Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 5 czerwca 2025 08:59
  • Data zakończenia: 5 czerwca 2025 09:17

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. FBD
B. IL
C. ST
D. LAD
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 4

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. stoperem
B. miliwoltomierzem
C. mikrometrem
D. czujnikiem zegarowym
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Napięcie próbne, utrata dielektryczna, maksymalna wartość napięcia, rezystancja izolacyjna, współczynnik temperaturowy pojemności, to parametry nominalne

A. dioda pojemnościowa
B. solenoidu
C. rezystora
D. kondensatora
Wybierając odpowiedź dotyczącą rezystora, należy zauważyć, że chociaż rezystory są fundamentalnymi elementami elektronicznymi, nie posiadają one parametrów charakteryzujących je w taki sposób, jak opisano w pytaniu. Rezystory generalnie są definiowane przez oporność, moc nominalną oraz współczynnik temperaturowy. Nie mają one natomiast parametrów dotyczących stratności dielektrycznej ani napięcia probierczego, gdyż ich główną funkcją jest ograniczenie przepływu prądu, a nie magazynowanie ładunku elektrycznego. Z kolei solenoidy, które są rodzajem cewki, również różnią się od kondensatorów. Ich parametry skupiają się na indukcyjności oraz mocy dostarczanej do cewki, a nie na aspektach dielektrycznych. Diody pojemnościowe, chociaż związane z pojemnością, nie są w pełni porównywalne z kondensatorami. Diody te służą do regulowania przepływu prądu w zależności od napięcia, a ich charakterystyka pojemnościowa jest inna od pojemności kondensatorów. Typowe błędy myślowe mogą obejmować mylenie funkcji i charakterystyk tych komponentów, co prowadzi do nieprawidłowych wniosków na temat ich zastosowania w układach elektronicznych. W kontekście standardów branżowych, istotne jest, aby dobrze rozumieć różnice między tymi elementami, aby unikać nieefektywnych projektów oraz problemów w praktycznych aplikacjach, takich jak źródła zasilania czy układy filtracji sygnału.

Pytanie 9

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Pastę
B. Olej
C. Proszek
D. Silikon
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 10

Przy wykonywaniu lutowania elementów dyskretnych na płytce PCB powinno się nosić

A. rękawice odporne na wysoką temperaturę
B. fartuch ochronny
C. obuwie ochronne z gumową podeszwą
D. okulary ochronne
Zakładanie rękawic żaroodpornych, butów ochronnych na podeszwie gumowej lub okularów ochronnych, choć w niektórych sytuacjach ma swoje uzasadnienie, nie zapewnia kompleksowej ochrony, jaką oferuje fartuch ochronny. Rękawice żaroodporne są przeznaczone do ochrony rąk przed wysoką temperaturą, co w kontekście lutowania nie jest kluczowe, ponieważ lutowanie wiąże się z precyzyjną pracą narzędziami. Rękawice mogą ograniczać czucie i precyzję, co w przypadku lutowania elementów dyskretnych jest niezwykle istotne. Buty ochronne na podeszwie gumowej mogą chronić stopy przed upadkiem ciężkich przedmiotów, ale nie oferują ochrony odzieży, co czyni je niewystarczającymi w tej konkretnej sytuacji. Okulary ochronne są istotne w kontekście ochrony oczu, lecz nie chronią reszty ciała, co jest kluczowe w przypadku pracy z gorącymi materiałami. Kluczowym błędem w myśleniu jest pomijanie znaczenia kompleksowej ochrony odzieżowej, która powinna obejmować nie tylko konkretne części ciała, ale także całe ubranie, które minimalizuje ryzyko kontaktu z niebezpiecznymi substancjami. W kontekście standardów bezpieczeństwa, takie podejście do ochrony nie spełnia wymagań dotyczących odzieży roboczej określonych w normach BHP.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Rozpoczęcie demontażu elektrozaworu w systemie elektropneumatycznym wymaga najpierw odłączenia

