Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 08:22
  • Data zakończenia: 10 czerwca 2025 08:44

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. tlenek miedzi(II)
B. wodorotlenek miedzi(II)
C. tlenek miedzi(I)
D. wodorotlenek miedzi(I)
Widzę, że wybrałeś jedną z opcji, która nie jest poprawna. Może to wynika z tego, że nie do końca zrozumiałeś, co się dzieje w tych reakcjach chemicznych. Wodorotlenek miedzi(II) (Cu(OH)2) jest rzeczywiście niebieskim osadem z reakcje CuSO4 z NaOH, ale kiedy go podgrzewasz, on się zmienia w tlenek miedzi(II) (CuO), który z kolei jest czarny. Wybór tlenku miedzi(I) (Cu2O) to błąd, bo on powstaje w zupełnie innej reakcji. Z kolei wodorotlenek miedzi(I) (CuOH) też nie jest odpowiedzią, bo nie jest stabilny w normalnych warunkach i nie powstaje w tych reakcjach, co może prowadzić do nieporozumień. Tlenek miedzi(II) jest zdecydowanie bardziej stabilny i powszechnie występuje w chemii. Dobrze byłoby zrozumieć te różnice, bo to pomaga w lepszym interpretowaniu wyników reakcji chemicznych i w ich wykorzystaniu w laboratorium.

Pytanie 2

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, waga, bagietka
B. Zlewka, lejek, statyw, bagietka
C. Zlewka, lejek, trójnóg, tygiel
D. Zlewka, waga, tryskawka, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 3

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. In
B. R
C. W
D. Ex
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 4

Zbiór próbek pierwotnych tworzy próbkę

A. laboratoryjną
B. analityczną
C. jednostkową
D. ogólną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 5

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 12,5%
B. 20%
C. 87,5%
D. 15%
Aby zrozumieć, dlaczego pozostałe odpowiedzi są błędne, należy przyjrzeć się podstawowym zasadom obliczeń związanych z zawartością zanieczyszczeń. Odpowiedzi takie jak 20%, 15% i 87,5% opierają się na nieprawidłowych wyliczeniach lub błędnych założeniach. Przykładowo, jeśli ktoś wyliczałby 20%, mógłby mylnie pomyśleć, że zanieczyszczenia stanowią znacznie większy udział masy początkowej. Może to wynikać z pomyłki w obliczeniach lub braku zrozumienia, że zanieczyszczenia są obliczane na podstawie masy uzyskanego czystego produktu, a nie samej masy początkowej. Odpowiedź 15% również jest wynikiem nieprawidłowego obliczenia. Osoba udzielająca takiej odpowiedzi mogła pomylić się, przyjmując, że zanieczyszczenia to po prostu 15 g z 120 g, co nie uwzględnia odpowiedniego podziału przez masę początkową i pomnożenia przez 100%. Z kolei odpowiedź 87,5% jest szczególnie myląca, ponieważ sugeruje, że niemal cała masa kwasu szczawiowego była zanieczyszczona, co jest niezgodne z danymi przedstawionymi w pytaniu. Takie podejście może prowadzić do dramatycznych nieporozumień w analizie danych chemicznych i w przemyśle, gdzie dokładność pomiarów jest kluczowa. Dlatego ważne jest, aby stosować jednoznaczne metody obliczeń oraz zrozumieć, jakie wartości są istotne w kontekście danej analizy chemicznej.

Pytanie 6

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
B. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
C. Roztwór kwasu siarkowego(VI) o stężeniu 2%
D. Roztwór chlorku potasu o stężeniu 1 mol/dm3
Wybór innych odczynników do potwierdzenia odczynu zasadowego może prowadzić do błędnych interpretacji. Roztwór chlorku potasu o stężeniu 1 mol/dm3 jest związkiem chemicznym, który nie wpływa na pH roztworu, a raczej jest soli elektrolitowej, która rozpuszcza się w wodzie, tworząc neutralny roztwór. To może wprowadzać w błąd, ponieważ nie dostarcza informacji o odczynie roztworu, a jedynie wpływa na przewodność elektryczną. Z kolei roztwór kwasu siarkowego(VI) o stężeniu 2% jest kwasem, który wprowadza do roztworu jony H+, co skutkuje obniżeniem pH, a nie jego wzrostem. Użycie tego odczynnika byłoby całkowicie nieadekwatne w kontekście potwierdzania odczynu zasadowego. Natomiast roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3, chociaż rzeczywiście jest substancją zasadową, nie jest wskaźnikiem, a raczej reagentem, który sam w sobie może zmieniać pH roztworu, co nie jest celem, gdy chcemy jedynie zidentyfikować odczyn. W praktyce stosowanie niewłaściwych odczynników do wykrywania pH może prowadzić do niepoprawnych wyników analizy, co jest szczególnie istotne w kontekście laboratoryjnym, gdzie precyzja i dokładność są kluczowe dla wiarygodności wyników.

