Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 31 maja 2025 09:11
  • Data zakończenia: 31 maja 2025 09:20

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kontrolą obiegu cieczy w silniku, pomiędzy małym a dużym obiegiem układu chłodzenia, zajmuje się

A. wentylator
B. czujnik wody
C. pompa wody
D. termostat
Termostat odgrywa kluczową rolę w regulacji przepływu cieczy w układzie chłodzenia silnika. Jest to urządzenie odpowiedzialne za kontrolowanie temperatury płynu chłodzącego poprzez otwieranie i zamykanie obiegu. W przypadku, gdy silnik jest zimny, termostat pozostaje zamknięty, co umożliwia szybkie podgrzanie płynu chłodzącego i osiągnięcie optymalnej temperatury pracy. Gdy temperatura osiągnie ustalony poziom, termostat otwiera się, umożliwiając wypływ cieczy do większego obiegu, co zapobiega przegrzaniu silnika. Utrzymanie odpowiedniej temperatury jest niezbędne dla wydajności silnika, jego trwałości oraz ekonomiki paliwowej. W praktyce, nieprawidłowe działanie termostatu może prowadzić do przegrzewania lub niedogrzewania silnika, co wpływa na jego osiągi i może prowadzić do kosztownych napraw. W związku z tym, regularne sprawdzanie oraz ewentualna wymiana termostatu są zalecane jako część rutynowej konserwacji pojazdu, zgodnie z dobrymi praktykami branżowymi.

Pytanie 2

Do warsztatu zgłosił się klient w celu wymiany łożysk tylnych kół w samochodzie. W tabeli zamieszczono ceny części na 1 koło. Jeżeli cena roboczogodziny wynosi 40 zł netto, podatek VAT 23%, a czas wykonania naprawy 2 godziny, to koszt naprawy wyniesie

CzęśćCena
zł netto
komplet łożysk35,00
pierścień uszczelniający – 1szt.8,00
nakrętka zabezpieczająca2,00

A. 153,75 zł
B. 209,10 zł
C. 170,00 zł
D. 196,80 zł
Jasne, żeby zobaczyć, dlaczego inne opcje są błędne, warto spojrzeć na to, jak się liczy te koszty naprawy. Często ludzie zapominają uwzględnić wszystkie składowe kosztów, jak części i robociznę. Czasami można nie zauważyć, że cena za łożyska dotyczy tylko jednego koła, przez co całkowity koszt jest zaniżony. Też często pomijają VAT w swoich obliczeniach, co też nie jest dobre, bo końcowa kwota wychodzi nieprawidłowa. Na przykład, jeśli ktoś liczy tylko 80 zł za robociznę, to kwota przed VAT nie ma sensu. Dodatkowo, błędy w szacowaniu czasu na naprawę czy stawki za roboczogodzinę mogą wprowadzać dużą różnicę. W praktyce, dobrze jest umieć te rzeczy policzyć, bo to wpływa na to, jak warsztat jest postrzegany przez klientów. Dlatego bardzo ważne, żeby każdy, kto robi wyceny, znał się na tych standardach i wiedział, co dokładnie wliczać w koszty.

Pytanie 3

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 560,00 zł
B. 480,00 zł
C. 600,00 zł
D. 540,00 zł
Przy analizie błędnych odpowiedzi warto zwrócić uwagę na źródła nieporozumień, które mogą prowadzić do niewłaściwych obliczeń. Na przykład, niektórzy mogą błędnie zsumować tylko koszty robocizny i oleju, pomijając koszt klocków hamulcowych, co prowadzi do zaniżenia całkowitych wydatków. Z kolei inne błędy mogą wynikać z niewłaściwego obliczenia wysokości zniżki, co jest kluczowym elementem w poprawnym ustaleniu końcowego kosztu. Osoby, które nie uwzględniają wszystkich elementów kosztowych, mogą nieświadomie pominąć ważne składowe, takie jak dodatkowe opłaty czy inne usługi, co może wpływać na ostateczny rachunek za przegląd. Ponadto, nieprawidłowe obliczenia mogą być wynikiem braku znajomości podstawowych zasad dotyczących stosowania zniżek, które są powszechną praktyką w wielu warsztatach. Kluczowym aspektem jest również prawidłowe rozumienie pojęcia „robocizna”, która może różnić się w zależności od skomplikowania wykonanych prac, co wprowadza dodatkowe zmienne do obliczeń. Aby unikać takich błędów, ważne jest dokładne zapoznanie się z fakturami oraz umiejętność analizy poszczególnych kosztów usług, co zapewnia przejrzystość i zwiększa zaufanie do dostawcy usług motoryzacyjnych.

Pytanie 4

O jakim oznaczeniu mowa, gdy chodzi o oponę przeznaczoną do pojazdu dostawczego?

A. C
B. M/C
C. 3MPSF
D. M+S
Odpowiedzi M+S, M/C i 3MPSF nie są dobre, jeśli chodzi o opony do samochodów dostawczych. Oznaczenie M+S mówi o oponach, które nadają się do jazdy w błocie i śniegu, ale to nie znaczy, że są przystosowane do ciężkich ładunków. Mogą być stosowane w osobówkach, ale nie są tak zbudowane, by wytrzymać wymagania opon dostawczych, które muszą udźwignąć więcej. Oznaczenie M/C to z kolei opony do motocrossu, co też mija się z celem, bo to zupełnie inna bajka. Te opony są robione na inne potrzeby, więc mają inne wymagania co do trwałości i nośności. A 3MPSF? To opony do trudnych zimowych warunków, ale też nie są odpowiednie dla dostawczaków. Rozumienie tych oznaczeń jest bardzo ważne, żeby zapewnić bezpieczeństwo i efektywność jazdy, dlatego trzeba używać odpowiednich opon do konkretnego pojazdu.

Pytanie 5

Jednym z komponentów przekładni głównej w systemie przenoszenia napędu jest koło

A. zamachowe
B. koronowe
C. talerzowe
D. obiegowe
Wybór odpowiedzi koło koronowe, obiegowe czy zamachowe nie jest właściwy, ponieważ te elementy pełnią zupełnie inne funkcje w układzie przeniesienia napędu. Koło koronowe, często stosowane w mechanizmach zębatych, działa na zasadzie przekazywania momentu obrotowego poprzez zęby, co jest typowe dla skrzyń biegów, ale nie odgrywa centralnej roli w przekładni głównej. Użytkownicy mogą mylić koronkowe elementy z talerzowymi, myśląc, że oba mają podobne zastosowania, podczas gdy różnią się zasadniczo w konstrukcji i charakterystyce pracy. Koło obiegowe, często stosowane w systemach hydraulicznych, działa w zupełnie innym kontekście i nie jest związane z przenoszeniem napędu w sensie mechanicznym. Z kolei koło zamachowe, które ma na celu stabilizację momentu obrotowego i redukcję drgań, jest również nieodpowiednie w kontekście przekładni głównej, ponieważ nie wykonuje funkcji przekazywania mocy w klasycznym rozumieniu. Błędne odpowiedzi mogą wynikać z nieporozumień co do funkcji poszczególnych elementów mechanicznych – kluczowe jest zrozumienie, że każdy z tych komponentów ma swoje specyficzne zastosowanie, co może prowadzić do mylnych interpretacji w kontekście układów przeniesienia napędu. Właściwe dobieranie elementów do systemu jest istotne dla jego efektywności oraz trwałości, a znajomość ich funkcji jest podstawą prawidłowego projektowania mechanizmów.

