Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 10 kwietnia 2025 18:05
  • Data zakończenia: 10 kwietnia 2025 18:43

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Klient odwiedził warsztat, aby wymienić amortyzatory tylnej osi. Jaki jest łączny koszt tej usługi, jeśli czas potrzebny na wymianę jednego amortyzatora tylnej osi wynosi 0,6 rbg, stawka za roboczogodzinę to 125,00 zł, a koszt jednego amortyzatora to 70,00 zł?

A. 220,00 zł
B. 290,00 zł
C. 145,00 zł
D. 215,00 zł
Aby obliczyć całkowity koszt wymiany amortyzatorów osi tylnej, należy uwzględnić zarówno koszt robocizny, jak i koszt części. Czas pracy na wymianę jednego amortyzatora wynosi 0,6 rbg. Dla dwóch amortyzatorów, czas roboczy wynosi 0,6 rbg × 2 = 1,2 rbg. Koszt robocizny wynosi 125,00 zł za roboczogodzinę, co oznacza, że za 1,2 rbg zapłacimy 1,2 × 125,00 zł = 150,00 zł. Koszt dwóch amortyzatorów to 70,00 zł × 2 = 140,00 zł. Zatem całkowity koszt naprawy to 150,00 zł (robocizna) + 140,00 zł (amortyzatory) = 290,00 zł. Tego rodzaju obliczenia są standardem w branży motoryzacyjnej, gdzie precyzyjne kalkulacje kosztów są niezbędne do prawidłowego wyceny usług. Zrozumienie struktury kosztów pozwala na dostosowanie cen do oczekiwań klientów oraz utrzymanie konkurencyjności na rynku.

Pytanie 2

W pojeździe z silnikiem wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,4g/km; NOx – 0,19g/km; PM – 0,008g/km; HC-0,03g/km; HC+NOx – 0,28g/km. Na podstawie dopuszczalnych wartości przedstawionych w tabeli, można pojazd zakwalifikować do grupy spełniającej co najwyżej normę

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 5
B. EURO 4
C. EURO 3
D. EURO 6
Prawidłowa odpowiedź to EURO 4, ponieważ wszystkie zmierzone wartości emisji spalin mieszczą się w dopuszczalnych limitach dla tej normy. Normy EURO są regulacjami prawnymi, które określają maksymalne poziomy emisji zanieczyszczeń do atmosfery dla pojazdów silnikowych. Każda norma ma swoje specyfikacje dotyczące różnych substancji, takich jak tlenek węgla (CO), tlenki azotu (NOx), cząstki stałe (PM) oraz węglowodory (HC). W kontekście normy EURO 4, dopuszczalne limity dla CO wynoszą 0,5 g/km, dla NOx 0,25 g/km, dla PM 0,025 g/km oraz dla HC 0,1 g/km. Zatem, pojazd spełnia te normy, ponieważ jego emisje są niższe od wskazanych wartości. Zastosowanie norm EURO w praktyce ma na celu redukcję zanieczyszczenia powietrza i ochronę zdrowia publicznego, co jest szczególnie istotne w kontekście rosnącej liczby pojazdów na drogach.

Pytanie 3

Działanie stetoskopu opiera się na zjawisku

A. akustycznym
B. elektrycznym
C. grawitacyjnym
D. hydraulicznych
Działanie stetoskopu opiera się na zjawisku akustycznym, które jest kluczowe dla analizy dźwięków wydobywających się z ciała pacjenta. Stetoskop, poprzez swoje membrany i rurki, jest w stanie wykrywać i wzmacniać dźwięki, takie jak tonacja serca czy szmery oddechowe. Zjawisko akustyczne oznacza, że dźwięki są falami, które rozprzestrzeniają się w medium – w tym przypadku w powietrzu. Dzięki zastosowaniu stetoskopu lekarze mogą dokładnie osłuchiwać pacjentów, co jest nieodłącznym elementem diagnostyki medycznej. Przykładowo, osłuchiwanie bicia serca pozwala na wykrycie arytmii czy szmerów, które mogą wskazywać na problemy z zastawkami serca. Warto zaznaczyć, że w praktyce medycznej stosuje się różne typy stetoskopów, w tym elektroniczne, które jeszcze bardziej zwiększają czułość i jakość słyszalnych dźwięków. Stetoskop jest zatem nie tylko narzędziem, ale i nieocenionym wsparciem w diagnozowaniu i monitorowaniu stanu zdrowia pacjentów, zgodnym z najlepszymi praktykami w medycynie.

Pytanie 4

W przykładowym oznaczeniu opony 195/65R15 91H litera R wskazuje na

A. oponę radialną
B. średnicę opony
C. promień opony R
D. indeks prędkości
Litera R w oznaczeniu opony 195/65R15 oznacza, że jest to opona radialna. Opony radialne są obecnie standardem w przemyśle motoryzacyjnym, co wynika z ich konstrukcji, która zapewnia lepszą stabilność, mniejsze opory toczenia oraz lepsze właściwości jezdne w porównaniu do opon diagonalnych. W konstrukcji radialnej włókna osnowy bieżnika są ułożone promieniowo w stosunku do osi opony, co pozwala na bardziej elastyczne boczne ściany, a tym samym poprawia komfort jazdy i osiągi. Opony radialne charakteryzują się także wyższą odpornością na zużycie oraz lepszymi właściwościami trakcyjnymi, co czyni je idealnym wyborem zarówno dla pojazdów osobowych, jak i dostawczych. Warto również zwrócić uwagę, że w przypadku opon o wysokich osiągach, ich konstrukcja wpływa na zachowanie na zakrętach oraz w trudnych warunkach pogodowych, co ma kluczowe znaczenie dla bezpieczeństwa na drodze.