Pytanie 7

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Szczelnie zamknięte butelki z ciemnego szkła
B. Aluminiowy termos laboratoryjny
C. Metalową puszkę bez wieczka
D. Otwarty plastikowy pojemnik
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 8

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. destylowanej
B. demineralizowanej
C. redestylowanej
D. mineralizowanej
Woda mineralizowana to woda, która zawiera rozpuszczone minerały, takie jak wapń, magnez czy potas. Jej stosowanie w laboratoriach chemicznych jest nieodpowiednie, ponieważ te minerały mogą wprowadzać zakłócenia w reakcjach chemicznych oraz analizach, prowadząc do błędnych wyników. Woda redestylowana nie jest powszechnie używana jako termin w laboratoriach; destylacja jest procesem polegającym na odparowaniu cieczy i skropleniu jej pary, co może usunąć zanieczyszczenia, ale nie jest to proces wymiany jonów, który koncentruje się na eliminacji soli. Destylowana woda, choć czysta, może nie spełniać norm jakości demineralizowanej, ponieważ nie do końca eliminuje wszystkie rozpuszczone substancje chemiczne. Typowym błędem jest mylenie procesu destylacji z demineralizacją, co prowadzi do niewłaściwego doboru wody do eksperymentów. W laboratorium kluczowe jest stosowanie wody o odpowiednim stopniu czystości, a demineralizowana woda jest standardem, który zapewnia powtarzalność i precyzję wyników, co jest niezbędne w badaniach naukowych.

Pytanie 9

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
B. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
C. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
D. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 10

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. krystalizację
C. resublimację
D. ługowanie
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.

Pytanie 11

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. zimno.
B. wylew.
C. gorąco.
D. wlew.
Wybór odpowiedzi 'wlew' jest błędny, ponieważ w kontekście kalibracji pipet nie odnosi się do żadnej standardowej praktyki. Termin 'wlew' sugeruje czynność, a nie precyzyjną miarę objętości, co prowadzi do mylnego wniosku. Podobnie, odpowiedzi 'zimno' i 'gorąco' są również niepoprawne, gdyż odnoszą się do temperatur, które nie mają związku z kalibracją pipet. Kalibracja dotyczy objętości, a nie temperatury cieczy dozowanej przez pipecie. Błąd w myśleniu polega na tym, że użytkownicy mogą nie zrozumieć podstawowych koncepcji związanych z pomiarem i dozowaniem cieczy. W rzeczywistości, pipety są kalibrowane w oparciu o specyfikacje dotyczące objętości, co jest kluczowe dla zapewnienia dokładności i precyzji w pomiarach laboratoryjnych. Nieprawidłowe interpretacje takich terminów mogą prowadzić do poważnych błędów w badaniach, co wpływa na wiarygodność wyników. Dlatego istotne jest, aby pracownicy laboratoriów dobrze rozumieli zasady kalibracji i jej wpływ na jakość rezultatu, a także stosowali się do wytycznych podanych w normach branżowych.

Pytanie 12

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. fenoloftaleiny
B. AgNO3
C. oranżu metylowego
D. BaCl2
Fenoloftaleina to wskaźnik pH, ale niestety nie nadaje się do wykrywania siarczanów. Dlaczego? Bo zmienia kolor w zależności od kwasowości roztworu, ale nie reaguje z jonami siarczanowymi. Można się łatwo pomylić, jeśli się jej używa, bo ona tylko sygnalizuje zmianę pH, a to nie jest to, co potrzebujemy przy analizie siarczanów. Z drugiej strony, AgNO3, czyli azotan srebra, też nie jest właściwy do wykrywania siarczanów, bo tworzy osad z jonami chlorkowymi, a nie siarczanowymi. Używanie takich reagentów, jak AgNO3, może prowadzić do błędnych wniosków o obecności siarczanów, więc raczej tego unikaj. Oranż metylowy to kolejny wskaźnik pH, ale zmienia kolor w zakresie 3.1-4.4, co też się nie przyda do wykrywania siarczanów. Jak się robi analizę chemiczną, trzeba dokładnie rozumieć właściwości reagentów, bo różne błędy mogą się przytrafić w interpretacji wyników. W skrócie, lepiej używać odpowiednich reagentów, jak BaCl2, żeby mieć pewność, że wyniki będą wiarygodne.