Pytanie 6

Współczynnik absorpcji światła to parametr, który wskazuje na stopień

A. zadymienia spalin
B. poziomu tlenku węgla w spalinach
C. węglowodorów
D. nadużycia tlenu
Współczynnik pochłaniania światła jest kluczowym parametrem w ocenie zadymienia spalin, co ma istotne znaczenie w kontekście ochrony środowiska oraz stosowania technologii kontrolujących emisję zanieczyszczeń. Zadymienie spalin odnosi się do obecności cząstek stałych i aerozoli, które mogą wpływać na jakość powietrza oraz zdrowie ludzi. Zgodnie z normami, takimi jak ISO 8178, współczynnik pochłaniania światła jest używany do oceny skuteczności systemów filtracji oraz redukcji dymu w silnikach spalinowych. Na przykład w silnikach diesla, wysoki współczynnik pochłaniania światła wskazuje na obecność dużej ilości cząstek stałych, co może wymagać działań naprawczych lub modernizacji układu wydechowego. Praktyczne zastosowanie tego wskaźnika pozwala na monitorowanie emisji oraz dostosowanie procesów technologicznych w celu spełnienia regulacji ochrony środowiska, co jest niezbędne w branżach takich jak energetyka, transport czy przemysł ciężki.

Pytanie 7

Oznaczenie symbolem dla systemu monitorowania ciśnienia w oponach pojazdu jest

A. BAS
B. ACC
C. TPMS
D. SOHC
System TPMS (Tire Pressure Monitoring System) to nowoczesne rozwiązanie stosowane w pojazdach, które ma na celu monitorowanie ciśnienia w oponach w czasie rzeczywistym. Prawidłowe ciśnienie w oponach jest kluczowe dla bezpieczeństwa, wydajności paliwowej oraz komfortu jazdy. TPMS informuje kierowcę o niskim ciśnieniu w oponach, co pozwala na szybką reakcję i uniknięcie potencjalnych awarii, takich jak uszkodzenie opony czy zwiększone zużycie paliwa. W praktyce, TPMS może być podzielony na dwa główne typy: systemy bezpośrednie, które wykorzystują czujniki ciśnienia zamontowane w oponach, oraz systemy pośrednie, które monitorują prędkość obrotową kół, aby ocenić różnice ciśnienia. Obecnie w wielu krajach stosowanie TPMS jest obowiązkowe w nowych pojazdach, co podkreśla znaczenie tego systemu w poprawie bezpieczeństwa na drogach. W związku z tym kierowcy powinni regularnie sprawdzać działanie systemu TPMS oraz dbać o prawidłowe ciśnienie w oponach, co jest zgodne z zaleceniami producentów pojazdów oraz standardami bezpieczeństwa.

Pytanie 8

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Zbyt wysokie ciśnienie w oponach
B. Niski poziom oleju w silniku
C. Uszkodzony alternator
D. Niedziałający wentylator chłodnicy
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 9

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. jedynie tarczę hamulcową koła lewego przedniego
B. tarcze i klocki hamulcowe wszystkich kół
C. tarcze oraz klocki hamulcowe osi przedniej
D. wyłącznie tarcze hamulcowe kół osi przedniej
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 10

Jak dokonuje się pomiaru mocy użytecznej silnika?

A. na wale rozrządu silnika
B. w przekładni głównej pojazdu
C. na końcówce napędowej wału korbowego
D. na kołach napędzanych pojazdu
Pomiar mocy silnika w niewłaściwych miejscach, takich jak wał rozrządu, przekładnia główna czy koła napędzane, prowadzi do błędnych interpretacji wyników i nieefektywnej oceny wydajności jednostki napędowej. Na wale rozrządu mierzenie mocy nie jest adekwatne, ponieważ nie oddaje rzeczywistego obciążenia silnika, które jest modyfikowane przez układ rozrządu oraz inne elementy. Podobnie, pomiar w przekładni głównej nie uwzględnia strat mechanicznych i energetycznych, które powstają w wyniku oporów tarcia czy przekładni. W przypadku pomiaru na kołach napędzanych pojazdu, wyniki mogą być zaburzone przez różne czynniki, takie jak stan opon, ciśnienie powietrza oraz opory toczenia, co komplikuje czytanie wyników. Tego typu błędy myślowe wynikają z niewłaściwego zrozumienia zasad działania silników oraz układów przeniesienia napędu. Zrozumienie rzeczywistej lokalizacji pomiaru mocy jest kluczowe, aby uniknąć mylnych wniosków i umożliwić właściwą diagnostykę oraz optymalizację silnika. Właściwe podejście do pomiaru mocy na końcówce napędowej wału korbowego pozwala na dokładniejszą i bardziej wiarygodną ocenę mocy użytecznej, co jest fundamentem inżynierii silnikowej i efektywności pojazdów.

Pytanie 11

Aby poluzować zapieczoną śrubę w układzie zawieszenia, należy użyć

A. rurhaka.
B. młotka.
C. szlifierki kątowej.
D. podgrzewacza indukcyjnego.
Podgrzewacz indukcyjny to narzędzie, które wykorzystuje pole elektromagnetyczne do podgrzewania metalowych obiektów, co czyni go idealnym rozwiązaniem do poluzowywania zapieczonych śrub w układzie zawieszenia. Gdy śruba staje się zardzewiała lub zapieczona, zwykle wynika to z korozji lub osadów, które utrudniają jej odkręcenie. W takich przypadkach podgrzanie śruby do wysokiej temperatury powoduje rozszerzenie metalu, co może znacząco ułatwić jej poluzowanie. W kontekście standardów branżowych, korzystanie z podgrzewacza indukcyjnego jest zalecane, ponieważ nie wprowadza on dodatkowych uszkodzeń mechanicznych, jak ma to miejsce w przypadku użycia młotka lub szlifierki kątowej. Zastosowanie podgrzewacza indukcyjnego powinno być zawsze zgodne z zaleceniami producentów narzędzi oraz normami bezpieczeństwa, co pozwala na efektywne i bezpieczne przeprowadzenie operacji. Przykładem zastosowania może być sytuacja, gdzie podczas wymiany amortyzatorów w samochodzie, śruby mocujące okazują się być zardzewiałe. Wtedy podgrzewacz indukcyjny staje się niezastąpiony, ponieważ jego szybkie działanie pozwala na bezpieczne i skuteczne rozwiązanie problemu.

