16

Jakie warunki podczas przeprowadzania procesu absorpcji mogą przyczynić się do zwiększenia jego efektywności?

A. Zmniejszenie temperatury oraz zwiększenie ciśnienia procesu
B. Zmniejszenie temperatury oraz obniżenie ciśnienia procesu
C. Zwiększenie temperatury oraz zwiększenie ciśnienia procesu
D. Zwiększenie temperatury oraz obniżenie ciśnienia procesu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obniżenie temperatury i podwyższenie ciśnienia procesu absorpcji sprzyja osiągnięciu wyższej wydajności, ponieważ takie warunki mogą zwiększyć rozpuszczalność gazu w cieczy. W przypadku procesów chemicznych, takich jak absorpcja dwutlenku węgla w wodzie, zmniejszenie temperatury zwiększa energię, potrzebną do rozpuszczenia gazu, podczas gdy zwiększenie ciśnienia powoduje, że więcej cząsteczek gazu jest zmuszonych do interakcji z cieczą, co prowadzi do wyższej efektywności absorpcyjnej. Przykładem zastosowania tej zasady może być przemysłowy proces usuwania CO2 z gazów odlotowych, gdzie kontrolowanie warunków procesowych jest kluczowe do optymalizacji wydajności. W praktyce, stosowanie odpowiednich reaktorów z systemami chłodzenia i podwyższonym ciśnieniem, w połączeniu z monitorowaniem parametrów procesowych, pozwala na efektywniejsze wykorzystanie chemikaliów i redukcję odpadów, co jest zgodne z najlepszymi praktykami w zakresie inżynierii procesowej.

Pytanie 17

Ile dm3 wody o gęstości 1 g/cm3 powinno być odmierzone, by przygotować 1000 kg roztworu chlorku sodu o stężeniu 25% masowych?

A. 750 dm3
B. 250 dm3
C. 975 dm3
D. 25 dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby sporządzić 1000 kg roztworu chlorku sodu o stężeniu 25%, musimy najpierw obliczyć masę chlorku sodu oraz masę wody, która będzie potrzebna. Stężenie masowe 25% oznacza, że na 100 g roztworu przypada 25 g chlorku sodu. Zatem w 1000 kg roztworu (co odpowiada 1 000 000 g) ilość chlorku sodu wynosi 25% z tej masy, co daje 250 000 g. Reszta masy roztworu, czyli masa wody, będzie wynosić 1 000 000 g - 250 000 g = 750 000 g. Ponieważ gęstość wody wynosi 1 g/cm³, to 750 000 g wody odpowiada 750 000 cm³, co przelicza się na 750 dm³. Takie wyliczenia są zgodne z zasadami przygotowania roztworów w chemii oraz standardami laboratoryjnymi, gdzie precyzyjne obliczenia są kluczowe dla uzyskania oczekiwanych wyników. W praktyce, znajomość stężeń i umiejętność przeliczania objętości wody jest niezwykle ważna podczas przygotowywania reagentów w laboratoriach chemicznych oraz w przemyśle farmaceutycznym.

Pytanie 18

Roztwór nasycony określonej soli uzyskano poprzez dodanie 250 g tej soli do 1 000 g wody. Jakie jest stężenie procentowe tak przygotowanego roztworu?

A. 20%
B. 33%
C. 25%
D. 17%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć stężenie procentowe roztworu, musimy zastosować wzór: stężenie procentowe = (masa solutu / masa roztworu) × 100%. W tym przypadku masa solutu wynosi 250 g (masa soli), a masa roztworu to suma masy soli i masy rozpuszczalnika (wody), która wynosi 1000 g. Tak więc masa roztworu wynosi 250 g + 1000 g = 1250 g. Podstawiając wartości do wzoru, otrzymujemy: (250 g / 1250 g) × 100% = 20%. Dlatego stężenie procentowe roztworu wynosi 20%. Obliczanie stężenia procentowego jest kluczowe w chemii, szczególnie w kontekście przygotowywania roztworów do eksperymentów laboratoryjnych czy przemysłowych. Umożliwia to precyzyjne kontrolowanie ilości substancji w roztworze, co jest niezbędne w wielu procesach chemicznych oraz w farmaceutyce, gdzie dokładne stężenie substancji czynnej jest kluczowe dla skuteczności leku.

Pytanie 19

Który z poniższych materiałów jest najczęściej używany do produkcji zbiorników na kwas siarkowy?