Pytanie 13

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie w temperaturze maksymalnej +4°C.
B. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
C. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
D. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 14

Przedstawiony piktogram powinien być zamieszczony na butelce zawierającej

Ilustracja do pytania
A. perhydrol.
B. azotan(V) rtęci.
C. siarczan(VI) sodu.
D. chlorek baru.
Chociaż chlorek baru, azotan(V) rtęci oraz siarczan(VI) sodu są związkami chemicznymi, które również mogą być używane w różnych procesach przemysłowych i laboratoryjnych, nie są one klasyfikowane jako substancje żrące w standardowych warunkach. Chlorek baru, używany często w przemyśle chemicznym, ma swoje zastosowania, jednak jego oznakowanie nie wymaga piktogramu korozji, ponieważ nie wywołuje poważnych uszkodzeń tkanek. Z kolei azotan(V) rtęci, mimo że jest substancją niebezpieczną, nie należy do grupy substancji żrących, ale raczej toksycznych i mutagenicznych, co może prowadzić do mylnej interpretacji jego zagrożeń. Siarczan(VI) sodu jest uznawany za substancję stosunkowo bezpieczną, zazwyczaj oznaczaną jako niegroźną. Typowym błędem myślowym jest pomylenie różnych kategorii zagrożeń chemicznych oraz nieodpowiednie przypisanie piktogramów do substancji, które ich nie wymagają. Właściwe zrozumienie klasyfikacji substancji chemicznych jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach oraz w przemyśle. Użytkownicy powinni być dobrze poinformowani o tym, jakie oznakowanie jest wymagane i zgodne z międzynarodowymi standardami, aby uniknąć niebezpiecznych sytuacji i wypadków.

Pytanie 15

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,15 cm3
B. 2,50 cm3
C. 2,52 cm3
D. 2,13 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 16

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
B. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
C. CaCO3 → CaO + CO2
D. 2 KMnO4 → K2MnO4 + MnO2 + O2
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 17

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. demineralizacji
B. filtrowania
C. odparowywania
D. destylacji
Sączenie, odparowanie i demineralizacja to metody, które mają swoje zastosowania, jednak nie są odpowiednie do regeneracji rozpuszczalników organicznych. Sączenie to fizyczny proces separacji ciał stałych od cieczy, wykorzystywany głównie w filtracji, a nie w przypadku substancji rozpuszczalnych. Użycie sączenia do regeneracji rozpuszczalników byłoby nieefektywne, ponieważ nie pozwala na odzyskiwanie cieczy w formie czystej. Odparowanie, z kolei, polega na usuwaniu cieczy poprzez podgrzewanie, co może prowadzić do utraty części rozpuszczalnika i jego nieodwracalnego zniszczenia, co jest sprzeczne z ideą regeneracji. Wreszcie, demineralizacja dotyczy usuwania soli i innych minerałów z wody i nie ma zastosowania w kontekście rozpuszczalników organicznych. Często popełnianym błędem jest mylenie różnych metod separacji i regeneracji, co prowadzi do wniosków, które nie są zgodne z charakterystyką danego procesu chemicznego. Kluczowe w regeneracji rozpuszczalników organicznych jest zrozumienie, iż efektywne odzyskiwanie zależy od właściwego doboru metod, a destylacja pozostaje najskuteczniejszą z nich.

Pytanie 18

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 34,20%
B. 65,80%
C. 18,33%
D. 81,77%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 19

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 1,5635 g
B. 0,3125 g
C. 0,1563 g
D. 3,1250 g
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach związanych z masą gazu w warunkach normalnych. Wiele z podanych odpowiedzi może sugerować błędne podejście do obliczeń ilości moli lub nieprawidłowe konwersje jednostek. Na przykład, jeżeli ktoś obliczyłby masę gazu w oparciu o nieprawidłową objętość molową, np. 1 mol zajmujący objętość 1 litra, uzyskane wyniki byłyby znacznie niższe od rzeczywistych. Często także pomijana jest konwersja objętości z mililitrów na litry, co może prowadzić do znacznych rozbieżności. Innym częstym błędem jest niewłaściwe zastosowanie wzoru na masę, co prowadzi do nieadekwatnych wartości. W przypadku obliczeń chemicznych, kluczowe jest zrozumienie, że masa gazu jest ściśle związana z jego objętością oraz warunkami, w jakich się znajduje. Standardy laboratoryjne, takie jak korzystanie z odpowiednich objętości molowych i precyzyjnych pomiarów, są fundamentalne dla uzyskiwania wiarygodnych rezultatów. Praktyka ta jest niezbędna w codziennej pracy chemików, gdzie jakiekolwiek odstępstwo od norm może prowadzić do błędnych wyników oraz zafałszowania danych eksperymentalnych.