Pytanie 12

Klient zgłosił pojazd do serwisu z uszkodzonym systemem wydechowym. Pracownik serwisu określił potrzebę wymiany komponentów: kolektora wydechowego za 290 zł oraz tylnego tłumika wydechowego za 150 zł. Czas niezbędny do przeprowadzenia naprawy wynosi 240 minut, a stawka za roboczogodzinę to 80 zł. Jakie będą łączne koszty naprawy?

A. 760 zł
B. 632 zł
C. 520 zł
D. 440 zł
Obliczanie całkowitego kosztu naprawy pojazdu wymaga dokładnej analizy wydatków związanych z częściami oraz robocizną. Osoby, które mylnie szacują całkowity koszt, mogą popaść w błąd, ignorując istotne elementy wyceny. Na przykład, nie uwzględniając kosztu robocizny, można dojść do wniosku, że całkowity koszt naprawy wynosi jedynie suma cen części, co w tym przypadku daje 440 zł. Takie podejście jest nieprawidłowe, gdyż nie odzwierciedla rzeczywistych wydatków, jakie wiążą się z usługami serwisowymi. Ponadto, niektóre błędne odpowiedzi mogą sugerować ignorowanie czasu potrzebnego na wykonanie naprawy, co jest kluczowym czynnikiem w ustalaniu kosztów. Oczekiwanie na oszczędności związane z robocizną może także prowadzić do niedoszacowania wartości usługi. W branży motoryzacyjnej istotne jest stosowanie transparentnych i precyzyjnych metod wyceny, aby klienci mogli mieć pełne zaufanie do realizowanych usług. Znajomość standardów wyceny oraz umiejętność ich stosowania w praktyce to kluczowe elementy w zarządzaniu warsztatem samochodowym.

Pytanie 13

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. multimetr
B. czytnik kodów błędów
C. komputerowy zestaw diagnostyczny
D. klucz serwisowy
Czytnik kodów błędów, multimetr oraz klucz serwisowy to narzędzia, które mogą być użyteczne w diagnostyce, ale nie zastępują pełnoprawnego komputerowego zestawu diagnostycznego. Czytnik kodów błędów to urządzenie, które pozwala jedynie na odczyt podstawowych kodów błędów zapisanych w pamięci sterownika. Niemniej jednak, nie oferuje on zaawansowanych funkcji, takich jak monitorowanie parametrów w czasie rzeczywistym, co jest kluczowe dla skutecznej analizy pracy silnika. Z kolei multimetr jest narzędziem do pomiaru napięcia, prądu i oporu, co czyni go przydatnym w diagnozowaniu problemów z elektryką pojazdu, ale nie jest on w stanie zidentyfikować wszystkich problemów związanych z elektroniką silnika. Klucz serwisowy, natomiast, jest używany głównie do resetowania systemów po dokonaniu napraw i nie ma zdolności do diagnostyki błędów. Przy korzystaniu z tych narzędzi często można napotkać problem z ograniczeniami ich funkcjonalności, co może prowadzić do nieprawidłowych diagnoz. Właściwa diagnostyka wymaga całościowego podejścia i wykorzystania odpowiednich narzędzi, co podkreśla znaczenie komputerowego zestawu diagnostycznego w praktyce.

Pytanie 14

Areometr działa w oparciu o zmianę głębokości zanurzenia pływaka pomiarowego w elektrolicie w zależności od

A. właściwości chemicznych elektrolitu
B. gęstości elektrolitu
C. temperatury wrzenia elektrolitu
D. temperatury krzepnięcia elektrolitu
Tematy związane z temperaturą wrzenia i krzepnięcia elektrolitu nie mają większego wpływu na to, jak działa areometr. Te temperatury dotyczą cech fizycznych cieczy, ale nie wpływają bezpośrednio na pomiar gęstości, co jest najważniejsze dla areometrów. Jasne, że zmiany temperatury mogą zmieniać objętość cieczy, a przez to gęstość, ale to nie jest to, co decyduje o działaniu samego urządzenia. Dla dokładnych pomiarów gęstości trzeba utrzymywać stabilne warunki temperaturowe, co powinno być normą w każdym labie. Właściwości chemiczne elektrolitu mogą wpływać na przewodnictwo i reakcje, a nie na gęstość w taki sposób, żeby były bezpośrednio mierzone przez areometr. Często ludzie myślą, że różne cechy cieczy, jak temperatura wrzenia czy krzepnięcia, mają znaczący wpływ na wyniki pomiarów, co prowadzi do nieporozumień. Ważne jest, żeby zrozumieć, że areometr w pierwszej kolejności mierzy gęstość cieczy, co nie zależy od jej chemicznych właściwości ani temperatur, o ile nie są one skrajne i nie psują stanu skupienia cieczy.

Pytanie 15

Większa ilość zaworów ssących w silniku ma bezpośredni wpływ na

A. większe zużycie paliwa
B. szybsze napełnianie cylindra
C. wolniejsze opróżnianie cylindra
D. nadmiarowy pobór powietrza
Większa liczba zaworów ssących w silniku bezpośrednio wpływa na szybkość napełniania cylindra, co jest kluczowe dla osiągnięcia lepszej efektywności silnika. Większa liczba zaworów pozwala na większy przepływ mieszanki powietrzno-paliwowej do cylindra, co w rezultacie przekłada się na lepsze wypełnienie komory spalania. Przykładem zastosowania tej zasady mogą być silniki sportowe, które często wyposażone są w systemy z większą liczbą zaworów na cylinder, co pozwala na osiągnięcie wyższej mocy i lepszej reakcji na gaz. W praktyce, zastosowanie technologii takich jak VTEC w silnikach Hondy, gdzie wykorzystywana jest zmienna geometria zaworów, potwierdza, że zwiększona liczba zaworów skutkuje lepszym wykorzystaniem mocy silnika w różnych zakresach obrotów. Normy dotyczące emisji spalin i efektywności paliwowej również skłaniają producentów do optymalizacji liczby zaworów, co prowadzi do bardziej wydajnych i ekologicznych rozwiązań.