Pytanie 5

Który z elementów układu kierowniczego jest najbardziej podatny na zużycie?

A. Przekładnia kierownicza
B. Drążek kierowniczy
C. Sworzeń kulisty
D. Kolumna kierownicza
Sworzeń kulisty jest kluczowym elementem układu kierowniczego pojazdu, który łączy drążki kierownicze z kołami. Jest on narażony na znaczne zużycie, ponieważ podczas manewrowania pojazdem, szczególnie w trakcie skręcania, podlega intensywnym obciążeniom oraz ruchom. Jego konstrukcja pozwala na pewną elastyczność, co umożliwia płynne kierowanie pojazdem, ale jednocześnie prowadzi do szybszego zużycia materiałów. Przykładem może być samochód osobowy, w którym sworzeń kulisty ulega zużyciu w wyniku eksploatacji oraz korozji spowodowanej działaniem czynników atmosferycznych i soli drogowej. Regularne przeglądy techniczne, zgodne z zaleceniami producenta, powinny obejmować kontrolę stanu sworzni kulistych, aby zapobiec ich uszkodzeniu i potencjalnym awariom przekładającym się na bezpieczeństwo jazdy. W przypadku wykrycia luzu lub zużycia, wymiana sworznia powinna być przeprowadzona niezwłocznie, co jest zgodne z dobrymi praktykami w dziedzinie utrzymania pojazdów.

Pytanie 6

Przed przeprowadzeniem diagnostyki silnika pojazdu przy użyciu analizatora spalin, należy

A. podnieść temperaturę silnika do wartości eksploatacyjnej.
B. schłodzić silnik.
C. dodać olej silnikowy do maksymalnego poziomu.
D. uzupełnić zbiornik paliwa.
Rozgrzewanie silnika do temperatury eksploatacyjnej przed wykonaniem diagnostyki silnika przy użyciu analizatora spalin jest kluczowym etapem, który ma na celu uzyskanie dokładnych i wiarygodnych wyników pomiarów. Silniki spalinowe osiągają optymalną efektywność pracy oraz odpowiednie parametry spalin dopiero po osiągnięciu właściwej temperatury roboczej. W tej temperaturze wszystkie komponenty silnika, w tym systemy wtryskowe i katalizatory, działają w optymalny sposób, co pozwala na zminimalizowanie błędów pomiarowych. Dobrą praktyką jest również przeprowadzenie diagnostyki po pewnym czasie pracy silnika na biegu jałowym, co umożliwia stabilizację parametrów. Na przykład, podczas diagnostyki pojazdu osobowego, który przeszedł dłuższą jazdę, można zauważyć znaczące różnice w składzie spalin w porównaniu z pomiarami przy zimnym silniku. Warto zwrócić uwagę, że wiele instrukcji obsługi producentów zaleca konkretne procedury rozgrzewania silnika, co podkreśla znaczenie tego kroku w kontekście diagnostyki i redukcji emisji szkodliwych substancji.

Pytanie 7

Pojazdem, który nie jest autem osobowym, jest

A. ciągnik drogowy
B. autobus
C. ciągnik rolniczy
D. motocykl
Ciągnik rolniczy nie jest klasyfikowany jako pojazd samochodowy z uwagi na jego specyfikę konstrukcyjną i przeznaczenie. Pojazdy samochodowe to te, które są przeznaczone głównie do transportu osób i ładunków po drogach publicznych. Ciągniki rolnicze, choć mogą poruszać się po drogach, są projektowane do pracy w rolnictwie, gdzie wykonują zadania takie jak orka, siew czy transport materiałów rolniczych. Ich konstrukcja i wyposażenie różnią się od standardowych pojazdów osobowych czy ciężarowych, co sprawia, że nie spełniają definicji pojazdu samochodowego. W praktyce ciągniki rolnicze są często używane w gospodarstwach rolnych i na terenach wiejskich, gdzie ich unikalne właściwości i moc są niezbędne do efektywnego wykonywania prac agrotechnicznych. Ważne jest, aby rozumieć różnice między różnymi kategoriami pojazdów, ponieważ wpływają one na przepisy dotyczące rejestracji, ubezpieczenia oraz przepisów drogowych. Przyjmuje się, że zgodnie z europejskimi standardami, pojazdy samochodowe powinny mieć określone parametry dotyczące prędkości, emisji spalin oraz komfortu podróży, które nie są typowe dla ciągników rolniczych.