A. Mosiądz
B. Aluminium
C. Stal nierdzewna
D. Miedź

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal nierdzewna jest najczęściej używanym materiałem do produkcji zbiorników na kwas siarkowy z wielu powodów. Przede wszystkim, stal nierdzewna jest wysoko odporna na korozję, co jest kluczowe w przypadku kontaktu z agresywnym kwasem siarkowym. Dzięki obecności chromu w składzie, stal nierdzewna tworzy pasywną warstwę na powierzchni, która chroni przed dalszym utlenianiem. To sprawia, że jest to materiał nie tylko trwały, ale również ekonomicznie opłacalny w dłuższym okresie użytkowania, mimo że początkowy koszt może być wyższy. W przemyśle chemicznym stosuje się różne gatunki stali nierdzewnej, takie jak 316L, które zapewniają dodatkową odporność na działanie kwasów. Stal nierdzewna jest również odporna na wahania temperatury, co jest istotne w procesach, gdzie kwas siarkowy może być podgrzewany lub chłodzony. Warto również wspomnieć, że stal nierdzewna jest materiałem o wysokiej wytrzymałości mechanicznej, co pozwala na budowanie zbiorników o dużych rozmiarach, które są bezpieczne i spełniają wszystkie normy bezpieczeństwa. Dzięki tym właściwościom stal nierdzewna jest preferowanym wyborem w produkcji zbiorników przemysłowych na substancje żrące.

Pytanie 20

Przed wprowadzeniem substratów do reaktora na produkcję tlenku etylenu, należy przeprowadzić analizę ich zawartości

A. acetylenu i związków siarki
B. gazu szlachetnych
C. tlenków azotu
D. metanu oraz związków srebra

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór acetylenu i związków siarki jako ważnych elementów do analizy przed wytwarzaniem tlenku etylenu jest jak najbardziej trafny. To dlatego te substancje mogą mieć spory wpływ na to, jak będzie przebiegał cały proces katalityczny. Acetylen, to taki alkin, który może wchodzić w reakcję z tlenkiem etylenu, a to z kolei może się kończyć powstawaniem różnych niepożądanych produktów oraz obniżeniem wydajności reakcji. Związki siarki? No cóż, te także są ważne, bo mogą prowadzić do powstawania siarkowodoru i innych nieciekawych substancji, które mogą zrujnować katalizatory w produkcji. W chemii bardzo ważne jest, aby monitorować surowce, a normy, takie jak ISO 9001, to potwierdzają. Dobrym przykładem są zakłady chemiczne, gdzie regularne testy surowców są mega istotne, żeby wszystko działało jak należy i żeby było bezpiecznie.

Pytanie 21

Operator nadzorujący reaktor do produkcji amoniaku, zauważając nagły spadek stężenia NH3 w gazach odlotowych, powinien przede wszystkim zweryfikować

A. temperaturę katalizatora
B. ciśnienie w reaktorze
C. skład gazów syntezowych
D. natężenie przepływu gazu poreakcyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Temperatura katalizatora jest kluczowym czynnikiem wpływającym na efektywność procesu syntezy amoniaku. W odpowiednich warunkach temperatura umożliwia osiągnięcie optymalnej reakcji, co przekłada się na maksymalne wydobycie NH3. Zbyt niska temperatura może prowadzić do zmniejszenia aktywności katalizatora, co skutkuje obniżeniem wydajności i spadkiem stężenia amoniaku w gazach odlotowych. Przykładowo, w przemyśle chemicznym, zgodnie z najlepszymi praktykami, operatorzy monitorujący proces syntezy amoniaku dbają o regularne pomiary temperatury katalizatora, a także stosują systemy automatycznej regulacji, aby utrzymać ją w optymalnym zakresie. W przypadku stwierdzenia nagłego spadku NH3, należy najpierw skontrolować temperaturę, aby wykluczyć jej wpływ na proces. Dbałość o parametry pracy katalizatora, w tym jego temperaturę, jest szczególnie ważna w kontekście utrzymania ciągłości produkcji oraz minimalizacji strat surowców.

Pytanie 22

Jaki jest podstawowy cel stosowania inhibitorów korozji w przemysłowych instalacjach chemicznych?