Pytanie 16

Ciśnienie powietrza w oponach pojazdu określane jest

A. w zależności od sezonu.
B. przez wytwórcę pojazdu.
C. w zależności od wzoru bieżnika.
D. dla określonego rozmiaru opon.
Myślenie o ciśnieniu w oponach tylko na podstawie ich rozmiaru, pory roku czy faktury bieżnika to prosta droga do błędów. Na przykład, ustalanie ciśnienia tylko według rozmiaru opon ignoruje całą masę istotnych rzeczy, jak ciężar auta czy jego przeznaczenie. Zmiany ciśnienia w zależności od pory roku mogą być mylące, bo różne auta potrzebują różnych wartości, niezależnie od pogody. Rzeźba bieżnika ma swoje znaczenie dla przyczepności, ale to nie ona decyduje o właściwym ciśnieniu, to producenci wiedzą najlepiej, jakie ciśnienie ustawić. Często zdarzają się uproszczenia w myśleniu o mechanice samochodu, które nie biorą pod uwagę tego, jak różne części współpracują ze sobą. Dlatego tak ważne, żeby kierowcy pamiętali, że ciśnienie w oponach powinno być ustalone na podstawie wskazówek producenta, bo to najlepszy sposób na uniknięcie problemów.

Pytanie 17

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na uszkodzenie termostatu
B. na uszkodzenie pompy oleju
C. na uszkodzenie uszczelki głowicy
D. na użycie niewłaściwego oleju
Występowanie kropel płynu chłodzącego w misce olejowej jest istotnym wskaźnikiem, który może sugerować uszkodzenie uszczelki głowicy. Uszczelka głowicy jest kluczowym elementem silnika, odpowiedzialnym za szczelne połączenie pomiędzy głowicą a blokiem silnika. Jej uszkodzenie może prowadzić do mieszania się płynów – oleju silnikowego i płynu chłodzącego. W praktyce, jeśli zauważysz płyn chłodzący w oleju, jest to znak, że należy niezwłocznie przeprowadzić diagnostykę silnika, aby uniknąć poważniejszych uszkodzeń. Konsekwencje zignorowania tego problemu mogą obejmować przegrzewanie się silnika, a w skrajnych przypadkach nawet jego zatarcie. W standardach motoryzacyjnych kładzie się duży nacisk na regularne kontrole uszczelki głowicy oraz monitorowanie jakości płynów eksploatacyjnych, co jest niezbędne dla utrzymania silnika w dobrym stanie.

Pytanie 18

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. suwmiarką modułową
B. przymiarem kreskowym
C. średnicówką mikrometryczną
D. mikrometrem
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 19

Jakim narzędziem należy przeprowadzić pomiar bicia poprzecznego tarcz hamulcowych?

A. średnicówką zegarową
B. mikrometrem czujnikowym
C. czujnikiem zegarowym
D. suwmiarką zegarową
Czujnik zegarowy jest narzędziem pomiarowym używanym do precyzyjnego pomiaru odchyleń i bicia poprzecznego tarcz hamulcowych. Umożliwia on dokładne odczyty dzięki wbudowanemu mechanizmowi sprężynowemu, który reaguje na zmiany w położeniu mierzonego obiektu. Pomiar bicia poprzecznego tarcz hamulcowych jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania oraz bezpieczeństwa jazdy. Stosowanie czujnika zegarowego pozwala na wykrycie minimalnych odchyleń, które mogą prowadzić do nierównomiernego zużycia tarcz lub wibracji podczas hamowania. W praktyce, aby wykonać pomiar, należy zamontować czujnik na stabilnej podstawie oraz umieścić jego końcówkę na powierzchni tarczy. Po uruchomieniu pomiaru można odczytać wartości, które powinny mieścić się w tolerancjach określonych przez producenta. Przestrzeganie tych norm jest istotne, aby zapewnić optymalną wydajność układu hamulcowego oraz uniknąć potencjalnych awarii.

Pytanie 20

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Zgodnie z instrukcjami producenta silnika
B. Od lewej do prawej
C. Kolejno, zaczynając od strony rozrządu
D. W dowolnej sekwencji
Dokręcanie śrub mocujących głowicę silnika zgodnie z zaleceniami producenta jest kluczowe dla zapewnienia odpowiedniej szczelności i stabilności jednostki napędowej. Każdy silnik może mieć specyficzne wymagania dotyczące momentu obrotowego oraz kolejności dokręcania, co jest zazwyczaj określone w dokumentacji technicznej. Zastosowanie się do tych zaleceń pozwala na równomierne rozłożenie naprężeń na śrubach, co zminimalizuje ryzyko ich uszkodzenia oraz ewentualnych nieszczelności. Przykładowo, w silnikach z głowicą aluminiową często stosuje się sekwencyjne dokręcanie, aby uniknąć odkształceń materiału. Ignorowanie tych zasad może prowadzić do poważnych awarii, takich jak uszkodzenie uszczelki pod głowicą, co z kolei generuje wysokie koszty naprawy. Dlatego zawsze należy konsultować się z instrukcją serwisową i stosować odpowiednie narzędzia, aby zapewnić, że śruby są dokręcone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 21

Aby wykonać odczyt pamięci błędów systemu ABS, należy zastosować

A. skanera OBD
B. licznika RPM
C. oscyloskopu
D. multimetru
Skaner OBD (On-Board Diagnostics) to narzędzie diagnostyczne, które umożliwia odczytanie kodów błędów z systemów w pojazdach, w tym z układu ABS. Układ ABS (Antilock Braking System) jest odpowiedzialny za zapobieganie blokowaniu kół podczas hamowania, a jego prawidłowe działanie jest kluczowe dla bezpieczeństwa pojazdu. Skanery OBD są zaprojektowane do komunikacji z jednostką sterującą pojazdu (ECU) i umożliwiają nie tylko odczytu kodów błędów, ale także monitorowanie parametrów pracy poszczególnych systemów. W praktyce, aby przeprowadzić odczyt pamięci błędów ABS, należy podłączyć skaner do złącza diagnostycznego OBD-II, które jest standardowo umieszczone w każdym nowoczesnym pojeździe. Wykorzystując skaner, można szybko zidentyfikować ewentualne błędy w systemie ABS i podjąć odpowiednie kroki naprawcze. Zgodność z normą OBD-II jest powszechnym standardem w branży motoryzacyjnej, co zapewnia, że skanery OBD są wszechstronnie stosowane w wielu różnych pojazdach.

Pytanie 22

Luz na pedale sprzęgła wymaga systematycznej weryfikacji oraz regulacji z uwagi na jego zużycie

A. wałka sprzęgłowego
B. tarczy sprzęgłowej
C. koła zamachowego
D. łożyska wałka sprzęgłowego
Poprawna odpowiedź to tarcza sprzęgłowa, ponieważ to właśnie ona jest elementem, który zużywa się w trakcie eksploatacji pojazdu. Tarcza sprzęgłowa jest kluczowym komponentem układu sprzęgłowego, który umożliwia przeniesienie momentu obrotowego z silnika na skrzynię biegów. Z czasem, na skutek tarcia i wysokich temperatur, materiał tarczy może ulegać degradacji, co prowadzi do zmniejszenia skuteczności sprzęgła oraz zwiększenia luzu na pedale. Regularna kontrola i regulacja luzu na pedale sprzęgła są ważne dla zapewnienia prawidłowego działania układu oraz komfortu podczas jazdy. W przypadku stwierdzenia nadmiernego luzu, konieczne jest sprawdzenie stanu tarczy sprzęgłowej oraz innych elementów, takich jak docisk. W dobrych praktykach zaleca się wymianę tarczy sprzęgłowej co około 100 000 kilometrów, jednak zależy to również od stylu jazdy oraz warunków eksploatacyjnych. Dobrze przeprowadzone regulacje mogą znacząco wydłużyć żywotność sprzęgła oraz poprawić bezpieczeństwo jazdy.