Pytanie 8

Podstawowym celem systemu diagnostyki OBDII jest

A. nadzorowanie układu napędowego w kontekście emisji spalin
B. analiza stanu technicznego czujników w pojeździe
C. zapis oraz usuwanie kodów błędów
D. obserwacja stanu zużycia elementów pojazdu
Odpowiedzi, które nie odnoszą się do głównego celu systemu OBDII, pokazują, że masz jakieś pojęcie o tym, co ten system robi, ale chyba nie w pełni rozumiesz, na czym to tak na prawdę polega. Zważ, że ocena stanu technicznego czujników jest ważna, ale to tylko część większej całości związanej z OBDII. Kluczowe w tym systemie jest monitorowanie emisji spalin, co ma ogromne znaczenie dla środowiska i przepisów prawnych. Odczytywanie kodów błędów i ich kasowanie to działania wynikające z funkcjonowania systemu, a nie jego główny cel. Łatwo jest pomylić te funkcje i myśleć, że OBDII to tylko identyfikacja błędów, ale w rzeczywistości chodzi głównie o kontrolę emisji zanieczyszczeń. No i też monitorowanie stanu zużycia podzespołów to nie jest priorytet w przypadku OBDII. Takie podejście może prowadzić do błędnych wniosków o tym, jak ten system działa, co jest dość powszechne, gdy brakuje świadomości, że OBDII wspiera normy ekologiczne. Żeby zrozumieć, co naprawdę oznacza OBDII, warto skupić się na tym, jak wspiera systemy ochrony środowiska. To jest kluczowe do ogarnięcia, jak ten standard działa w nowoczesnych autach.

Pytanie 9

W hydraulicznej instalacji sterowania sprzęgłem znajduje się

A. olej silnikowy
B. płyn R134a
C. płyn hamulcowy
D. olej ATF 220
Wybór oleju silnikowego jako medium w hydraulicznych układach sterowania sprzęgłem jest błędny z kilku powodów. Po pierwsze, olej silnikowy nie spełnia wymagań dotyczących właściwości fizycznych i chemicznych, które są niezbędne w hydraulice. Posiada on inne charakterystyki lepkości, co może prowadzić do niewłaściwego działania układu i obniżenia efektywności przekazywania siły. Na przykład, przy niskich temperaturach olej silnikowy może gęstnieć, co skutkuje opóźnieniem w reakcji układu, a w skrajnych przypadkach może prowadzić do zacięcia się. Ponadto, olej silnikowy nie wykazuje odporności na wysoką temperaturę i może szybko ulegać degradacji. W kontekście płynu R134a, którym jest czynnik chłodniczy używany w układach klimatyzacji, jego zastosowanie w hydraulice sprzęgła jest całkowicie nieadekwatne. R134a nie jest płynem, który mógłby przenosić siłę mechaniczną. Dlatego wybór tego płynu prowadzi do niewłaściwego działania układu. Wreszcie, olej ATF 220, przeznaczony do przekładni automatycznych, również nie jest odpowiedni. Choć posiada lepsze właściwości niż olej silnikowy, jest zaprojektowany z myślą o zupełnie innych zastosowaniach, co czyni go niewłaściwym wyborem w systemach hydraulicznych sprzęgła. W przypadku układów hydraulicznych, kluczowe jest stosowanie płynów, które są zgodne z normami i standardami, zapewniającymi ich optymalne działanie.

Pytanie 10

Zacisk hamulca stanowi część systemu hamulcowego

A. taśmowego
B. bębnowego
C. elektromagnetycznego
D. tarczowego
Zacisk hamulcowy to mega ważny element w układzie hamulcowym tarczowym, który jest teraz bardzo popularny w autach. Jego główna rola to przytrzymywanie i dociskanie klocków hamulcowych do tarczy, co w rezultacie tworzy siłę hamującą. Kiedy kierowca wciska pedał hamulca, ciśnienie hydrauliczne wędruje do zacisków, co sprawia, że tłoczki przesuwają się i dociskają klocki do obracającej się tarczy. Tak to działa, a efektem jest skuteczne hamowanie. Z mojego doświadczenia, warto regularnie sprawdzać stan klocków hamulcowych i poziom płynu hamulcowego, bo to wpływa na bezpieczeństwo na drodze. Ostatnio w autach często pojawiają się systemy ABS, które współpracują z układem tarczowym, żeby nie blokować kół i stabilizować pojazd podczas hamowania. Warto wiedzieć, że układ tarczowy jest lepszy w sytuacjach, gdzie potrzebne jest mocne hamowanie i lepsze chłodzenie, dlatego często można go spotkać w sportowych i osobowych autach.

Pytanie 11

Jakim przyrządem pomiarowym powinno się zastąpić badany czujnik ciśnienia oleju, aby potwierdzić jego prawidłowość działania?

A. Manometrem
B. Barometrem
C. Refraktometrem
D. Pirometrem
Manometr to odpowiedni przyrząd kontrolno-pomiarowy do weryfikacji wskazań czujnika ciśnienia oleju. Jego głównym zadaniem jest pomiar ciśnienia gazów lub cieczy, co czyni go idealnym narzędziem do oceny poprawności działania czujników ciśnienia. Manometry stosowane są w różnych dziedzinach, w tym w motoryzacji, hydraulice czy technologii procesowej. Standardowe manometry są kalibrowane zgodnie z normami takimi jak PN-EN 837-1, co zapewnia ich dokładność i niezawodność. W praktyce, jeśli manometr wskazuje wartości zgodne z danymi odczytanymi z czujnika, można uznać, że czujnik działa prawidłowo. W przypadku rozbieżności należy przeprowadzić dalsze analizy, aby ustalić, czy problem leży w czujniku, czy w manometrze. Dzięki manometrom możliwe jest także monitorowanie ciśnienia w systemach hydraulicznych, co jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 12

Podczas przyjmowania pojazdu do diagnostyki, autoryzowany serwis obsługi identyfikuje go na podstawie

