Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 maja 2025 18:10
  • Data zakończenia: 29 maja 2025 18:37

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Rezystancja przewodnika
B. Gęstość prądu elektrycznego
C. Natężenie prądu elektrycznego
D. Indukcyjność przewodnika
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. ST (Structured Text) - tekst strukturalny
B. FBD (Function Block Diagram) - schemat bloków funkcyjnych
C. IL (Instruction List) - lista instrukcji - lista instrukcji
D. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
Odpowiedź IL (Instruction List) jest jak najbardziej trafna! To jeden z tych języków programowania, które są używane w programowalnych sterownikach logicznych (PLC) i co ważne, jest w formie tekstowej. Zgodnie z normą IEC 61131-3, IL to język niskiego poziomu, przypominający asembler, co pozwala na programowanie sterowników w sposób bardziej zrozumiały dla osób znających tradycyjne języki programowania. Dzięki IL można tworzyć sekwencje instrukcji w prostych linijkach kodu, co na pewno pomoże w optymalizacji czasu działania systemu. Na przykład w automatyce, gdzie każda sekunda ma znaczenie, użycie IL może zmniejszyć opóźnienia w logice sterowania. A znajomość tego języka pozwala też łatwiej współpracować z innymi systemami, które korzystają z niskopoziomowego kodu. To naprawdę przydatna umiejętność w branży.

Pytanie 11

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na pomiar parametrów procesowych prasy
B. na wizualizację przebiegu pracy prasy
C. na załączanie i wyłączanie pracy prasy
D. na odczyt wartości zmierzonych parametrów
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 12

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. zawór z popychaczem.
C. przełącznik obiegu.
D. rozdzielacz czterodrogowy.
Wybór odpowiedzi innej niż zawór z popychaczem może wynikać z nieporozumienia dotyczącego funkcji i wyglądu różnych elementów pneumatycznych. Przełącznik obiegu jest elementem, który służy do kierowania przepływu powietrza, ale nie ma popychacza i działa na innych zasadach. Z kolei rozdzielacz czterodrogowy to bardziej skomplikowane urządzenie, które pozwala na kontrolę kierunku przepływu powietrza w czterech różnych kierunkach, również nie posiada typowego popychacza. Zawór zwrotno-dławiący, z drugiej strony, jest przeznaczony do regulacji przepływu i zapobiega cofaniu się medium, ale również nie jest odpowiedni w kontekście opisanego elementu. Typowym błędem jest mylenie funkcji różnych zaworów i elementów pneumatycznych oraz niedostateczne zwrócenie uwagi na ich specyfikę. W branży pneumatycznej kluczowe jest odpowiednie dobranie elementów do konkretnego zastosowania, co wymaga znajomości ich właściwości i zastosowań. W związku z tym, dokładne zrozumienie każdego z wymienionych elementów oraz ich różnic jest niezbędne, aby uniknąć nieporozumień i błędów w projektowaniu systemów pneumatycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Osoba pracująca przy monitorze komputerowym ma prawo do

A. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
B. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
C. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. jednym kluczem płaskim
C. dwoma kluczami nasadowymi
D. dwoma kluczami płaskimi
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. regulacji ciśnienia
B. przełączania obiegu
C. szybkiego spustu
D. podwójnego sygnału
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Enkoder to urządzenie przetwarzające

A. kąt obrotu na regulowane napięcie stałe
B. prędkość obrotową na impulsy elektryczne
C. kąt obrotu na impulsy elektryczne
D. prędkość obrotową na regulowane napięcie stałe
Enkoder to urządzenie, które przekształca kąt obrotu w impulsy elektryczne, co jest kluczowe w wielu aplikacjach automatyki i robotyki. Przykładami zastosowania enkoderów są systemy napędu w robotach, które muszą precyzyjnie określić położenie swoich kończyn. Działanie enkodera opiera się na zasadzie pomiaru kąta obrotu wału, co pozwala na dokładne śledzenie ruchu. W praktyce, impulsy elektryczne generowane przez enkoder są wykorzystywane przez kontrolery do regulacji prędkości i pozycji napędu. Standardowe normy, takie jak IEC 61131, definiują klasyfikację i wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich niezawodność i interoperacyjność w różnych systemach. Warto również zauważyć, że istnieją różne typy enkoderów, jak inkrementalne i absolutne, które różnią się zasadą działania, ale oba przekształcają kąt obrotu na impulsy elektryczne, co czyni je niezbędnymi w nowoczesnych systemach automatyzacji.

Pytanie 26

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. ferromagnetyki
B. paramagnetyki
C. diamagnetyki
D. antyferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAM
B. SCADA
C. CAD
D. CAE
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody
B. Triaki oraz diaki
C. Triaki
D. Diody i tyrystory
Odpowiedzi zawierające triaki, diaki, czy też wyłącznie diody, nie są poprawne w kontekście budowy półsterowanego mostka prostowniczego. Triaki to elementy, które mogą być używane w układach kontrolujących prąd, jednak nie są one odpowiednie do zastosowania w prostownikach, które wymagają diod dla efektywnej konwersji energii z AC na DC. Użycie diaków w tym kontekście również jest mylące, ponieważ diaki są stosowane głównie do wykrywania i wygaszania napięcia w obwodach, a nie do prostowania prądu. Ponadto, wybór jedynie diod jako odpowiedzi wskazuje na pominięcie kluczowego elementu, jakim są tyrystory, które są niezbędne do regulacji i kontroli energii w półsterowanych mostkach prostowniczych. Często zdarza się, że osoby uczące się o elektronice mogą mylić funkcje tych elementów, co prowadzi do błędnych założeń na temat ich zastosowania. W praktyce, aby prawidłowo wykonać półsterowany mostek prostowniczy, konieczne jest zrozumienie zarówno roli diod, jak i tyrystorów, jako że tylko ich synergiczne działanie pozwala na uzyskanie wydajnego i efektywnego układu. Kluczowe jest, aby projektanci układów zasilania byli świadomi różnic między tymi komponentami oraz ich zastosowania w praktycznych aplikacjach elektrycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Złożonych
B. Uwikłanych
C. Pośrednich
D. Bezpośrednich
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie miękkie
B. Lutowanie twarde
C. Sklejanie
D. Zgrzewanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Płytki
B. Podkładki
C. Zawleczki
D. Uszczelki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.