Pytanie 23

Który składnik występuje w największej ilości w spalinach z silników ZI oraz ZS?

A. Węglowodorów
B. Dwutlenku węgla
C. Azotu
D. Tlenu
W odpowiedziach dotyczących węglowodorów, tlenu i dwutlenku węgla pojawia się szereg nieporozumień. Węglowodory, które są organicznymi związkami chemicznymi, są obecne w spalinach, jednak ich zawartość jest znacznie mniejsza niż azotu. Spalanie paliwa prowadzi do ich emisji, ale ich stężenie w spalinach silnikowych jest tylko ułamkiem całkowitej objętości gazów spalinowych. Z kolei tlen, który jest niezbędny do procesu spalania, jest szybko zużywany w trakcie reakcji chemicznych i nie pozostaje w spalinach w znaczącej ilości. W atmosferze, po spaleniu, jego stężenie jest minimalne. Dwutlenek węgla, jako produkt końcowy spalania, jest również istotnym składnikiem, ale jego udział, mimo że rośnie w związku z rosnącym zużyciem paliw kopalnych, wciąż nie dorównuje objętości azotu. Warto zrozumieć, że te pomyłki wynikają często z braku znajomości procesu spalania oraz właściwości gazów. Analiza składu spalin powinna opierać się na danych pomiarowych oraz znajomości procesów chemicznych zachodzących podczas spalania, co pozwala na lepsze zrozumienie tych mechanizmów i ich wpływu na środowisko oraz technologie redukcji emisji.

Pytanie 24

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. temperatury krzepnięcia płynu chłodzącego
B. temperatury krzepnięcia płynu do spryskiwacza
C. temperatury wrzenia płynu hamulcowego
D. gęstości elektrolitu w akumulatorze
Temperatura wrzenia płynu hamulcowego to parametr, który nie jest możliwy do zmierzenia za pomocą refraktometru, ponieważ to urządzenie służy do określenia wskaźników optycznych cieczy, takich jak gęstość czy indeks refrakcji. Płyn hamulcowy podlega różnym standardom, które wymagają stosowania specjalistycznych urządzeń do pomiaru jego właściwości fizykochemicznych, w tym temperatury wrzenia. Przykładowo, w przypadku płynów hamulcowych, istotnym parametrem jest ich stabilność termiczna, a odpowiednie standardy, jak DOT (Department of Transportation), wskazują na konieczność przeprowadzania testów w laboratoriach z użyciem sprzętu przystosowanego do takich pomiarów. Właściwy pomiar temperatury wrzenia jest kluczowy dla zapewnienia bezpieczeństwa jazdy, ponieważ obniżona temperatura wrzenia płynu może prowadzić do powstawania pęcherzy pary, co zmniejsza skuteczność hamulców. W praktyce, aby określić temperaturę wrzenia, należy stosować metody takie jak destylacja lub użycie specjalistycznych termometrów, dostosowanych do wysokich temperatur."

Pytanie 25

Który z objawów sugeruje potrzebę wymiany amortyzatora na nowy?

A. Ślady wycieków na obudowie
B. Wibracje kierownicy podczas rozpoczynania jazdy
C. Widoczne skrócenie drogi hamowania
D. Pulsowanie pedału hamulca w trakcie hamowania
Skrócenie drogi hamowania, drgania kierownicy podczas ruszania i pulsowanie pedału hamulca to objawy, które mogą wywoływać zamieszanie, jeśli chodzi o stan amortyzatorów. Ale warto wiedzieć, że skrócenie drogi hamowania zazwyczaj wskazuje na to, że układ hamulcowy działa dobrze, a nie na problemy z amortyzatorami. Może to być spowodowane wymianą klocków lub tarcz. Drgania kierownicy? No, to może być coś innego, na przykład problem z zawieszeniem lub układem kierowniczym, ale niekoniecznie z amortyzatorami. A pulsowanie pedału hamulca zwykle oznacza, że tarcze są nierówno zużyte lub jest coś nie tak z hydrauliką, co też nie odnosi się do amortyzatorów. Często takie mylenie objawów wynika z braku zrozumienia, jak różne części zawieszenia i hamulców współdziałają. Dlatego warto się dobrze przyjrzeć symptomom i zrozumieć, co się dzieje, korzystając z dokumentacji serwisowej i szkoleń w branży, żeby nie popełniać błędów.

Pytanie 26

Podczas diagnostyki elektrycznej układu zapłonowego wykryto, że silnik nie uruchamia się z powodu braku iskry. Jaka może być przyczyna tego problemu?

A. Uszkodzona cewka zapłonowa
B. Zatkany filtr powietrza
C. Zbyt niskie napięcie akumulatora
D. Niewłaściwe ciśnienie wtrysku paliwa
Brak iskry w układzie zapłonowym jest najczęściej spowodowany problemem z cewką zapłonową. Cewka zapłonowa ma kluczowe znaczenie, ponieważ zamienia niskie napięcie z akumulatora na wysokie napięcie potrzebne do wytworzenia iskry w świecy zapłonowej. Gdy cewka jest uszkodzona, nie jest w stanie wytworzyć wymaganego napięcia, co prowadzi do braku iskry i uniemożliwia uruchomienie silnika. W praktyce, diagnoza uszkodzonej cewki zapłonowej może obejmować pomiar oporności uzwojeń cewki za pomocą multimetru oraz sprawdzenie fizycznego stanu cewki, takiego jak pęknięcia czy ślady przepaleń. Z mojego doświadczenia wynika, że dobrze jest również sprawdzić połączenia elektryczne i upewnić się, że nie ma korozji czy przerw. Wymiana uszkodzonej cewki zapłonowej jest standardową praktyką w naprawach układów zapłonowych i jest zgodna z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 27

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,01 mm
B. 0,10 mm
C. 0,05 mm
D. 0,02 mm
Wybór odpowiedzi 0,05 mm, 0,02 mm lub 0,10 mm wskazuje na niedostateczne zrozumienie specyfiki działania mikrometrów. Mikrometry, zwłaszcza te z noniuszem, są zaprojektowane z myślą o osiąganiu bardzo wysokiej dokładności pomiarów, co odróżnia je od innych narzędzi pomiarowych. Odpowiedzi takie jak 0,05 mm czy 0,10 mm mogą wynikać z pomylenia mikrometru z innymi instrumentami pomiarowymi, takimi jak suwmiarki, które w praktyce mają większą tolerancję pomiarową. Mierząc niewielkie wymiary, kluczowe jest posługiwanie się narzędziem, które charakteryzuje się minimalnym marginesem błędu, co w przypadku mikrometra z noniuszem wynosi 0,01 mm. Oznacza to, że mikrometr jest zdolny do dostarczenia wysoce precyzyjnych danych, które są niezbędne w wielu zastosowaniach inżynieryjnych oraz badawczych, gdzie nawet najmniejsze odchylenie może mieć istotne konsekwencje. Ponadto, w kontekście standardów jakości, takie jak ISO, precyzja pomiarów odgrywa kluczową rolę i wybór narzędzi pomiarowych powinien być zgodny z tymi normami. Pomiar o nieodpowiedniej dokładności mógłby prowadzić do błędnych wniosków oraz problemów w produkcji czy inżynierii.