Pytanie 20

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. kwas fluorowodorowy
B. wodorotlenek sodu
C. glicerynę
D. wodorotlenek potasu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 21

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. wtórną
B. analityczną
C. średnią
D. ogólną
Wybór odpowiedzi średnia może prowadzić do nieporozumienia dotyczącego natury próbek w analizie materiałów. Średnia w kontekście próbki odnosi się do statystycznego pojęcia, które opisuje wartość centralną zbioru danych, a nie do charakterystyki samej próbki. Użycie tego terminu sugeruje, że próbki pierwotne mogłyby być traktowane jak dane w analizach statystycznych, co jest błędnym podejściem w kontekście prób materiałowych, ponieważ nie każda próbka, z której wyciąga się średnią, jest reprezentatywna dla całej partii. Odpowiedź analityczna odnosi się do metod analizy i może wprowadzać w błąd, ponieważ nie definiuje samego zbioru próbek, lecz metodykę analizy. Próbka analityczna to zazwyczaj ta, która jest używana w konkretnych testach analitycznych, ale nie oddaje całej partii materiału. Przykład zastosowania próbek wtórnych również nie odpowiada na stawiane pytanie, gdyż próbki wtórne są przygotowywane z próbek pierwotnych i nie są bezpośrednio związane z reprezentatywnością całej partii. Często błędne rozumienie terminów związanych z próbkowaniem prowadzi do niewłaściwych wniosków w kontekście badań, co w konsekwencji może skutkować błędnymi decyzjami w zakresie jakości materiałów. Kluczowym aspektem w tej dziedzinie jest zrozumienie, że próbka ogólna jest niezbędną podstawą do uzyskiwania wiarygodnych wyników w kontekście całej partii materiału, a nie tylko jej fragmentów.

Pytanie 22

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 1,4,5
B. 1,2,4
C. 4,5,6
D. 1,2,3
Jak wybrałeś niepoprawną odpowiedź, to pewnie masz jakieś niejasności związane z tym, jak działają zestawy do sączenia pod próżnią. Lejek z długą nóżką i kolba okrągłodenne w odpowiedziach pokazują, że coś tu poszło nie tak, bo ich funkcje nie pasują do tego, co chcemy osiągnąć. Lejek z długą nóżką, mimo że jest używany w różnych sytuacjach w laboratoriach, nie jest kluczowy do filtracji pod próżnią, bo jego kształt nie sprzyja wytwarzaniu próżni. Co do kolby okrągłodennej, to okej w wielu reakcjach, ale nie spełnia roli naczynia dla filtratu w tym kontekście. Zdarza się też, że nie doceniamy kolby ssawkowej, a to ona jest naprawdę niezbędna w tym procesie. Jej brak może prowadzić do nieefektywnej separacji substancji. Zrozumienie tych podstawowych zasad i dobór właściwych narzędzi to klucz do sukcesu w chemicznych labach. Wybór niewłaściwych elementów może spowodować problemy i zanieczyszczenia próbek. Warto mieć na uwadze te rzeczy, żeby w przyszłości nie popełniać podobnych błędów.

Pytanie 23

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 1,0
B. 0,4
C. 0,6
D. 0,8
Wybór odpowiedzi, który nie uwzględnia właściwych proporcji reagentów w reakcji, prowadzi do błędnych wniosków. W przypadku reakcji Zn + Br2 → ZnBr2 należy zaznaczyć, że reakcja zachodzi w idealnych warunkach stechiometrycznych, w których reagenty są w równych ilościach molowych. Osoby, które odpowiedziały inaczej, często popełniają błąd w obliczeniach molowych lub mylą się w ocenie, który reagent jest ograniczający. Warto zwrócić uwagę, że jeśli reagent jest w nadmiarze, to nie wpływa na stopień przereagowania reagentu ograniczającego. Dlatego też, niezależnie od ilości bromu, cynk w tej reakcji ogranicza, co oznacza, że tylko część bromu zareaguje. Obliczenia powinny bazować na masach atomowych oraz na przeliczeniu ich na mole, co jest kluczowym elementem analizy chemicznej. Zazwyczaj błędy te wynikają z zbyt ogólnego podejścia do kwestii stechiometrii, a także braku zrozumienia, jak molowość reagentów wpływa na wynik reakcji. Aby zminimalizować takie błędy, ważne jest praktykowanie obliczeń stechiometrycznych oraz znajomość zasad dotyczących ilości molowych reagentów i ich wpływu na reakcję. Wiedza ta jest fundamentalna, ponieważ w przemyśle chemicznym należy precyzyjnie kontrolować proporcje reagentów, aby zapewnić efektywność procesów chemicznych.

Pytanie 24

Analiza technicznego kwasu solnego dała następujące wyniki: 30% HCl, 0,008% H2SO4, 0,04% Fe.
Korzystając z zamieszczonej tabeli wymagań, określ gatunek kwasu, pamiętając, że decyduje o nim najgorszy wskaźnik.