A. Zmniejszenie ciśnienia roboczego
B. Ochrona urządzeń przed uszkodzeniami chemicznymi
C. Zwiększenie lepkości cieczy
D. Zwiększenie przewodności cieczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inhibitory korozji są kluczowymi substancjami chemicznymi stosowanymi w przemyśle chemicznym, ponieważ ich podstawowym zadaniem jest ochrona urządzeń przed uszkodzeniami chemicznymi. Korozja to proces, który prowadzi do degradacji materiałów, zwłaszcza metali, w wyniku reakcji chemicznych z otaczającym środowiskiem. W instalacjach przemysłowych, gdzie często występują agresywne chemikalia i wysokie temperatury, ryzyko korozji jest szczególnie wysokie. Inhibitory korozji działają na różne sposoby: mogą tworzyć ochronną warstwę na powierzchni metalu, zmieniać środowisko reakcyjne, aby było mniej agresywne lub wpływać na kinetykę reakcji korozji. Dzięki temu zmniejsza się tempo degradacji materiałów, co przedłuża żywotność urządzeń i zmniejsza koszty związane z przestojami i wymianą uszkodzonych części. W praktyce stosowanie inhibitorów korozji jest standardem w wielu gałęziach przemysłu, takich jak przemysł naftowy, gazowy, chemiczny i energetyczny. Przykładem może być dodawanie inhibitorów do wody chłodzącej w systemach kotłowych, aby zapobiec korozji rur i wymienników ciepła. Takie działania są zgodne z najlepszymi praktykami inżynieryjnymi i normami branżowymi, które kładą nacisk na minimalizowanie ryzyka korozji dla zapewnienia bezpieczeństwa i efektywności procesów przemysłowych.

Pytanie 23

Reaktor przeznaczony do nitrowania benzenu przed jego konserwacją powinien zostać oczyszczony z zawartości, schłodzony oraz

A. przemyty zimnym benzenem
B. przemyty gorącym benzenem
C. zneutralizowany wapienną zasadą
D. wypłukany powietrzem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'zneutralizowany zasadą wapienną' jest prawidłowa, ponieważ przed konserwacją reaktora, szczególnie w przypadku procesów chemicznych, w których mogą występować substancje kwasowe, kluczowym krokiem jest neutralizacja pozostałości. Zasada wapienna działa jako skuteczny środek neutralizujący, który umożliwia usunięcie kwasowych pozostałości z wnętrza reaktora. W praktyce, zapewnia to nie tylko bezpieczeństwo, ale także efektywność przyszłych operacji. Często stosowana jest procedura, w której reaktor jest najpierw dokładnie myty, a następnie napełniany roztworem zasady wapiennej. Po odpowiednim czasie kontaktu, roztwór jest usuwany, a wnętrze reaktora ponownie płukane. Dobre praktyki przemysłowe wymagają dokumentacji całego procesu, aby zapewnić, że reaktor jest w odpowiednim stanie przed rozpoczęciem kolejnych reakcji. Ignorowanie tego kroku może prowadzić do niebezpiecznych reakcji chemicznych lub kontaminacji, co podkreśla znaczenie przestrzegania standardów BHP oraz procedur operacyjnych w chemii. Przykład zastosowania to przemysł petrochemiczny, gdzie odpowiednia konserwacja reaktorów wpływa na bezpieczeństwo i jakość produktów.

Pytanie 24

Ile wody trzeba odparować z 150 g roztworu KCl o stężeniu 20%, aby uzyskać roztwór o stężeniu 50%?

A. 60 g
B. 50 g
C. 30 g
D. 90 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeby policzyć, ile wody trzeba odparować z roztworu KCl o stężeniu 20% (150 g), żeby uzyskać roztwór o stężeniu 50%, trzeba najpierw zobaczyć, ile KCl mamy na początku. Stężenie 20% znaczy, że w 100 g roztworu jest 20 g KCl, więc w 150 g roztworu będzie to: (150 g * 20 g) / 100 g = 30 g KCl. W nowym roztworze o stężeniu 50% ta sama ilość KCl (30 g) musi stanowić 50% całości. Czyli całkowita masa nowego roztworu wynosi: 30 g / 0,5 = 60 g. Różnica w masie, pomiędzy tym pierwotnym a nowym roztworem to: 150 g - 60 g = 90 g. Więc musimy odparować 90 g wody, żeby uzyskać potrzebne stężenie. Takie obliczenia są super ważne w chemii, zwłaszcza w laboratoriach, gdzie musimy precyzyjnie przygotować roztwory, by wyniki były wiarygodne.

Pytanie 25

Dekarbonizacja wody przy użyciu wody wapiennej polega na dodawaniu do niej nasyconego roztworu Ca(OH)2 o stężeniu 0,15%. Do zmiękczania 1000 dm3 wody przemysłowej konieczne jest przygotowanie 1 kg wody wapiennej. Ile wodorotlenku wapnia jest potrzebne do uzyskania 1 kg wody wapiennej?