Pytanie 28

Pierwszym krokiem przy demontażu silnika z pojazdu jest

A. usunięcie oleju
B. odłączenie wiązki silnikowej
C. odłączenie akumulatora
D. odkręcenie skrzyni biegów
Odłączenie akumulatora przed przystąpieniem do demontażu silnika jest kluczowym krokiem w procesie, który ma na celu zapewnienie bezpieczeństwa oraz ochronę komponentów pojazdu. Akumulator magazynuje energię elektryczną, a jego odłączenie eliminuje ryzyko zwarcia elektrycznego, co mogłoby prowadzić do uszkodzenia elektroniki pojazdu lub w skrajnych przypadkach do pożaru. Przykładem dobrych praktyk jest stosowanie odpowiednich narzędzi, takich jak klucze nasadowe, aby unikać uszkodzeń śrub oraz złączek. Dodatkowo, odłączenie akumulatora przed demontażem silnika jest zgodne z wytycznymi zawartymi w instrukcjach producentów pojazdów, co jest istotne dla zachowania gwarancji i integralności systemów elektronicznych. W praktyce należy również zabezpieczyć końcówki kabli poprzez ich owinięcie, aby uniknąć przypadkowego kontaktu z masą, co jest kolejnym elementem zwiększającym bezpieczeństwo pracy. Zastosowanie się do tych zaleceń jest niezbędne w każdym warsztacie zajmującym się naprawą samochodów.

Pytanie 29

Optymalna grubość powłoki lakierniczej na elementach karoserii pojazdu to około

A. 0,1 mm
B. 0,01 mm
C. 150 µm
D. 250 µm
Grubość powłoki lakierniczej na nadwoziu powinna wynosić około 150 µm. To jest zgodne z tym, co mówią producenci i normy, takie jak ISO 2808. W praktyce to dość ważne, bo właściwa grubość lakieru naprawdę chroni auto przed korozją i innymi szkodliwymi czynnikami. Jak dajemy za cienki lakier, to auto szybko traci ładny wygląd, a takie zbyt grube mogą pękać i się łuszczyć. Warto też pamiętać, że podczas lakierowania dobrze jest używać natryskiwania elektrostatycznego, żeby uzyskać równą grubość. No i przygotowanie powierzchni przed malowaniem jest kluczowe, to na pewno wpływa na trwałość lakieru. Specjalistyczne laboratoria sprawdzają grubość powłok, żeby wszystko było na poziomie, co jest ważne dla długowieczności auta.

Pytanie 30

Pomiar grubości zębów kół zębatych można zrealizować przy użyciu

A. mikrometru
B. suwmiarki modułowej
C. średnicówki czujnikowej
D. głębokościomierza
Pomiar grubości zębów kół zębatych nie powinien być przeprowadzany przy użyciu średnicówki czujnikowej, mikrometru ani głębokościomierza, ponieważ każde z tych narzędzi ma swoje ograniczenia i nie nadaje się do tego zadania. Średnicówka czujnikowa, mimo że jest precyzyjna, została zaprojektowana głównie do pomiarów średnic i nie jest odpowiednia do oceny grubości zębów, gdzie kluczowe są różnice w wysokości i kształcie. Użycie mikrometru, który jest narzędziem do pomiaru małych odległości, również nie jest optymalne, ponieważ konstrukcja kół zębatych często wymaga pomiaru w różnych miejscach, co może być kłopotliwe z użyciem takiej metody. Z kolei głębokościomierz jest narzędziem przeznaczonym do pomiarów głębokości otworów, a nie do pomiarów szerokości lub grubości. Efektem użycia niewłaściwych narzędzi pomiarowych jest ryzyko uzyskania błędnych wyników, co może prowadzić do poważnych problemów w funkcjonowaniu mechanizmów zębatych. Przykładowo, nieprawidłowe pomiary mogą wywołać zjawisko przedwczesnego zużycia się zębów kół, co w rezultacie wpłynie na ich wydajność oraz trwałość. W praktyce, kluczowe jest zastosowanie narzędzi pomiarowych odpowiednich do specyfiki zadania, co podkreśla znaczenie znajomości właściwych metod i narzędzi w inżynierii mechanicznej.

Pytanie 31

Jaki jest całkowity wydatek związany z wymianą oleju silnikowego, jeśli jego ilość w silniku wynosi 3,5 litra, cena za litr wynosi 21 zł, a koszt filtra oleju to 65 zł? Prace zajmują 30 minut, a stawka za godzinę roboczą to 120 zł?

A. 138,50 zł
B. 146,00 zł
C. 198,50 zł
D. 258,50 zł
Wybór błędnej odpowiedzi często wynika z niepełnego zrozumienia procesu wyceny wymiany oleju silnikowego. Niektóre odpowiedzi mogą opierać się na założeniu, że koszty oleju lub filtra są zaniżane lub że pominięto istotne elementy, takie jak koszt robocizny. Na przykład, jeżeli ktoś obliczy tylko koszt oleju i filtra, ignorując koszt pracy, może dojść do wniosku, że całkowity koszt wynosi 138,50 zł (73,5 zł + 65 zł), co jest błędne, ponieważ nie uwzględnia wynagrodzenia mechanika. Przemijająca myśl, że za wymianę oleju nie trzeba płacić za czas pracy, wprowadza do kalkulacji istotne braki. Należy również pamiętać, że usługi serwisowe powinny być wyceniane w sposób przejrzysty i zrozumiały dla klientów. Praktyki te są kluczowe, aby zbudować zaufanie do warsztatów. Inny typowy błąd to pomylenie wartości jednostkowych lub ich pominięcie w całkowym koszcie. Dokładne obliczenia są niezbędne w kontekście zarządzania kosztami, a także w codziennym użytkowaniu pojazdów, co podkreśla znaczenie znajomości podstawowych zasad wyceny usług w branży motoryzacyjnej.