A. rodzaju nadwozia
B. modelu silnika
C. roku produkcji
D. numeru VIN
Numer VIN to taki unikalny kod, który identyfikuje każdy samochód. Składa się z 17 znaków, w tym literek i cyferek. Dzięki niemu serwisy mogą bez problemu sprawdzić, co się dzieje z autem, czy to potrzebuje jakiejś naprawy. W VIN-ie mamy mnóstwo ważnych info, jak np. kto wyprodukował pojazd, gdzie go zrobiono, jaki jest model i kiedy zejście z linii produkcyjnej miało miejsce. VIN przydaje się też, gdy chcemy poznać historię auta lub sprawdzić, czy nie ma jakichś wezwań do serwisu związanych z bezpieczeństwem. Dodatkowo, dzięki standardom ISO, ten system działa wszędzie na świecie, co ułatwia życie serwisom i producentom. Z mojego doświadczenia, dobrze jest zawsze sprawdzać VIN, bo to daje pewność, że wiemy, z czym mamy do czynienia i jak najlepiej pomóc klientowi.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W oznaczeniu 245/40 R17 91Y, które widnieje na oponie, liczba

A. 40 definiuje wysokość profilu opony w milimetrach
B. 17 wskazuje średnicę zewnętrzną felgi.
C. 91 to indeks prędkości.
D. 40 oznacza wysokość profilu opony wyrażoną w % szerokości bieżnika
Często ludzie mylą oznaczenia opon i to prowadzi do błędnych wniosków. Na przykład, liczba 91 w oznaczeniu to nie indeks prędkości, lecz indeks nośności. Oznacza to, ile maksymalnie ciężaru opona może unieść. To jest naprawdę kluczowe dla bezpieczeństwa i działania auta, zwłaszcza w różnych warunkach na drodze. Liczba 17 mówi nam o średnicy felgi, ale nie ma związku z wysokością profilu, która była opisana w pytaniu. To też jest ważne, bo trzeba wiedzieć, jakie felgi pasują do danej opony. Warto zaznaczyć, że wysokość profilu w mm, jak mówiono w jednej z odpowiedzi, to nie jest właściwe podejście, bo nie ma standardu mówiącego o tym w kontekście szerokości bieżnika. Takie zamieszanie może skutkować złym wyborem opon, co wpłynie na bezpieczeństwo i osiągi auta. Dlatego warto zrozumieć, jak prawidłowo odczytywać oznaczenia na oponach i jak je zastosować w codziennej jeździe.

Pytanie 16

W trakcie spawania gazowego niemożliwe jest

A. korzystanie z skórzanych rękawic ochronnych
B. nasączenie olejem lub innym tłuszczem zaworów butli
C. aplikowanie defektoskopu
D. zbyt duże przewietrzanie warsztatu / hali
Smarowanie olejem lub innym tłuszczem zaworów butli podczas spawania gazowego jest niedopuszczalne, ponieważ może prowadzić do poważnych zagrożeń związanych z bezpieczeństwem. Tłuszcze mogą ułatwić zapłon oraz prowadzić do eksplozji, szczególnie w obecności gazów palnych. W praktyce, podczas obsługi butli gazowych, kluczowe jest przestrzeganie zasad bezpieczeństwa, które obejmują m.in. unikanie substancji łatwopalnych w pobliżu źródeł ognia. Zgodnie z dokumentami i normami branżowymi, takimi jak PN-EN ISO 3834, w procesach spawania należy stosować się do rygorystycznych norm bezpieczeństwa, aby minimalizować ryzyko pożaru i eksplozji. Dlatego ważne jest używanie odpowiednich technik konserwacyjnych, które nie wprowadzą dodatkowych zagrożeń. Na przykład, w przypadku potrzeby smarowania, zaleca się stosowanie środków przystosowanych do użycia w warunkach spawania, które nie są łatwopalne.

Pytanie 17

Aby zmierzyć średnice czopów wału korbowego, należy zastosować

A. głębokościomierz mikrometryczny
B. mikrometr wewnętrzny
C. średnicówkę mikrometryczną
D. mikrometr zewnętrzny
Mikrometr zewnętrzny jest narzędziem pomiarowym, które idealnie nadaje się do pomiarów średnic zewnętrznych obiektów cylindrycznych, takich jak czopy wału korbowego. Jego konstrukcja pozwala na uzyskanie bardzo precyzyjnych wyników, z dokładnością nawet do 0,01 mm. Mikrometr zewnętrzny składa się z szczęk, które obejmują mierzoną część, a skala na mikrometrze umożliwia odczyt wartości pomiarowej. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary średnic czopów wału korbowego są niezbędne do zapewnienia prawidłowego funkcjonowania silnika. Zbyt mała lub zbyt duża średnica czopów może prowadzić do nieprawidłowego osadzenia łożysk, co z kolei może skutkować ich przedwczesnym zużyciem lub uszkodzeniem silnika. W standardach branżowych, takich jak ISO 286, podkreśla się znaczenie precyzyjnych pomiarów w procesie wytwarzania, co czyni mikrometr zewnętrzny niezbędnym narzędziem w warsztatach i zakładach produkcyjnych.