Wymagania chemiczne dotyczące kwasu siarkowego
WymaganiaGatunki
IIIIIIIV
Chlorowodór, %> 33> 29> 28> 27
Kwas siarkowy(VI) w przel. na SO42-, %< 0,009< 0,5< 1,6< 1,8
Żelazo (Fe3+), %< 0,005< 0,03< 0,03< 0,05

A. III
B. I
C. IV
D. II
Wybór innego gatunku kwasu jest wynikiem nieprawidłowej analizy danych dotyczących zawartości składników. Na przykład, jeżeli ktoś wybrał gatunek III, może pomyśleć, że zawartość HCl decyduje o gatunku, co jest błędnym podejściem. Klasyfikacja kwasów nie opiera się na najwyższej zawartości HCl, ale na najgorszym wskaźniku, którym w tej sytuacji jest zawartość żelaza. Gatunek III dopuszcza znacznie niższe wartości dla żelaza, co dyskwalifikuje tę odpowiedź, ponieważ obecność 0,04% Fe3+ znacznie przekracza dopuszczalne granice tego gatunku. Ponadto, wybór gatunku II lub I również opiera się na błędnym zrozumieniu norm, które wymagają, by wszystkie wskaźniki były w granicach określonych dla danego gatunku. W praktyce, zrozumienie, że najgorszy wskaźnik definiuje gatunek, jest kluczowe dla prawidłowej klasyfikacji. Ignorowanie tego zasady prowadzi do wyborów, które mogą skutkować niewłaściwym zastosowaniem kwasów w przemyśle chemicznym, gdzie precyzyjne klasyfikacje są niezbędne do zapewnienia bezpieczeństwa i zgodności z normami. Warto podkreślić, że w przemyśle chemicznym, gdzie stosuje się różne gatunki kwasów, kluczowe jest zrozumienie zasad klasyfikacji, aby uniknąć potencjalnych ryzyk związanych z ich używaniem.

Pytanie 25

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
B. Niska wrażliwość na zmiany temperatury
C. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
D. Przepuszczalność promieniowania ultrafioletowego
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 26

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. galaretowatych
B. grubokrystalicznych
C. drobnokrystalicznych
D. serowatych
Sączki o mniejszych porach służą do filtrowania substancji, które mają specyficzne właściwości, dlatego odpowiedzi takie jak galaretowate, serowate czy grubokrystaliczne są niepoprawne. Galaretowate osady charakteryzują się wysoką zawartością wody oraz żelatyny i są zazwyczaj trudniejsze do sączenia, ponieważ ich struktura jest bardziej miękka i elastyczna, co sprawia, że filtracja może prowadzić do zatykania porów sączków. Ponadto, serowate osady mają tendencję do tworzenia większych cząstek, co może skutkować ich zatrzymywaniem w większych porach, a niekoniecznie w tych najmniejszych. Grubokrystaliczne osady to kolejne zjawisko, które nie znajduje zastosowania w kontekście małych porów, ponieważ ich wielkość znacznie przekracza zdolności filtracyjne twardych sączków. Wybór odpowiedniego sączka jest kluczowy w procesach filtracji, a błędne założenia dotyczące rodzaju osadów mogą prowadzić do nieefektywnego oczyszczania oraz zanieczyszczenia końcowego produktu. Dlatego ważne jest, aby dobrze zrozumieć właściwości filtrów i osadów, aby uniknąć typowych błędów w doborze materiałów filtracyjnych.

Pytanie 27

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 5,30 mol/dm3
B. 6,30 mol/dm3
C. 3,60 mol/dm3
D. 3,49 mol/dm3
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia procesu obliczania stężenia molowego i roli gęstości roztworu. Na przykład, odpowiedzi sugerujące zbyt wysokie stężenia molowe mogą być wynikiem braku uwzględnienia objętości roztworu. Kluczowym krokiem w obliczeniach jest zrozumienie, że stężenie molowe definiuje ilość moli substancji w jednostce objętości roztworu. W przypadku roztworu 20% kwasu azotowego(V) istotne jest, aby poprawnie obliczyć masę kwasu w roztworze oraz odpowiednią objętość tego roztworu, której wartość można uzyskać poprzez podzielenie masy roztworu przez jego gęstość. Pomijanie tego kroku prowadzi do błędnych wniosków. Na przykład, jeśli ktoś obliczy masę 20 g kwasu, ale błędnie przyjmie objętość roztworu jako 1 dm³, uzyskałby stężenie molowe znacznie zawyżone, co nie ma odzwierciedlenia w rzeczywistości. Dodatkowo, przy obliczeniach warto pamiętać o odpowiednich jednostkach; każdy etap obliczeń powinien być dokładnie sprawdzany pod kątem jednostek, aby uniknąć pomyłek. W kontekście praktycznym, znajomość poprawnych metod obliczeniowych jest niezbędna w laboratoriach chemicznych, gdzie precyzyjne stężenia mają bezpośredni wpływ na wyniki eksperymentów, a błędy mogą prowadzić do niepoprawnych wyników analitycznych.