A. 1,5 kg Ca(OH)2
B. 1,5 g Ca(OH)2
C. 0,15 g Ca(OH)2
D. 0,15 kg Ca(OH)2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,5 g Ca(OH)2 jest poprawna, ponieważ do sporządzenia 1 kg wody wapiennej o stężeniu 0,15% potrzebujemy 1,5 g wodorotlenku wapnia. Obliczenia można przeprowadzić w sposób następujący: 0,15% roztworu oznacza, że na 100 g roztworu przypada 0,15 g substancji czynnej. W przypadku 1 kg (1000 g) roztworu, wartość ta wynosi 1,5 g (1000 g * 0,15% = 1,5 g). Taki roztwór jest stosowany w procesach dekabonizacji, gdzie woda wapienna działa jako środek zmiękczający, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak oczyszczanie wody czy neutralizacja kwasów. Zastosowanie odpowiednich dawek substancji chemicznych jest zgodne z normami branżowymi, co przyczynia się do efektywności procesów oraz ochrony środowiska.

Pytanie 26

Jaką czynność należy wykonać w trakcie pracy ze spektrofotometrem?

A. Określić natężenie przepływu gazu obojętnego
B. Sprawdzić intensywność widma w podczerwieni roztworu wzorcowego
C. Ustawić pożądany zakres długości fali
D. Odkreślić maksymalny kąt skręcenia płaszczyzny polaryzacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie pożądanego zakresu długości fali jest kluczowym krokiem w obsłudze spektrofotometru, ponieważ to właśnie długość fali determinuje, które fotony będą absorbowane przez próbkę. Różne substancje chemiczne mają charakterystyczne długości fal, przy których absorpcja jest największa, co umożliwia ich identyfikację oraz ilościowe oznaczanie. Przykładowo, w analizach chemicznych często wykorzystuje się spektrofotometrię UV-Vis do określenia stężenia substancji w roztworach. Ustalając odpowiednią długość fali, można skupić się na specyficznych absorpcjach, co zwiększa dokładność pomiarów. Dobre praktyki branżowe zalecają również kalibrację spektrofotometru na wzorcach o znanych absorbancjach, co umożliwia uzyskanie precyzyjnych wyników. W związku z tym, umiejętność właściwego ustawienia zakresu długości fali jest fundamentalna w pracy z tym urządzeniem oraz w analizach laboratoryjnych w ogóle.

Pytanie 27

Jak należy zmniejszyć ogólną próbkę świeżej partii fosforytów, aby uzyskać próbkę przeznaczoną do badań?

A. Zagęszczając zbierany materiał podczas flotacji
B. Wybierając najmniejsze ziarna fosforytów
C. Z wykorzystaniem metody ćwiartkowania
D. Odrzucając największe ziarna fosforytów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Stosując metodę ćwiartkowania" jest prawidłowa, ponieważ metoda ta jest klasyczną techniką redukcji próbki, szeroko stosowaną w laboratoriach geologicznych i mineralogicznych. Ćwiartkowanie polega na podziale próbki na cztery równe części, z których następnie wybiera się dwie do dalszej analizy. Ta metoda zapewnia, że próbka analizowana jest reprezentatywna dla całej partii, co jest kluczowe w kontekście analizy fosforytów, które mogą wykazywać znaczne zróżnicowanie. Przykładem zastosowania tej metody może być analiza jakości fosforytów w przemyśle nawozowym, gdzie ważne jest, aby próbka oddawała rzeczywisty skład chemiczny całej partii. Zgodnie z normami ISO dotyczącymi prób pobierania, stosowanie metody ćwiartkowania jest rekomendowane, ponieważ minimalizuje ryzyko błędów analitycznych związanych z niejednorodnością próbki. Dodatkowo, metoda ta jest łatwa do wykonania i nie wymaga specjalistycznego sprzętu, co czyni ją dostępną w wielu laboratoriach.

Pytanie 28

Do zbudowania przegrody filtracyjnej ziarnistej używa się

A. materiału lnianego
B. materiału bawełnianego
C. piasku
D. bibuły

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Piasek jest podstawowym materiałem stosowanym do budowy przegrody filtracyjnej ziarnistej, ponieważ charakteryzuje się odpowiednią wielkością ziaren oraz porowatością, co pozwala na skuteczne zatrzymywanie zanieczyszczeń mechanicznych z cieczy. W systemach filtracyjnych piasek działa jako medium filtracyjne, które, w zależności od frakcji, jest w stanie zatrzymać cząstki o różnej wielkości, co czyni go niezwykle wszechstronnym w zastosowaniach takich jak oczyszczanie wody pitnej, przemysłowej czy ścieków. Przykładem zastosowania piasku w praktyce może być budowa studni chłonnych, gdzie piasek jest wykorzystywany w warstwie filtracyjnej, by zapewnić skuteczną filtrację i ochronę przed zanieczyszczeniami. Przy projektowaniu systemów filtracyjnych należy także zwrócić uwagę na standardy, takie jak PN-EN 12921, które określają wymagania dotyczące materiałów filtracyjnych, w tym zastosowania piasku. Wiedza o właściwościach piasku jako materiału filtracyjnego jest kluczowa dla inżynierów zajmujących się projektowaniem systemów uzdatniania wody.