Pytanie 18

Układ hamulcowy należy odpowietrzyć

A. rozpoczynając od koła najdalszego od pompy hamulcowej
B. rozpoczynając od koła najbliższego pompie hamulcowej
C. w przeciwnym kierunku do wskazówek zegara
D. w tym samym kierunku co wskazówki zegara
Odpowietrzanie układu hamulcowego w sposób przeciwny do kierunku wskazówek zegara oraz od najbliższego koła do pompy hamulcowej prowadzi do poważnych błędów w procesie. Przede wszystkim, metoda odpowietrzania zaczynająca się od najbliższego koła nie jest zgodna z zasadami hydrauliki. Powietrze, które gromadzi się w systemie, zazwyczaj znajduje się w najdalszych częściach układu, a rozpoczęcie odpowietrzania od najbliższego koła ryzykuje pozostawieniem nieusuniętego powietrza, co skutkuje nieprawidłowym działaniem układu hamulcowego. Z kolei metoda odpowietrzania w kierunku przeciwnym do wskazówek zegara nie ma uzasadnienia technicznego, gdyż nie wpływa na usuwanie powietrza z układu w sposób efektywny. Zamiast tego, skutkuje to jedynie chaotycznym wprowadzaniem powietrza w inne miejsca układu, co zwiększa ryzyko wystąpienia sytuacji niebezpiecznych podczas jazdy. W praktyce, wiele warsztatów samochodowych stosuje metody oparte na najlepszych praktykach, które potwierdzają, że efektywne odpowietrzanie zaczynające się od najdalszego koła jest kluczowe dla zapewnienia optymalnej wydajności hamulców. Ignorując te zasady, można łatwo doprowadzić do sytuacji, w której układ hamulcowy będzie działał niewłaściwie, co w efekcie stwarza zagrożenie na drodze.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Numer VIN (Vehicle Identification Number) pojazdu jest zbudowany

A. z 18 znaków
B. z 14 znaków
C. z 17 znaków
D. z 10 znaków
Numer identyfikacyjny pojazdu VIN (Vehicle Identification Number) rzeczywiście składa się z 17 znaków. Jest to międzynarodowy standard, który został wprowadzony w 1981 roku, aby umożliwić jednoznaczną identyfikację pojazdów. Struktura VIN zawiera różnorodne informacje, takie jak producent, typ pojazdu, miejsce produkcji, rok produkcji oraz unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN przedstawiają WMI (World Manufacturer Identifier), który identyfikuje producenta i jego lokalizację. Kolejne pięć znaków to VDS (Vehicle Descriptor Section), który określa cechy pojazdu, takie jak jego model, silnik oraz inne parametry techniczne. Ostatnie dziewięć znaków to VIS (Vehicle Identifier Section), który jest unikalnym numerem pojazdu. Dzięki tej standaryzacji możliwe jest łatwe śledzenie historii pojazdów, co jest kluczowe w kontekście wymiany informacji pomiędzy producentami, dealerami oraz organami rejestracyjnymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby zdjąć końcówkę drążka kierowniczego z ramienia zwrotnicy, jakie narzędzie powinno się zastosować?

A. ściągacza sworzni kulowych
B. zestawu szczypiec uniwersalnych
C. klucza samozaciskowego
D. prasy warsztatowej
Ściągacz sworzni kulowych to narzędzie zaprojektowane specjalnie do demontażu sworzni kulowych, które łączą różne elementy układu zawieszenia pojazdu, w tym końcówki drążków kierowniczych. Użycie ściągacza w tym kontekście jest nie tylko zalecane, ale i standardem w praktyce warsztatowej. Narzędzie to działa poprzez równomierne rozłożenie siły na sworzeń kulowy, co minimalizuje ryzyko uszkodzenia jego struktury oraz otaczających go elementów, takich jak zwrotnice. W przypadku usunięcia końcówki drążka kierowniczego, ściągacz pozwala na precyzyjne usunięcie bez konieczności stosowania nadmiernej siły, co jest kluczowe dla zachowania integralności układu kierowniczego. Dobrą praktyką jest również wcześniejsze nasmarowanie sworznia, co ułatwia jego demontaż. W warsztatach samochodowych często korzysta się z ściągaczy różnych typów, co jest zgodne z najlepszymi praktykami w branży, zapewniając bezpieczeństwo i efektywność pracy.

Pytanie 23

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. odpowietrzeniem układu hamulcowego
B. wymianą płynu hamulcowego
C. dezaktywacją zacisków hamulcowych
D. jednoczesną wymianą tarcz i klocków hamulcowych
Dezaktywacja zacisków hamulcowych jest niezbędnym krokiem przy wymianie klocków hamulcowych w pojazdach wyposażonych w systemy EPB (elektroniczna ręczna sprężyna) lub SBC (inteligentny system hamulcowy). Przy tych rozwiązaniach, zaciski hamulcowe są sterowane elektronicznie, co oznacza, że przed przystąpieniem do wymiany klocków, konieczne jest ich odłączenie. Proces ten pozwala na prawidłowe usunięcie zużytych klocków bez ryzyka uszkodzenia systemu hamulcowego. W praktyce, aby dezaktywować zaciski, należy skorzystać z odpowiedniego narzędzia diagnostycznego, które umożliwia komunikację z jednostką sterującą systemu hamulcowego. Tego typu działania są zgodne z zaleceniami producentów i są kluczowe dla zachowania integralności układu hamulcowego. W przypadku nieprzeprowadzenia dezaktywacji, może dojść do uszkodzenia elementów zacisku lub niewłaściwej pracy hamulców po wymianie, co stwarza zagrożenie dla bezpieczeństwa jazdy. Prawidłowa procedura wymiany klocków hamulcowych, z uwzględnieniem dezaktywacji zacisków, jest zgodna z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 24