Pytanie 28

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
B. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
C. umytych wodorotlenkiem sodu
D. sterylnych
Pojemniki umyte wodorotlenkiem sodu nie są odpowiednie do pobierania próbek wody przeznaczonych do badań mikrobiologicznych, gdyż ich użycie może wprowadzać substancje chemiczne, które mogą wpływać na organizmy mikrobiologiczne w próbce. W wyniku kontaktu z wodorotlenkiem sodu, nie tylko może dojść do zniekształcenia wyników badań, ale także do zniszczenia niektórych gatunków mikroorganizmów. Umieszczanie wody w butelkach wypłukanych po niegazowanej wodzie mineralnej jest również niewłaściwe, gdyż taka woda może zawierać różnorodne mikroorganizmy, które z kolei mogą zafałszować analizowane wyniki. Używanie butelek zanurzonych w alkoholu etylowym także nie jest zalecane, ponieważ alkohol może zabijać mikroorganizmy, co może prowadzić do niepełnych lub błędnych wyników badań. W mikrobiologii, kluczowe jest, aby próbki były jak najbardziej reprezentatywne dla badanego środowiska, a jakiekolwiek nieodpowiednie praktyki przy ich pobieraniu mogą prowadzić do poważnych konsekwencji, w tym błędnej oceny jakości wody. Zatem, aby zapewnić rzetelność wyników, niezbędne jest korzystanie wyłącznie ze sterylnych butelek. Często błędne podejścia wynikają z niewłaściwego zrozumienia znaczenia czystości w kontekście badań mikrobiologicznych oraz z braku wiedzy na temat procedur i norm dotyczących pobierania próbek.

Pytanie 29

50 cm3 alkoholu etylowego zmieszano w kolbie miarowej z 50 cm3 wody. W wyniku zjawiska kontrakcji objętość otrzymanego roztworu wyniosła 97,5 cm3. Ile wynosi stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniu i stężenie procentowe roztworu alkoholu (v/v) po uzupełnieniu kolby wodą do 100 cm3?

Stężenie procentowe (v/v) roztworu alkoholu w wodzie po zmieszaniuStężenie procentowe (v/v) roztworu alkoholu po uzupełnieniu kolby wodą do 100 cm3
A.49,2%48,0%
B.50,0%49,7%
C.51,3%,50,0%
D.53,3%50,2%

A. A.
B. D.
C. B.
D. C.
Wybór innej odpowiedzi niż C może świadczyć o niepełnym zrozumieniu zagadnienia dotyczącego stężenia procentowego roztworu. Często popełnianym błędem jest nieprawidłowe obliczenie objętości końcowej roztworu. W przypadku, gdy 50 cm³ alkoholu etylowego zmieszano z 50 cm³ wody, oczekiwanie, że objętość roztworu wyniesie 100 cm³, jest błędne. W rzeczywistości zjawisko kontrakcji sprawia, że objętość końcowa wynosi 97,5 cm³. Niezrozumienie tego zjawiska może prowadzić do fałszywych założeń, jakoby stężenie alkoholu w roztworze wynosiło 50%, co jest wynikiem mylnego przeliczenia. Ponadto, błędna interpretacja pojęcia stężenia procentowego (v/v) może skutkować pomyleniem tego wskaźnika z innymi rodzajami stężeń, takimi jak stężenie masowe. Kluczowym elementem w obliczeniach chemicznych jest uwzględnienie rzeczywistych objętości roztworów, które mogą się różnić od sumy objętości składników z powodu interakcji międzycząsteczkowych. Dlatego ważne jest, aby przed przystąpieniem do obliczeń zawsze uwzględniać zjawiska fizykochemiczne, które mogą wpływać na wyniki. Zrozumienie tych podstawowych zasad jest istotne w praktyce laboratoryjnej, by uniknąć błędów w przygotowywaniu roztworów do analiz chemicznych.

Pytanie 30

Na podstawie danych w tabeli określ, dla oznaczania którego parametru zalecaną metodą jest chromatografia jonowa.