Pytanie 29

Jakie ciśnienie gazu występuje na wylocie wypełnionej kolumny absorpcyjnej, jeśli do absorbera dostarczany jest surowy gaz ziemny (zawierający składniki, które mają być absorbowane — CO2 i H2S) oraz ciekły absorbent?

A. Ciśnienie gazu pozostaje na tym samym poziomie. Wypełnienie kolumny powoduje obniżenie ciśnienia gazu, jednak opary absorbentu sprawiają, że ciśnienie nie zmienia się
B. Ciśnienie gazu jest mniejsze niż na wlocie. Temperatura gazu w trakcie procesu maleje
C. Ciśnienie gazu jest wyższe niż na wlocie. Temperatura gazu w trakcie procesu rośnie
D. Ciśnienie gazu jest niższe niż na wlocie. Wypełnienie kolumny oraz usuwanie składników gazu powodują obniżenie ciśnienia gazu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota! Odpowiedź, że ciśnienie gazu jest niższe niż na wlocie, jest jak najbardziej trafna. Wiesz, podczas absorpcji z gazu usuwane są różne składniki, a jego objętość się zmniejsza. Kiedy gaz przepływa przez wypełnioną kolumnę, to zjawisko powoduje spadek ciśnienia. Jeśli się dobrze zastanowisz, to zasady termodynamiki oraz równanie Bernoulliego dobrze to wyjaśniają – tam, gdzie jest więcej oporu, czyli w wypełnionej kolumnie, ciśnienie faktycznie maleje. W praktyce inżynieryjnej takie coś jest istotne, zwłaszcza przy odsiarczaniu gazu ziemnego, gdzie usunięcie H2S i CO2 ma ogromne znaczenie, by spełnić normy jakości. Pamiętaj też, że projektując takie kolumny, trzeba myśleć o tych zmianach ciśnienia, żeby wszystko działało jak należy i było zgodne z normami, takimi jak API czy ASME – to naprawdę ważne w przemyśle!

Pytanie 30

Przy wysyłce opakowań zbiorczych substancji niebezpiecznych pochodzących z przemysłu chemicznego do odbiorcy, co należy do nich dołączyć między innymi?

A. kartę charakterystyki produktu
B. spis wyników badań jakości używanych surowców
C. karty charakterystyki wszystkich surowców zastosowanych w produkcji
D. informacje technologiczne dotyczące procesu produkcji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Karta charakterystyki produktu to kluczowy dokument, który musi towarzyszyć opakowaniom zbiorczym substancji niebezpiecznych, zgodnie z wymaganiami europejskiego rozporządzenia REACH oraz przepisami dotyczącymi transportu towarów niebezpiecznych. Dokument ten zawiera szczegółowe informacje na temat właściwości chemicznych substancji, potencjalnych zagrożeń dla zdrowia i środowiska, a także instrukcje dotyczące bezpiecznego stosowania i transportu. Przykładowo, karta charakterystyki może informować o konieczności stosowania odpowiednich środków ochrony osobistej podczas manipulacji substancją. W praktyce, posiadanie aktualnej karty charakterystyki jest niezbędne nie tylko dla producentów, ale także dla dystrybutorów i odbiorców, którzy muszą być świadomi ryzyk związanych z danym produktem. Ponadto, karty charakterystyki są istotnym narzędziem w ocenie ryzyka oraz w procesie zarządzania bezpieczeństwem w miejscu pracy, co jest zgodne z wytycznymi ANSI/AIHA Z10 oraz ISO 45001. Dlatego prawidłowe dołączenie karty charakterystyki do opakowań zbiorczych to kluczowy element zapewniający bezpieczeństwo i zgodność z regulacjami prawnymi.

Pytanie 31

Jakiego wartościowego produktu ubocznego można otrzymać w wyniku zastosowania metody Clausa?

A. Fluorowodór
B. Siarkę
C. Chlor
D. Chlorowodór

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces Clausa jest kluczową metodą stosowaną w przemyśle chemicznym do recyklingu siarki z gazów przemysłowych, szczególnie z gazu siarkowodorowego (H2S). Podczas tego procesu, siarkowodór jest utleniany do elementarnej siarki w obecności tlenu, co prowadzi do uzyskania czystej siarki, która ma wiele zastosowań w różnych sektorach przemysłu. Siarka jest nie tylko surowcem do produkcji kwasu siarkowego, który jest jednym z najważniejszych reagentów w chemii przemysłowej, ale również znajduje zastosowanie w produkcji nawozów, pestycydów oraz w procesach syntezy organicznej. Współczesne zakłady przetwórstwa gazów, które stosują proces Clausa, są często projektowane zgodnie z najlepszymi praktykami inżynieryjnymi i normami ochrony środowiska, co pozwala na minimalizację emisji zanieczyszczeń oraz efektywne wykorzystanie surowców. Dodatkowo, siarka uzyskana w tym procesie jest wykorzystywana w przemyśle petrochemicznym oraz w produkcji materiałów budowlanych, co podkreśla jej wszechstronność i znaczenie dla zrównoważonego rozwoju przemysłu chemicznego.