Parownik stanowi składnik systemu

A. chłodzenia
B. klimatyzacji
C. smarowania
D. wydechowego
Parownik, jako jeden z kluczowych elementów systemu klimatyzacji, odgrywa fundamentalną rolę w procesie chłodzenia powietrza wewnętrznego. Działa na zasadzie odparowania czynnika chłodniczego, który w parowniku przyjmuje ciepło z otoczenia, co prowadzi do obniżenia temperatury powietrza. W praktyce oznacza to, że ciepłe powietrze z pomieszczenia przechodzi przez parownik, gdzie jest schładzane, a następnie wydmuchiwane z powrotem do wnętrza, co znacznie poprawia komfort użytkowników. W standardowych systemach klimatyzacyjnych, takich jak jednostki split czy centralne systemy wentylacji, parowniki są projektowane zgodnie z normami ASHRAE oraz ISO, co zapewnia ich wysoką efektywność energetyczną i niezawodność. Wiedza na temat działania parowników ma kluczowe znaczenie nie tylko dla inżynierów, ale także dla techników zajmujących się serwisowaniem systemów klimatyzacyjnych, ponieważ wszelkie problemy w ich funkcjonowaniu mogą prowadzić do obniżonej wydajności systemu oraz zwiększonego zużycia energii.

Pytanie 25

Symbol znajdujący się na oponie 145/50 wskazuje szerokość opony

A. w calach oraz wskaźnik profilu w %
B. w calach oraz wskaźnik profilu w milimetrach
C. w milimetrach oraz wskaźnik profilu w milimetrach
D. w milimetrach oraz wskaźnik profilu w %
Dobrze zauważyłeś, że symbol na oponie 145/50 mówi o szerokości opony w milimetrach i wskaźniku profilu w %, co jest naprawdę istotne. To znaczy, że szerokość opony to 145 mm, a ten 50 oznacza, że wysokość profilu to 50% z tej szerokości, czyli 72,5 mm. Zrozumienie tych oznaczeń jest ważne, bo odpowiednie opony mają ogromny wpływ na to, jak jeździmy - zarówno pod kątem bezpieczeństwa, jak i komfortu. Jak dobierasz nowe opony, warto wiedzieć, co oznaczają te liczby, żeby dobrze wybrać. Dzięki temu będziesz mieć lepszą przyczepność i krótszą drogę hamowania, co na pewno jest na plus na drodze.

Pytanie 26

Kiedy tłok silnika spalinowego znajduje się w górnym martwym punkcie, to przestrzeń nad nim określa objętość

A. skokowa cylindra
B. komory spalania
C. całkowita cylindra
D. skokowasilnika
Odpowiedź "komory spalania" jest prawidłowa, ponieważ w silniku spalinowym, gdy tłok znajduje się w Górnym Martwym Położeniu (GMP), przestrzeń nad tłokiem jest zdefiniowana jako komora spalania. Jest to miejsce, gdzie mieszanka paliwowo-powietrzna jest sprężana przed zapłonem oraz gdzie zachodzi proces spalania. Komora spalania ma istotny wpływ na wydajność silnika i jego osiągi. Właściwy kształt i objętość komory spalania mogą znacząco wpływać na efektywność spalania, co przekłada się na moc i moment obrotowy silnika. Przykładowo, w konstrukcji silników wyścigowych dąży się do optymalizacji komory spalania, aby maksymalizować moc oraz minimalizować emisję spalin. Zgodnie z dobrymi praktykami inżynieryjnymi, projektanci silników powinni zrozumieć dynamikę płynów oraz termodynamikę, aby osiągnąć najlepsze parametry pracy silnika i spełnić normy emisji spalin, co jest kluczowe w kontekście regulacji ochrony środowiska.

Pytanie 27

Aby zamontować tłok z pierścieniami w cylindrze, należy użyć

A. prasy hydraulicznej
B. prasy śrubowej
C. szczypiec do pierścieni
D. opaski zaciskowej do pierścieni
Wybór innych odpowiedzi, takich jak prasę hydrauliczną, szczypce do pierścieni lub prasę śrubową, wskazuje na pewne nieporozumienia związane z procesem montażu tłoka w cylindrze. Użycie prasy hydraulicznej do montażu pierścieni jest niewłaściwe, ponieważ siła generowana przez prasę może uszkodzić delikatne pierścienie lub prowadnice cylindrów, co prowadzi do ich deformacji. W przemyśle motoryzacyjnym i maszynowym zaleca się unikanie nadmiernego nacisku, który może mieć negatywny wpływ na integralność komponentów. Z kolei szczypce do pierścieni, choć mogą być użyteczne w pewnych sytuacjach, nie zapewniają odpowiedniego rozkładu siły i kontroli, co jest kluczowe dla prawidłowego montażu. Mogą również powodować nieodwracalne uszkodzenia pierścieni, szczególnie przy nieostrożnym użytkowaniu. Prasa śrubowa, z drugiej strony, chociaż może oferować stabilność, jest również nieodpowiednia, ze względu na ryzyko zbyt dużego nacisku oraz niewłaściwego ustawienia pierścieni, co może prowadzić do ich zacięcia w cylindrze. Właściwe podejście do montażu tłoka wymaga zastosowania narzędzi, które są specyficznie zaprojektowane do tego celu, co zapewnia bezpieczeństwo komponentów oraz ich długotrwałą funkcjonalność.