ParametrMetoda podstawowa
pHmetoda potencjometryczna, kalibracja przy zastosowaniu minimum dwóch wzorców o pH zależnym od wartości oczekiwanych w próbkach wody
azotany(V)chromatografia jonowa
fosforany(V)spektrofotometria
Na, K, Ca, MgAAS (spektrometria absorpcji atomowej)
zasadowośćmiareczkowanie wobec fenoloftaleiny oraz oranżu metylowego
tlen rozpuszczony, BZT₅metoda potencjometryczna

A. PO43-
B. BZT5
C. NO3-
D. pH
Zgodnie z wynikami przedstawionymi w tabeli, chromatografia jonowa jest metodą analityczną szczególnie efektywną dla oznaczania azotanów(V), takich jak NO3-. Ta technika pozwala na wysoce selektywne i dokładne rozdzielenie anionów w roztworach, co jest niezbędne w analizach chemicznych dotyczących jakości wody i gleby. Chromatografia jonowa jest szczególnie polecana w standardach analitycznych, takich jak EPA 300.0, które dotyczą oznaczania anionów w wodach gruntowych i powierzchniowych. Dzięki tej metodzie można uzyskać bardzo niskie limity wykrywalności, co jest istotne w kontekście przepisów dotyczących ochrony środowiska. W praktyce, dzięki chromatografii jonowej, można szybko i efektywnie ocenić stężenia NO3- w próbkach, co ma kluczowe znaczenie dla monitorowania zanieczyszczeń i zarządzania jakością wód.

Pytanie 31

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
C. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
D. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 32

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. ceramiki
B. polietylenu wysokiej gęstości (HDPE)
C. aluminium
D. szkła sodowego
Wybór szkła sodowego jako materiału na butelki do pobierania próbek wody przeznaczonej do oznaczania metali ciężkich to dość częsty błąd, wynikający z przekonania, że szkło jest zupełnie obojętne chemicznie. Niestety, szkło sodowe może uwalniać do badanej próbki niektóre pierwiastki, jak sód, wapń czy ołów, zwłaszcza jeśli próbka jest lekko kwaśna lub przechowywana przez dłuższy czas. Może też dochodzić do adsorpcji jonów metali na ściankach butelki, co skutkuje fałszywie zaniżonymi wynikami. Aluminium z kolei jest materiałem wysoce reaktywnym – nawet cienka warstwa tlenków nie gwarantuje pełnej ochrony próbki. Aluminium potrafi ulegać korozji w kontakcie z wodą, a już zwłaszcza z próbkami zakwaszonymi (co często się stosuje, by ustabilizować metale). Przez to do próbki mogą przedostawać się dodatkowe jony aluminium, a inne metale mogą też być adsorbowane przez ścianki. Butelki ceramiczne to raczej ciekawostka niż praktyka laboratoryjna. Ceramika jest porowata, trudna do sterylizacji, a jej powierzchnia może adsorbować jony metali lub je wymieniać z próbką, co zupełnie dyskwalifikuje ją w precyzyjnych analizach śladowych. W praktyce najlepsze efekty daje stosowanie tworzyw sztucznych odpornych chemicznie, takich jak HDPE – wszystkie inne materiały niosą spore ryzyko zafałszowania próbki na etapie pobierania lub transportu. To właśnie te niuanse decydują o wiarygodności wyników, a nie tylko wygoda czy dostępność pojemników.

Pytanie 33

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 1000 g
C. 2500 g
D. 200 g
Wybór innych mas próbki, takich jak 200 g, 2500 g czy 1000 g, może wynikać z nieporozumienia dotyczącego związku między wielkością próbki a jej reprezentatywnością. Większość użytkowników może sądzić, że większa masa próbki przyczyni się do lepszej dokładności analizy. Jednak w kontekście wielkości ziarna poniżej 1 mm, stosowanie większej masy może prowadzić do problemów z homogenizacją próbki oraz zwiększać ryzyko zanieczyszczenia. Zgodnie z dobrymi praktykami, przy małych ziarnach kluczowe jest, aby masa próbki była odpowiednia do ich właściwości fizycznych. W rzeczywistości, większa masa niekoniecznie poprawia jakość analizy, a może nawet wprowadzić dodatkowe błędy. W wielu przypadkach, aby uniknąć tzw. efektu selektywnego, zaleca się stosowanie minimalnych mas próbki określonych w standardach, które zapewniają odpowiednią reprezentatywność. Na przykład, w badaniach materiałów sypkich, zwłaszcza w kontekście przemysłu chemicznego, zbyt duża masa próbki może generować dodatkowe wydatki i komplikacje w przygotowaniu, co może prowadzić do nieefektywności w procesie analitycznym. Z tego powodu, kluczowe jest, aby przestrzegać wskazanych norm dotyczących masy próbki, aby uzyskać wiarygodne i powtarzalne wyniki analizy.