Pytanie 32

Gazy pochodzące z mieszalnika oraz komór produkcyjnych superfosfatu, po absorpcji w wodzie, powinny zostać poddane badaniu na obecność

A. tlenku fosforu(V)
B. fluorku krzemu(IV)
C. tlenku siarki(IV)
D. tlenku azotu(IV)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fluorek krzemu(IV) jest związkiem chemicznym, który może powstawać w procesach chemicznych związanych z produkcją superfosfatu. W procesie tym, krzemionka może reagować z kwasami, co prowadzi do uwolnienia fluorku krzemu. Dlatego analiza gazów z mieszalnika i komór produkcyjnych po ich absorpcji w wodzie powinna obejmować detekcję tego niezwykle reaktywnego związku. Fluorek krzemu jest ważny, ponieważ może mieć wpływ na jakość produktu końcowego i bezpieczeństwo procesu. W praktyce, identyfikacja i kontrola stężenia fluorku krzemu w gazach odpadowych jest kluczowa, aby uniknąć ich szkodliwego wpływu na środowisko oraz zdrowie ludzi. Standardy branżowe, takie jak ISO 14001, zalecają monitorowanie emisji zanieczyszczeń, w tym gazów, co jest niezbędne dla zgodności z przepisami ochrony środowiska oraz dla zapewnienia bezpieczeństwa w miejscu pracy. Dobrą praktyką jest także regularne szkolenie pracowników dotyczące rozpoznawania potencjalnych zagrożeń związanych z emisjami chemicznymi.

Pytanie 33

Jakie działania są następne w procesie renowacji maszyn i urządzeń w przemyśle chemicznym?

A. weryfikacja, naprawa, badania i odbiór, oczyszczanie, demontaż, montaż
B. oczyszczanie, demontaż, weryfikacja, naprawa, montaż, badania i odbiór
C. demontaż, weryfikacja, oczyszczanie, montaż, naprawa, badania i odbiór
D. badania i odbiór, montaż, demontaż, oczyszczanie, weryfikacja, naprawa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to sekwencja: oczyszczanie, demontaż, weryfikacja, naprawa, montaż, badania i odbiór. Etapy te są kluczowe w procesie remontu maszyn i urządzeń w przemyśle chemicznym. Oczyszczanie stanowi punkt wyjścia, ponieważ usunięcie zanieczyszczeń jest niezbędne do dalszych działań. Następnie demontaż pozwala na dostęp do wszystkich komponentów urządzenia, co jest istotne dla przeprowadzenia weryfikacji stanu technicznego. Weryfikacja polega na ocenie części pod kątem ich funkcjonalności i zużycia, co umożliwia zidentyfikowanie elementów wymagających naprawy. Po wykonaniu napraw, urządzenie jest montowane z powrotem. Ostatnie etapy, czyli badania i odbiór, mają na celu sprawdzenie, czy urządzenie działa zgodnie z wymaganiami i standardami bezpieczeństwa, co jest regulowane przez normy takie jak ISO 9001. Przykładem zastosowania tej procedury może być remont reaktora chemicznego, gdzie każdy z tych etapów wpływa na wydajność oraz bezpieczeństwo operacji.

Pytanie 34

Co należy zrobić przed przystąpieniem do demontażu wirnika w pompie odśrodkowej?

A. Zamknąć zawory na magistrali
B. Sprawdzić poziom oleju w układzie smarowania
C. Zdemontować podstawę pompy
D. Odłączyć zasilanie elektryczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie zasilania elektrycznego przed demontażem wirnika w pompie odśrodkowej to absolutnie kluczowy krok bezpieczeństwa. W praktyce przemysłowej, bezpieczeństwo pracowników i sprzętu jest priorytetem numer jeden. Dotyczy to zwłaszcza sytuacji związanych z maszynami elektrycznymi, które mogą stwarzać ryzyko porażenia prądem. Dlatego zgodnie z najlepszymi praktykami i standardami branżowymi, pierwszym krokiem przed rozpoczęciem jakichkolwiek prac serwisowych na urządzeniu zasilanym elektrycznie jest całkowite odłączenie go od źródła zasilania. Moim zdaniem, jest to coś, co powinno być wręcz automatyczne dla każdego technika pracującego przy tego typu urządzeniach. Warto też pamiętać, że odłączenie zasilania nie tylko chroni przed porażeniem, ale również zabezpiecza przed przypadkowym uruchomieniem maszyny, co mogłoby prowadzić do niebezpiecznych sytuacji. Z mojego doświadczenia wynika, że wdrożenie standardowych procedur bezpieczeństwa, takich jak Lockout-Tagout (LOTO), może znacznie zwiększyć bezpieczeństwo pracy w zakładach przemysłowych.