Pytanie 32

Z załączonej normy zużycia materiałów eksploatacyjnych wynika, że roczne zużycie oleju silnikowego (bez jego wymiany) pojazdu który przejechał 12 000 km wyniosło

Norma zużycia materiałów eksploatacyjnych
podzespół- silnik
Rodzaj materiałuOlej silnikowy
Pojemność miski olejowej8 l
Norma zużycia na 1000 km0,5 l
Czasokres wymiany1 0000 km

A. 8,51
B. 8,01
C. 6,01
D. 14,01
Wybór innej odpowiedzi mógł wynikać z tego, że nie zrozumiałeś norm dotyczących zużycia oleju. Odpowiedzi jak 8,01 czy 14,01 wyglądają na nadmierne, co może być typowym błędem osób, które nie są na bieżąco z branżowymi standardami. Często ludzie nie zdają sobie sprawy, że zużycie oleju nie zawsze jest liniowe i zależy od różnych czynników, jak typ silnika czy warunki jazdy. Normy zużycia opierają się na danych uzyskanych w praktyce i obejmują różne scenariusze, więc nie można zakładać, że wyższe przebiegi zawsze oznaczają wyższe zużycie oleju. Warto też pamiętać, że niektóre samochody mają lepsze systemy smarowania, co może prowadzić do mniejszego zużycia. Kluczowe jest opieranie się na danych i normach, by lepiej prognozować potrzeby serwisowe i zarządzać eksploatacją pojazdów.

Pytanie 33

Czas wymiany rozrządu wynosił 5 godzin. Zakup części do rozrządu kosztował 500 zł netto. Stawka za roboczogodzinę to 100 zł netto. Stawka VAT na towary i usługi wynosi 23%. Jaką kwotę zapłaci klient serwisu za wymianę rozrządu?

A. 1049 zł
B. 1230 zł
C. 1150 zł
D. 1000 zł
Błędne odpowiedzi mogą wynikać z niezrozumienia zasad obliczania kosztów usług i podatków. Na przykład, niektórzy mogą pomylić całkowity koszt netto z kwotą brutto, co prowadzi do nieprawidłowego oszacowania. Inna powszechna pomyłka dotyczy niewłaściwego obliczenia wartości VAT. Koszt części zamiennych i robocizny powinien być najpierw zsumowany, aby otrzymać całkowity koszt netto, a następnie dopiero można obliczyć podatek. Często zdarza się, że osoby mylą pojęcia „koszt” i „cena”, co może skutkować błędnymi kalkulacjami. Ważne jest również, aby pamiętać o tym, jakie elementy powinny być uwzględnione w kosztach, a jakie nie. Na przykład niektóre osoby mogą zapomnieć o uwzględnieniu robocizny lub pomylić stawki godzinowe. Standardowe praktyki w branży motoryzacyjnej jasno wskazują, że należy zachować przejrzystość w kalkulacji kosztów, aby klienci mieli pełną świadomość wydatków. Dokładne rozumienie zasad wyceny usług i umiejętność prawidłowego obliczania podatków to kluczowe umiejętności dla każdego specjalisty w branży.

Pytanie 34

Do technik defektoskopowych wykorzystywanych w ocenie komponentów nie zalicza się techniki

A. magnetycznej
B. objętościowej
C. rentgenowskiej
D. ultradźwiękowej
Zastosowanie metod defektoskopowych w weryfikacji części jest kluczowe w zapewnieniu jakości i bezpieczeństwa produktów przemysłowych. Odpowiedzi, które wskazują na metody magnetyczną, rentgenowską oraz ultradźwiękową, są jednym z najczęściej stosowanych podejść w przemyśle, co może wprowadzać w błąd osoby, które nie są zaznajomione z pełnym zakresem metod badań. Metoda magnetyczna, bazująca na właściwościach ferromagnetycznych materiałów, wykorzystuje pole magnetyczne do wykrywania wad powierzchniowych i podpowierzchniowych. Z kolei badania rentgenowskie wykorzystują promieniowanie elektromagnetyczne do analizy strukturalnej materiałów, co pozwala na identyfikację wewnętrznych nieciągłości. Metoda ultradźwiękowa, która polega na wysyłaniu fal dźwiękowych o wysokiej częstotliwości, umożliwia detekcję defektów w materiałach o różnej gęstości i strukturze. Wybór odpowiedniej metody jest kluczowy w zależności od rodzaju materiału oraz charakterystyki wad, co wymaga zrozumienia ich właściwości oraz zastosowania w praktyce. Wybierając nieprawidłową odpowiedź, można wpaść w pułapkę myślenia, że każda metoda defektoskopowa jest równoznaczna w kontekście badań różnych materiałów, co jest dalekie od prawdy. Kluczowe jest zatem świadome podejście do analizy, które uwzględnia specyfikę każdego z podejść oraz ich zastosowanie w praktyce, co jest niezbędne dla zapewnienia skutecznej detekcji wad.

Pytanie 35

Podczas przeprowadzania próby drogowej zauważono, że pojazd samoczynnie skręca w lewą stronę. Aby ustalić przyczynę oraz ewentualny zakres naprawy, na początku należy

A. sprawdzić ustawienie kątów kół kierowanych
B. wymienić opony na osi przedniej
C. zweryfikować ciśnienie w oponach
D. ocenić luzy w układzie kierowniczym
Sprawdzenie ciśnienia w ogumieniu jest kluczowym krokiem w diagnozowaniu problemów z zachowaniem pojazdu na drodze. Niewłaściwe ciśnienie w oponach może prowadzić do asymetrycznego zużycia bieżnika, a także do niestabilności podczas jazdy, co może objawiać się samoczynnym zbaczaniem w lewą lub prawą stronę. Opony o niewłaściwym ciśnieniu działają nieefektywnie, co wpływa na kierowalność pojazdu i bezpieczeństwo jazdy. Zgodnie z zaleceniami producentów pojazdów, ciśnienie w oponach powinno być regularnie kontrolowane, najlepiej co miesiąc oraz przed dłuższymi podróżami. Przykładowo, niskie ciśnienie w lewych oponach może powodować ich szybsze zużycie, a także wpływać na geometrię jazdy, co z kolei prowadzi do trudności w utrzymaniu prostoliniowego toru jazdy. Warto również pamiętać, że ciśnienie opon powinno być dostosowane do obciążenia pojazdu oraz warunków atmosferycznych, co jest zgodne z najlepszymi praktykami w zakresie utrzymania pojazdów. W związku z tym, sprawdzenie ciśnienia w ogumieniu jako pierwsze działanie ma sens w kontekście diagnozowania problemów z kierowaniem pojazdem i powinno być traktowane jako standardowa procedura w trakcie przeglądów technicznych.