A. napięcia zasilającego
B. przewodów pneumatycznych
C. ciśnienia zasilającego układ
D. przewodów elektrycznych
Odłączenie przewodów pneumatycznych lub elektrycznych przed demontażem elektrozaworu jest niewłaściwym podejściem, ponieważ nie uwzględnia kluczowego aspektu bezpieczeństwa, jakim jest odłączenie napięcia zasilającego. Przewody pneumatyczne, mimo że są istotne w kontekście funkcjonowania układu, nie stanowią bezpośredniego zagrożenia dla zdrowia operatora w kontekście elektryczności. W przypadku odłączenia przewodów elektrycznych, istnieje ryzyko, że demontaż elektrozaworu będzie przeprowadzany w warunkach, gdzie możliwe jest przypadkowe włączenie zasilania, co może prowadzić do poważnych wypadków, w tym porażenia prądem. W przypadku ciśnienia zasilającego, stwierdzenie, że jego odłączenie jest wystarczające, ignoruje fakt, że w układzie elektropneumatycznym, zasilanie elektryczne jest kluczowym czynnikiem w sterowaniu pracą urządzenia. Niezastosowanie się do odpowiednich procedur blokowania zasilania elektrycznego może prowadzić do nieodwracalnych uszkodzeń sprzętu, a także zagrażać bezpieczeństwu ludzi. W praktyce, najlepszym rozwiązaniem jest zawsze stosowanie się do wytycznych producentów urządzeń oraz standardów branżowych, które jednoznacznie wskazują, że pierwszym krokiem przed jakimkolwiek demontażem powinno być odłączenie zasilania elektrycznego. Ignorowanie tego kroku jest typowym błędem myślowym, wynikającym z niedoceniania roli zasilania elektrycznego w funkcjonowaniu układów elektropneumatycznych.

Pytanie 13

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 13,33 A
B. 7,70 A
C. 5,77 A
D. 10,00 A
Błędne odpowiedzi w tym pytaniu wskazują na typowe nieporozumienia dotyczące obliczeń prądu pobieranego przez silnik trójfazowy. Wiele osób może skupić się na niewłaściwych założeniach, takich jak zaniedbanie wpływu współczynnika mocy na całkowitą moc silnika. Na przykład, odpowiedzi takie jak 5,77 A czy 10,00 A mogą sugerować, że obliczenia zostały wykonane bez uwzględnienia istotnych parametrów, takich jak napięcie zasilania czy współczynnik mocy. Często błędne odpowiedzi wynikają z uproszczenia wzoru na moc lub przyjęcia niewłaściwych wartości. Kluczowe jest zrozumienie, że moc czynna, napięcie oraz prąd są ze sobą silnie powiązane i każda zmiana jednego z parametrów wpływa na pozostałe. W praktyce, jeżeli silnik ma niższy współczynnik mocy, to prąd pobierany z sieci będzie wyższy, co nie zostało uwzględnione w niepoprawnych odpowiedziach. Warto pamiętać, że w przypadku obliczeń związanych z energią elektryczną należy zawsze korzystać z odpowiednich wzorów oraz uwzględniać wszelkie istotne zmienne, aby uniknąć błędów, które mogą prowadzić do nieprawidłowego doboru sprzętu czy nieefektywnego działania instalacji elektrycznych. Dlatego tak ważne jest, aby dokładnie analizować wszystkie parametry przed dokonaniem obliczeń.

Pytanie 14

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. redukcji tętnień
B. zmniejszenia składowej stałej
C. zmiany przebiegu jednopulsowego na dwupulsowy
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. średnicy stojana
B. szerokości silnika oraz średnicy wirnika
C. wysokości silnika
D. odległości między osią wału a podstawą uchwytów silnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 23

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. resolver
B. sensor ultradźwiękowy
C. termoelement
D. tachometr
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 24

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. tensometrem
B. hallotronem
C. termistorem
D. pirometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 25