Pytanie 34

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,025 g
B. 2,510 g
C. 0,251 g
D. 0,215 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 35

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
B. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
C. BaCl2 + H2SO4 → BaSO4 + 2HCl
D. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 36

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. gazy łatwopalne, kategoria zagrożenia 1.
C. gazy utleniające, kategoria zagrożenia 1.
D. sprężone gazy pod ciśnieniem.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 37

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
C. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
D. rozpuszczanie jodku potasu w wodzie
Rozpuszczanie jodku potasu w wodzie, czy azotanu(V) amonu, to przykłady procesów endotermicznych. To znaczy, że wciągają one ciepło z otoczenia. W przypadku jodku potasu, to, że energia potrzebna do przełamania wiązań soli jest większa, powoduje, że temperatura spada. Podobnie jest z azotanem, gdzie też temperatura roztworu spada, bo pochłania energię. Czasem to może być mylące, bo reakcje wyglądają intensywnie, ale ich charakter energetyczny jest inny. Jeśli chodzi o rozcieńczanie stężonych roztworów, takich jak tiosiarczan(VI) sodu, to ten proces nie jest egzotermiczny i nie generuje za dużo energii. W przemyśle chemicznym ważne jest, żeby rozumieć, co się dzieje z energią w reakcjach chemicznych, żeby móc przewidywać i kontrolować, co się stanie. Brak wiedzy o egzotermicznych i endotermicznych procesach może prowadzić do niebezpieczeństw w laboratoriach, gdzie nieodpowiednie rozcieńczanie chemikaliów może skutkować niekontrolowanymi reakcjami. Dlatego ważne, żeby edukować się w kwestiach bezpieczeństwa chemicznego.

Pytanie 38

Gdzie należy przechowywać cyjanek potasu KCN?

A. w stalowej szafie, zamkniętej na klucz
B. w pojemniku, z dala od źródeł ciepła
C. w warunkach chłodniczych
D. w szczelnie zamkniętym eksykatorze
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 39

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości żelaza.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem zawartości metali ciężkich.
D. nie spełnia wymagań pod względem pH i zawartości jodanów.
Wydaje mi się, że w przypadku odpowiedzi, które mówią, że jodek potasu cz.d.a. nie spełnia norm, można łatwo popaść w błąd. Każdy z wymienionych parametrów jakości, jak pH czy zawartość metali ciężkich, musiałby być poniżej normy, a w danych, które analizowaliśmy, tak nie było. Często zdarza się, że ktoś skupia się na jednym parametrze, a nie zwraca uwagi na to, że inne też są okej. To prowadzi do mylnych wniosków – ważne jest, żeby oceniać wszystko razem, a nie na zasadzie pojedynczych wartości. W branży chemicznej to kluczowe, żeby rozumieć, że kontrola jakości to nie tylko jeden wskaźnik. Ignorowanie dobrych wyników na korzyść złych może wynikać z tego, że ktoś nie do końca rozumie normy jakościowe. Bez uwzględnienia całości analizy możemy podejmować złe decyzje dotyczące jakości produktów chemicznych, co może w późniejszym czasie wpłynąć na ich wykorzystanie w farmacji, żywności czy kosmetykach, gdzie normy są niezwykle istotne.

Pytanie 40

Ile masy kwasu mrówkowego jest wymagane do uzyskania 11,2 dm3 tlenku węgla(II) (w warunkach normalnych) w procesie odwodnienia kwasu mrówkowego (M = 46 g/mol) za pomocą kwasu siarkowego(VI), zakładając efektywność procesu na poziomie 70%?

A. 16,1 g
B. 18,6 g
C. 23,1 g
D. 32,9 g
Podczas analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych koncepcji dotyczących stoichiometrii i obliczeń chemicznych. Po pierwsze, każdy obliczenia związane z ilościami reagentów w reakcjach chemicznych powinny opierać się na prawidłowym zrozumieniu stochiometrii, a nie intuicji. Nie uwzględniając objętości gazu w odniesieniu do moli, można dojść do błędnych wniosków, które prowadzą do zaniżenia lub zawyżenia wymaganej ilości substancji. Na przykład, wybór odpowiedzi 18,6 g może wynikać z nieprawidłowego założenia, że tylko część kwasu mrówkowego jest potrzebna, bez uwzględnienia jego stężenia w stosunku do ilości tlenku węgla(II), który chcemy otrzymać. Z kolei 16,1 g może być efektem obliczeń opartych na błędnym dobieraniu jednostek lub pominięciu wydajności procesów chemicznych. Z drugiej strony, odpowiedź 23,1 g może wynikać z założenia, że wydajność reakcji jest 100%, co jest rzadko spotykanym przypadkiem w praktyce laboratoryjnej i przemysłowej. W rzeczywistości, procesy chemiczne rzadko osiągają pełną wydajność, co powinno być zawsze brane pod uwagę w obliczeniach. Błąd w tych odpowiedziach pokazuje, jak ważne jest zrozumienie nie tylko samej reakcji chemicznej, ale także parametrów takich jak wydajność, molowość oraz objętość gazów w warunkach normalnych. Aby uniknąć takich błędów, istotne jest stosowanie się do ustalonych metod obliczeniowych i dokładne analizowanie dostępnych danych.