Pytanie 28

Podczas zmiany opony na urządzeniu przeznaczonym do demontażu, mechanikowi mogą zagrażać

A. poparzenie oczu
B. poparzenie dłoni
C. uszkodzenie słuchu
D. uszkodzenie ciała energią sprężonego powietrza
Odpowiedź dotycząca uszkodzenia ciała energią sprężonego powietrza jest prawidłowa, ponieważ podczas wymiany opony, szczególnie w warsztatach mechanicznych, używa się narzędzi pneumatycznych, które mogą generować znaczną siłę. Sprężone powietrze, jeśli nie jest stosowane prawidłowo, może powodować niebezpieczne sytuacje, takie jak wystrzał opony czy niekontrolowane uwolnienie energii. Przykładowo, jeśli mechanik nieprawidłowo obsługuje klucze pneumatyczne lub nie stosuje odpowiednich technik zabezpieczających, może dojść do poważnych obrażeń ciała. Dlatego ważne jest stosowanie się do procedur bezpieczeństwa, takich jak używanie odpowiedniego sprzętu ochronnego oraz regularne szkolenie personelu. W branży motoryzacyjnej, normy BHP oraz wytyczne dotyczące korzystania z narzędzi pneumatycznych powinny być przestrzegane, co pozwala minimalizować ryzyko kontuzji związanych z energią sprężonego powietrza.

Pytanie 29

Do zadań tarczy sprzęgłowej należy przekazywanie momentu obrotowego?

A. z koła zamachowego na wałek sprzęgłowy
B. z wałka sprzęgłowego na koło zamachowe
C. z wałka pośredniego na wałek sprzęgłowy
D. z wałka sprzęgłowego na wałek atakujący
Tarcza sprzęgłowa odgrywa kluczową rolę w przenoszeniu momentu obrotowego z koła zamachowego na wałek sprzęgłowy. To połączenie jest niezbędne do efektywnego przekazywania energii mechanicznej w układzie napędowym pojazdu. W praktyce, tarcza sprzęgłowa działa na zasadzie tarcia, co pozwala na synchronizację obrotów silnika z ruchem kół. W momencie, gdy kierowca naciska pedał sprzęgła, tarcza sprzęgłowa odłącza silnik od skrzyni biegów, co umożliwia zmianę biegów. Dobre praktyki w zakresie konserwacji sprzęgła obejmują regularne sprawdzanie stanu tarczy oraz odpowiednie użytkowanie, aby zminimalizować zużycie. Zrozumienie działania tarczy sprzęgłowej jest kluczowe dla diagnozowania problemów z układem napędowym oraz dla świadomego użytkowania pojazdu, co może poprawić jego wydajność i żywotność podzespołów.

Pytanie 30

Podstawowym parametrem określającym benzynę używaną do zasilania silników spalinowych jest liczba

A. cetanowa
B. metanowa
C. oktanowa
D. kwasowa
Liczba oktanowa jest kluczowym parametrem określającym jakość benzyny, zwłaszcza w kontekście jej stosowania w silnikach spalinowych. Oznacza ona zdolność paliwa do opierania się zjawisku stukania, które może wystąpić podczas pracy silnika. Wysoka liczba oktanowa wskazuje, że paliwo może być stosowane w silnikach o wyższych stopniach sprężania, co zazwyczaj prowadzi do lepszej efektywności energetycznej i mocniejszego działania silnika. Standardy branżowe, takie jak ASTM D2699 i ASTM D2700, definiują metody pomiaru liczby oktanowej. Na przykład, benzyna o liczbie oktanowej 95 jest powszechnie stosowana w nowoczesnych samochodach, które wymagają paliwa o wysokiej jakości, aby uniknąć uszkodzeń silnika i zapewnić optymalną wydajność. W praktyce, stosowanie paliw o odpowiedniej liczbie oktanowej przyczynia się także do redukcji emisji szkodliwych substancji, co jest kluczowe dla ochrony środowiska.

Pytanie 31

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
B. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
C. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
D. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 32

Podczas zakupu panewek łożysk głównych wału korbowego warto zwrócić uwagę na

A. sekwencję montowanych korbowodów
B. zastosowanie odpowiedniego luzu montażowego umożliwiającego obrót panewek w korpusie
C. instalację tylko nowych panewek
D. właściwe osadzenie panewek względem otworów olejowych
Odpowiednie osadzenie panewek w stosunku do otworów olejowych jest kluczowe dla prawidłowego funkcjonowania łożysk głównych wału korbowego. Paneweczki, jako elementy współpracujące z wałem korbowym, muszą być właściwie ustawione, aby zapewnić odpowiedni przepływ oleju smarującego, co jest niezbędne dla zmniejszenia tarcia i zapobiegania zużyciu. W przypadku niewłaściwego osadzenia, możliwe są zastoje oleju, co prowadzi do przegrzewania się komponentów oraz ich przedwczesnego uszkodzenia. Praktyczne zastosowanie tej zasady obejmuje dokładne wyrównanie panewek z otworami olejowymi podczas montażu, co można osiągnąć poprzez użycie specjalnych narzędzi pomiarowych, takich jak suwmiarki czy mikrometry, które pozwalają na precyzyjne dopasowanie. Zgodnie z wytycznymi producentów silników, ważne jest również, aby przed montażem sprawdzić czystość powierzchni oraz stan panewek, co przyczynia się do ich długotrwałej eksploatacji i efektywności działania silnika.