Pytanie 35

Proces koksowania węgla, który odbywa się w koksowniach i trwa nieprzerwanie od momentu załadunku przez trzy dni, zalicza się do procesów

A. okresowych
B. podciśnieniowych
C. niskotemperaturowych
D. ciągłych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koksowanie węgla to proces, w którym węgiel jest poddawany wysokotemperaturowemu działaniu w warunkach beztlenowych, co prowadzi do jego przekształcenia w koks. Cały proces trwa od załadunku surowca do zakończenia jego obróbki przez około trzy dni. W tym kontekście koksowanie węgla jest uznawane za proces okresowy, ponieważ realizowane jest w cyklach, gdzie do komory koksowniczej załadowywany jest węgiel, a następnie po zakończeniu procesu koksowania, powstały koks jest usuwany, a cykl zaczyna się od nowa. Praktyczne zastosowanie tego procesu można zaobserwować w przemysłowych koksowniach, gdzie koks stanowi kluczowy surowiec w produkcji stali, mając istotny wpływ na jakość i właściwości finalnych produktów stalowych. Standardy przemysłowe, takie jak ISO 9001, podkreślają znaczenie procesów okresowych w zapewnieniu stałej jakości produktów, co w przypadku koksowania ma istotne znaczenie dla uzyskiwania wysokiej jakości koksu, który jest kluczowy dla przemysłu metalurgicznego. Dodatkowo, znajomość szczegółowych parametrów koksowania i jego cyklicznej natury pozwala na optymalizację procesów i redukcję kosztów operacyjnych.

Pytanie 36

Napawanie to sposób na

A. regenerację
B. demontaż
C. czyszczenie
D. montaż

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napawanie to taki proces technologiczny, który polega na dodawaniu i odbudowywaniu materiału na powierzchni różnych elementów. Większość z nas pewnie kojarzy je z regenerowaniem zużytych części maszyn, które z czasem się erodują lub uszkadzają. Na przykład, napawanie wałów, które są już mocno zużyte od długiego używania, to świetny sposób na przedłużenie ich żywotności. W praktyce możemy używać różnych metod napawania, jak gazowo-łukowe, MIG, TIG czy nawet laserowe, w zależności od tego, co mamy do naprawy i jakie właściwości chcemy uzyskać. Osobiście uważam, że dobrze jest znać te różne metody, bo wybór zależy od materiału, z jakiego robimy napawanie, oraz od tego, jakie cechy chcemy osiągnąć. Ważne jest też, żeby przed tym wszystkim zrobić analizę materiałową, żeby zapewnić dobrą przyczepność i zminimalizować naprężenia, co naprawdę wpływa na żywotność końcowego produktu. Także, warto o tym pamiętać w kontekście technologii obróbczej.

Pytanie 37

Zbiorniki używane do rozcieńczania kwasu siarkowego(VI) w procesie wytwarzania superfosfatu są wyłożone

A. blachą ze stali nierdzewnej
B. blachą ołowianą
C. polipropylenem
D. polietylenem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Blacha ołowiana jest stosowana do wykładania zbiorników przeznaczonych do rozcieńczania kwasu siarkowego(VI) z kilku kluczowych powodów. Po pierwsze, ołów charakteryzuje się doskonałą odpornością na działanie silnych kwasów, takich jak kwas siarkowy, co czyni go idealnym materiałem do tego rodzaju zastosowań. Zastosowanie blachy ołowianej minimalizuje ryzyko uszkodzenia zbiornika oraz potencjalne wycieki, które mogą prowadzić do niebezpiecznych sytuacji. Po drugie, blacha ołowiana ma właściwości antykorozyjne, co jest istotne w kontekście długotrwałego przechowywania i transportu substancji agresywnych. Przykładem zastosowania blachy ołowianej są zbiorniki w zakładach chemicznych, gdzie przechowuje się substancje reaktywne. Użycie odpowiednich materiałów zgodnych z normami, takimi jak standardy ISO dotyczące bezpieczeństwa chemicznego, jest kluczowe w procesach przemysłowych, aby zapewnić nie tylko efektywność, ale także bezpieczeństwo operacyjne.