Pytanie 36

W trakcie diagnozowania pojazdu na linii testowej przeprowadza się pomiar geometrii przedniego zawieszenia w formie

A. kąta nachylenia koła
B. zbieżności całkowitej kół
C. kąta nachylenia osi zwrotnicy
D. kąta wyprzedzenia sworznia zwrotnicy
Pomiar zbieżności całkowitej kół jest kluczowym elementem diagnostyki geometrii zawieszenia pojazdu. Oznacza on kąt, pod jakim przednie koła ustawione są względem siebie, gdy pojazd porusza się na prostym odcinku drogi. Właściwe ustawienie zbieżności ma fundamentalne znaczenie dla bezpieczeństwa jazdy oraz wydajności pojazdu. Ich niewłaściwe wartości mogą prowadzić do nierównomiernego zużycia opon, a także negatywnie wpływać na prowadzenie i stabilność auta. Na przykład, zbyt dużą zbieżność może powodować szybsze zużycie opon na wewnętrznych krawędziach, co w konsekwencji prowadzi do kosztownych wymian. Praktyka diagnostyczna wymaga regularnego sprawdzania geometrii zawieszenia, zwłaszcza po kolizjach czy wymianach części układu zawieszenia. W branży standardem stały się narzędzia optyczne i laserowe, które umożliwiają precyzyjne pomiary zbieżności, a przez to skuteczne dostosowywanie ustawień zawieszenia do specyfikacji producenta, co jest kluczowe dla zapewnienia optymalnych właściwości jezdnych i komfortu użytkownika.

Pytanie 37

Po wymianie czujnika prędkości obrotowej koła konieczne jest przeprowadzenie

A. testu na stanowisku rolkowym
B. odczytu kodów błędów sterownika ABS
C. pomiaru długości drogi hamowania pojazdu
D. testu na szarpaku
Odczyt kodów błędów sterownika ABS po wymianie czujnika prędkości obrotowej koła jest kluczowym krokiem, który pozwala na weryfikację poprawności działania systemu antypoślizgowego. Czujnik ten odgrywa istotną rolę w monitorowaniu prędkości kół, a jego wymiana może prowadzić do błędów komunikacyjnych lub nieuwzględnienia nowych wartości przez system. Odczyt kodów błędów umożliwia diagnostykę ewentualnych problemów, które mogłyby wystąpić po wymianie, takich jak niewłaściwe połączenie, uszkodzenie czujnika czy też problemy z okablowaniem. Po odczycie kodów, technik może podjąć odpowiednie kroki naprawcze, takie jak resetowanie błędów czy dokonanie dalszej diagnostyki. Praktyczne zastosowanie tej procedury jest zgodne z najlepszymi praktykami branżowymi, które zalecają, aby każdy serwis związany z systemami ABS kończył się ich dokładną diagnostyką, co zwiększa bezpieczeństwo i niezawodność pojazdu.

Pytanie 38

Równomierność funkcjonowania amortyzatorów w kołach jednej osi określa różnica wskaźnika EUSAMA. Maksymalna wartość tej różnicy nie powinna przekraczać

A. 25%
B. 20%
C. 10%
D. 30%
Wybór wartości 25%, 10% lub 30% jako granic dla różnicy wskaźnika EUSAMA jest nieprawidłowy ze względu na brak zgodności z ustalonymi normami branżowymi. Ustalenie granicy 25% może wynikać z mylnego założenia, że bardziej liberalne podejście do tolerancji jest akceptowalne. Jednakże, zbyt dużą różnicą wskaźnika można zasygnalizować problemy z równomiernością działania amortyzatorów, co przyczynia się do pogorszenia stabilności pojazdu. Z kolei odpowiedzi 10% i 30% wskazują na błędną interpretację danych. Przyjęcie 10% jako maksymalnej różnicy może być zbyt restrykcyjne, co w wielu przypadkach nie odpowiada rzeczywistości technicznej, a stosowanie tak rygorystycznych standardów może prowadzić do niepotrzebnych kosztów związanych z wymianą sprawnych amortyzatorów. Odpowiedź 30% jest natomiast rażącą przesadą, sugerującą, że problemy z amortyzatorami są mniej istotne, co jest szkodliwe dla bezpieczeństwa. Kluczowe jest zrozumienie, że tolerancje w działaniu amortyzatorów powinny być oparte na standardach, które uwzględniają zarówno bezpieczeństwo, jak i komfort jazdy, co podkreśla znaczenie wskaźnika EUSAMA na poziomie 20%.

Pytanie 39

Jaką wartość minimalną powinien mieć wskaźnik TWI w oponie całorocznej?

A. 1,0 mm
B. 3,0 mm
C. 4,0 mm
D. 1,6 mm
Minimalny wymagany wskaźnik głębokości bieżnika opony wynosi 1,6 mm. Ta wartość jest zgodna z normami prawnymi w wielu krajach, co ma na celu zapewnienie bezpieczeństwa jazdy, zwłaszcza w warunkach deszczowych. Opona z minimalną głębokością bieżnika poniżej 1,6 mm nie zapewnia odpowiedniego odprowadzania wody, co zwiększa ryzyko aquaplaningu. Z praktycznego punktu widzenia, opony powinny być regularnie kontrolowane pod kątem głębokości bieżnika, aby zapewnić optymalną przyczepność i stabilność pojazdu. Warto pamiętać, że im głębszy bieżnik, tym lepsza wydajność opony, szczególnie w trudnych warunkach atmosferycznych. Dlatego zaleca się wymianę opon, gdy ich głębokość bieżnika zbliża się do tej wartości, aby zapewnić sobie i innym uczestnikom ruchu drogowego maksymalne bezpieczeństwo na drodze.

Pytanie 40

Reperacja tarczy hamulcowej, której bicie osiowe przekracza dozwolone wartości, polega na

A. frezowaniu
B. osiowaniu
C. wyprostowaniu
D. przetaczaniu
Przetaczanie tarczy hamulcowej to proces, który pozwala na przywrócenie jej prawidłowego kształtu i grubości, eliminując bicie osiowe, które może wpływać na jakość hamowania. W trakcie przetaczania, tarcza jest obrabiana na specjalnej maszynie, co pozwala na usunięcie materiału w miejscach, gdzie występują nierówności. To zyskuje szczególne znaczenie, gdy tarcza jest już zużyta, a jej wymiana na nową nie jest konieczna, co jest korzystne z perspektywy ekonomicznej i ekologicznej. Przetaczanie tarcz hamulcowych powinno być przeprowadzane zgodnie z normami przemysłowymi, które określają minimalne grubości tarcz oraz tolerancje bicia, co zapewnia nie tylko bezpieczeństwo, ale i komfort jazdy. Dobre praktyki branżowe sugerują, aby przetaczanie wykonywać w wyspecjalizowanych warsztatach, gdzie fachowcy mają odpowiedni sprzęt oraz doświadczenie. Dzięki temu można uniknąć błędów, które mogłyby prowadzić do dalszego zużycia układu hamulcowego oraz zagrożenia dla bezpieczeństwa pojazdu.