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Pastę
B. Towot
C. Olej
D. Silikon
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. nieprawidłowego kształtu zakuwki
B. odkształcenia nitu
C. pęknięcia powierzchni łba i zakuwki nitu
D. luźnego osadzenia nitu
Luźne osadzenie nitu jest kluczowym problemem, którego identyfikacja jest niezbędna dla zapewnienia trwałości i bezpieczeństwa połączeń nitowanych. Kontrola połączeń nitowanych, przeprowadzona poprzez ostukiwanie młotkiem nitu, pozwala na ocenę jego stabilności w obrębie materiału, z którym jest połączony. Jeśli nit jest luźny, może to prowadzić do osłabienia całej struktury, co jest szczególnie niebezpieczne w konstrukcjach lotniczych oraz budowlanych, gdzie wymagana jest wysoka niezawodność. Przykładem zastosowania tej metody kontroli może być ocena połączeń w kadłubach samolotów, gdzie każda wada może prowadzić do katastrofalnych skutków. W praktyce, jeśli po uderzeniu młotkiem następuje wyraźny dźwięk, może to sugerować luźne osadzenie nitu. Standardy takie jak ISO 13920 definiują wymagania dla jakości i kontroli połączeń, co podkreśla znaczenie skutecznych metod diagnostycznych, jak ta opisana.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. rozmiarem
B. formą
C. poziomem skomplikowania
D. kolejnością montażu
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. oceny stopnia zużycia
B. kontroli czystości paska
C. weryfikacji wymiarów
D. sprawdzenia poziomu naprężenia
Weryfikacja wymiarów, ocena stopnia zużycia oraz kontrola czystości paska są kluczowymi etapami przygotowań do montażu nowego paska klinowego i powinny być wykonywane, aby zapewnić prawidłowe funkcjonowanie przekładni pasowej. Weryfikacja wymiarów polega na sprawdzeniu, czy nowe komponenty są zgodne z wymiarami wymaganymi przez producenta, co jest istotne dla prawidłowego działania układu. Jeśli wymiary są niewłaściwe, może to prowadzić do niewłaściwego dopasowania, co wpływa na efektywność całego systemu. Ocena stopnia zużycia jest również niezwykle istotna; zużyte elementy mogą nie tylko wpływać na sprawność paska, ale również na jego żywotność. W praktyce oznacza to, że mechanicy powinni regularnie monitorować stan przekładni pasowej, aby zminimalizować ryzyko awarii. Kontrola czystości paska jest szczególnie ważna, ponieważ zanieczyszczenia mogą powodować uszkodzenie zarówno paska, jak i kół pasowych. Zanieczyszczenia mogą prowadzić do nadmiernego tarcia, co zwiększa ryzyko przegrzania i uszkodzenia. Dlatego ważne jest, aby każdy z tych kroków był integralną częścią procesu montażu, gdyż pomijanie ich może prowadzić do poważnych problemów eksploatacyjnych i zwiększonej awaryjności urządzeń.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. łożysk tocznych
B. resorów, sprężyn i drążków skrętnych
C. narzędzi do obróbki skrawaniem
D. śrub, nakrętek, podkładek
Wybór łożysk tocznych jako zastosowania stali niskostopowej z dodatkami krzemu, manganu, chromu i wanadu jest błędny, ponieważ łożyska wymagają materiałów o specyficznych właściwościach, takich jak wysoka odporność na ścieranie oraz niska ścieralność, co często osiąga się poprzez zastosowanie stali węglowej lub stali narzędziowej. Ponadto, w przypadku łożysk tocznych, kluczowe jest, aby materiał miał odpowiednią mikrostrukturę, co można osiągnąć poprzez obróbkę cieplną, a nie przez zwykłe dodatki stopowe. Natomiast odpowiedź dotycząca śrub, nakrętek i podkładek, mimo że te elementy również muszą być wytrzymałe, z reguły wykorzystują stal o wyższej zawartości węgla, co zapewnia lepsze właściwości mechaniczne w kontekście złącz. Odpowiedzi sugerujące narzędzia do obróbki skrawaniem są także niepoprawne, ponieważ takie narzędzia wymagają materiałów odpornych na wysokie temperatury i ścieranie, a nie stali niskostopowej, której temperatury pracy są ograniczone. Przykłady tych błędów wskazują na niedostateczne zrozumienie właściwości różnych rodzajów stali oraz ich zastosowań, co prowadzi do niepoprawnych wniosków i wyborów materiałowych w branży inżynieryjnej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.