Pytanie 33

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy odnoszą się do układu

A. hamulcowego
B. kierowniczego
C. jezdnego
D. napędowego
Kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy to kluczowe parametry w układzie kierowniczym pojazdów. Kąt wyprzedzenia ma wpływ na stabilność pojazdu podczas jazdy na prostych odcinkach drogi oraz w zakrętach, co jest istotne dla bezpieczeństwa i komfortu prowadzenia. Kąt pochylenia osi sworznia zwrotnicy jest natomiast wskaźnikiem, który wpływa na zużycie opon oraz na zachowanie się pojazdu w różnych warunkach drogowych. W praktyce, poprawne ustawienie tych kątów według standardów producentów samochodów, takich jak SAE (Society of Automotive Engineers), jest niezbędne dla zapewnienia optymalnych właściwości jezdnych. Przykładowo, niewłaściwe wyprzedzenie osi sworznia może prowadzić do trudności w prowadzeniu pojazdu oraz szybszego zużycia elementów układu kierowniczego. Dlatego regularne kontrole geometrii zawieszenia oraz układu kierowniczego są zalecane dla utrzymania pojazdu w dobrym stanie.

Pytanie 34

Aby obiektywnie ocenić jakość naprawy systemu hamulcowego, należy

A. zmierzyć opory toczenia
B. przeprowadzić jazdę próbną
C. wykonać próbę wybiegu
D. zmierzyć siły hamowania
Pomiar sił hamowania jest kluczowym elementem oceny jakości naprawy układu hamulcowego, ponieważ bezpośrednio odnosi się do efektywności działania hamulców. Siły hamowania można zmierzyć przy użyciu specjalistycznych urządzeń, takich jak dynamometry, które pozwalają na określenie, jak skutecznie układ hamulcowy działa w terenie. W kontekście standardów branżowych, ważne jest, aby osiągane wartości mieściły się w granicach norm określonych przez producentów pojazdów oraz instytucje zajmujące się bezpieczeństwem ruchu drogowego. W praktyce, po naprawie układu hamulcowego, warto przeprowadzić testy sił hamowania w różnych warunkach, aby upewnić się, że pojazd zatrzymuje się w odpowiednim czasie i w bezpieczny sposób. Dodatkowo, regularne sprawdzanie sił hamowania może pomóc w zapobieganiu awariom i zwiększeniu bezpieczeństwa użytkowników dróg.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. przetoczenia
B. wymiany
C. przeszlifowania
D. napawania
Stożkowatość przekroju tarczy hamulcowej jest oznaką zużycia, które może znacząco wpłynąć na działanie układu hamulcowego. W przypadku, gdy przekrój tarczy hamulcowej staje się stożkowaty, oznacza to, że jedna część tarczy jest bardziej zużyta niż inna. Taka nierównomierność może prowadzić do nieprawidłowego kontaktu między tarczą a klockami hamulcowymi, co skutkuje wydłużeniem drogi hamowania oraz zwiększeniem ryzyka wypadku. W takiej sytuacji wymiana tarczy hamulcowej jest najbezpieczniejszym i najbardziej skutecznym rozwiązaniem. Zgodnie z wytycznymi branżowymi, takie jak dokumenty ASI (Automotive Service Industry), regularne sprawdzanie stanu tarcz hamulcowych i ich wymiana w przypadku stwierdzenia jakichkolwiek deformacji jest kluczowe dla zapewnienia bezpieczeństwa pojazdu. Należy pamiętać, że inwestycja w nowe tarcze hamulcowe przekłada się na lepszą efektywność hamowania oraz długoterminowe oszczędności związane z naprawami.

Pytanie 40

Który płyn eksploatacyjny jest określany symbolem 10W/40?

A. Olej silnikowy
B. Płyn do hamulców
C. Płyn do chłodzenia silnika
D. Płyn do spryskiwaczy
Odpowiedź 'Olej silnikowy' jest poprawna, ponieważ symbol 10W/40 odnosi się do klasyfikacji oleju silnikowego według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' oznacza lepkość oleju w niskich temperaturach (Winter), co wskazuje na jego zdolność do pracy w zimnych warunkach. Wartość '40' odnosi się do lepkości oleju w wysokich temperaturach, co jest kluczowe dla zapewnienia odpowiedniego smarowania silnika podczas jego pracy w podwyższonych warunkach. Olej 10W/40 jest często stosowany w silnikach benzynowych i diesla, gdzie wymagana jest dobra wydajność zarówno w niskich, jak i wysokich temperaturach. Dzięki swojej uniwersalności, oleje tego typu są popularne w pojazdach osobowych oraz dostawczych, a ich stosowanie wspiera prawidłową pracę silnika oraz minimalizuje zużycie komponentów, co wydłuża żywotność silnika. Zgodnie z zaleceniami producentów pojazdów, regularna wymiana oleju jest niezbędna dla utrzymania optymalnej wydajności i ochrony silnika.