Pytanie 38

Jaką powinna mieć przybliżoną temperaturę czynnik grzewczy dostarczany do wyparki Roberta, w której zachodzi proces zatężania roztworu o temperaturze wrzenia 86°C?

A. W okolicach 75°C
B. W okolicach 120°C
C. W okolicach 88°C
D. W okolicach 140°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Temperatura czynnika grzewczego, który leci do wyparki Roberta, powinna być w okolicach 88°C. To jest blisko temperatury wrzenia roztworu, co sprawia, że cały proces zatężania działa lepiej. Kluczowe jest, by ta temperatura była wystarczająco wysoka, bo wtedy rozpuszczalnik odparowuje, ale nie może być za wysoka, bo to może prowadzić do intensywnego wrzenia, a to z kolei powoduje różne straty. No i też zmniejsza efektywność całego procesu. Trzymanie się temperatury blisko 88°C to jakby najlepsze warunki do pracy. W przemyśle chemicznym i farmaceutycznym często widzi się takie temperatury w procesach zatężania, żeby wszystko szło gładko i produkt był dobrej jakości. Pamiętaj, że kontrola temperatury to mega ważna rzecz, zgodna z zasadami dobrych praktyk produkcyjnych (GMP), które mówią, że trzeba monitorować i regulować parametry procesu, bo to naprawdę ważne dla jakości końcowego produktu.

Pytanie 39

Przed przystąpieniem do napełniania otwartego zbiornika na ciecz, należy w pierwszej kolejności zweryfikować

A. szczelność zbiornika i prawidłowe działanie zaworu bezpieczeństwa
B. szczelność zbiornika i prawidłowe funkcjonowanie urządzenia mierzącego poziom zawartej w nim cieczy
C. stan uszczelek pokrywy i poprawność działania przyrządów kontrolujących ciśnienie w zbiorniku
D. poprawność instalacji elektrycznych oraz stan zabezpieczeń przeciwpożarowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelność zbiornika oraz prawidłowość pracy urządzenia określającego poziom cieczy to kluczowe elementy bezpieczeństwa i efektywności operacji napełniania otwartych zbiorników magazynowych. Szczelność zbiornika zapobiega wyciekom, które mogą prowadzić do strat materiałowych, zanieczyszczenia środowiska oraz zagrożeń dla zdrowia i życia ludzi. W przypadku cieczy niebezpiecznych, takich jak substancje chemiczne, szczególnie istotne jest, aby zbiornik był szczelny, aby uniknąć ich przypadkowego wydostania się na zewnątrz. Urządzenie monitorujące poziom cieczy zapewnia, że zbiornik nie będzie przepełniony, co mogłoby prowadzić do katastrofalnych skutków, takich jak rozlanie substancji. W praktyce, przed napełnieniem zbiornika, należy przeprowadzić inspekcję wizualną oraz testy szczelności, a także regularnie konserwować urządzenia kontrolujące, aby zapewnić ich poprawne działanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie systematycznego monitorowania i zarządzania ryzykiem w procesach magazynowania cieczy.

Pytanie 40

Podczas pracy z instalacją chemiczną, co należy zrobić, gdy zauważysz wyciek cieczy?

A. Zwiększyć prędkość przepływu cieczy, aby szybciej ją opróżnić.
B. Ignorować wyciek, jeśli jest mały.
C. Natychmiast zatrzymać instalację i zgłosić awarię.
D. Poczekać, aż wyciek sam ustanie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas pracy z instalacją chemiczną, bezpieczeństwo operacyjne jest priorytetem. W przypadku wykrycia wycieku cieczy, natychmiastowe zatrzymanie instalacji i zgłoszenie awarii jest standardową procedurą bezpieczeństwa. Wyciek może wskazywać na poważny problem techniczny, który zagraża zarówno bezpieczeństwu pracowników, jak i środowisku. Zatrzymanie instalacji pozwala na dokładne zbadanie przyczyny wycieku bez narażania się na dalsze uszkodzenia systemu. Awaria zgłoszona na wczesnym etapie może być szybko rozwiązana, co zminimalizuje ryzyko większych awarii i strat ekonomicznych. W przemyśle chemicznym, gdzie substancje mogą być toksyczne lub łatwopalne, szybka reakcja na wycieki jest kluczowa. Właściwe procedury postępowania z wyciekami są często regulowane przez wytyczne BHP i przepisy prawne, które mają na celu ochronę zdrowia ludzkiego i środowiska. Zachowanie zimnej krwi i postępowanie zgodnie z procedurami jest oznaką profesjonalizmu i dbałości o bezpieczeństwo.