Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 16:54
  • Data zakończenia: 15 kwietnia 2025 17:36

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W ciągu niwelacyjnym teoretyczna suma różnic wysokości, mająca wartość 0 m, jest uzyskiwana w przypadku

A. dwustronnie nawiązanego.
B. zamkniętego.
C. otwartego.
D. jednostronnie nawiązanego.
W przypadku niwelacji zamkniętej teoretyczna suma różnic wysokości wynosi 0 m, co oznacza, że po wykonaniu pomiarów w terenie i powrocie do punktu wyjścia, uzyskujemy taki sam poziom odniesienia. Taki układ pomiarowy minimalizuje błędy systematyczne i pozwala na dokładne określenie różnic wysokości między punktami. W praktyce niwelacja zamknięta jest stosowana w sytuacjach, gdzie wymagane są wysokie standardy dokładności, na przykład przy budowie infrastruktury drogowej, mostów czy budynków. W standardach branżowych, takich jak normy PN-EN 17123, podkreśla się znaczenie niwelacji zamkniętej jako metody o niskiej podatności na błędy pomiarowe. Wiedza na temat tej metody jest kluczowa dla inżynierów i geodetów, ponieważ pozwala na uzyskanie wiarygodnych pomiarów, co jest niezbędne w procesie projektowania i realizacji inwestycji budowlanych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. dalmiarze elektromagnetyczne
B. węgielnice pryzmatyczne
C. piony optyczne
D. łaty niwelacyjne
Dalmierze elektromagnetyczne, choć są użyteczne w pomiarach odległości, nie służą do rzutowania punktów na prostą. Ich głównym zastosowaniem jest pomiar dystansów z wykorzystaniem sygnałów elektromagnetycznych, co może być przydatne w różnych dziedzinach, ale nie zastępuje węgielnic pryzmatycznych w kontekście rzutowania. Łaty niwelacyjne, z kolei, służą do odczytywania różnic wysokości i są kluczowe w procesach niwelacji terenu. Nie są one zaprojektowane do rzutowania punktów na prostą, a ich główną funkcją jest pomiar i przeniesienie różnic wysokości. Piony optyczne, choć przydatne w ustalaniu pionu w budownictwie, nie mają zastosowania w rzutowaniu punktów na prostą, gdyż ich zadaniem jest jedynie pomoc w wyznaczaniu linii pionowej. Błędem myślowym jest założenie, że narzędzia te mogą pełnić funkcje węgielnic pryzmatycznych, podczas gdy każde z nich ma swoje specyficzne zastosowanie i ograniczenia. Zrozumienie różnic pomiędzy tymi narzędziami jest kluczowe dla efektywnego planowania prac geodezyjnych i budowlanych.

Pytanie 10

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. zasadniczej
B. inwentaryzacyjnej
C. branżowej
D. topograficznej
Odpowiedź "zasadnicza" jest poprawna, ponieważ projekt zagospodarowania działki lub terenu należy sporządzić na podstawie mapy zasadniczej, która jest oficjalnym dokumentem zawierającym szczegółowe informacje o terenach, w tym granice działek, infrastrukturę oraz istniejące zagospodarowanie. Mapa zasadnicza jest kluczowym narzędziem w procesie planowania przestrzennego, ponieważ odzwierciedla aktualny stan zagospodarowania przestrzennego oraz umożliwia analizę i projektowanie nowych rozwiązań. W praktyce, architekci i planiści często korzystają z map zasadniczych w celu oceny potencjału działki, identyfikacji ograniczeń (np. strefy ochrony środowiska) oraz planowania przyszłego zagospodarowania. Dobre praktyki w zakresie sporządzania projektów uwzględniają również aktualizację mapy zasadniczej, aby zapewnić zgodność z obowiązującymi przepisami prawa budowlanego i lokalnymi planami zagospodarowania przestrzennego. Dodatkowo, znajomość mapy zasadniczej jest niezbędna w kontekście pozyskiwania pozwoleń na budowę oraz w procesach inwestycyjnych.

Pytanie 11

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. eNA
B. eN
C. e
D. eA
Odpowiedzi eA, eN oraz e są nieprawidłowe w kontekście oznaczania przyłącza energetycznego niskiego napięcia do budynku mieszkalnego. Oznaczenie eA sugeruje, że mamy do czynienia z przyłączeniem, które nie jest bezpośrednio związane z niskim napięciem, co jest mylące, ponieważ 'A' w tym kontekście może odnosić się do prądów, które nie są typowe dla budynków mieszkalnych. Oznaczenie eN z kolei jest zbyt ogólne, aby mogło jednoznacznie wskazywać na przyłącze niskiego napięcia, co może prowadzić do błędnej interpretacji w dokumentacji projektowej lub w trakcie inspekcji. Zastosowanie skrótu e bez dodatkowych liter w ogóle nie wskazuje na rodzaj napięcia ani na specyfikę instalacji, co czyni je nieodpowiednim w kontekście inwentaryzacji. Typowym błędem myślowym jest niedostateczne zrozumienie kontekstu norm przyłączeniowych oraz niewłaściwe przypisanie oznaczeń do ich rzeczywistego znaczenia. W praktyce, brak jednolitości w oznaczeniach może prowadzić do nieporozumień, które mogą mieć poważne konsekwencje, zwłaszcza w przypadku awarii lub modernizacji instalacji. W związku z tym kluczowe jest, aby geodeci oraz inżynierowie stosowali się do ustalonych standardów, aby zapewnić spójność i jasność w dokumentacji technicznej.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakim kolorem na mapie zasadniczej przedstawia się przewód elektroenergetyczny?

A. niebieskim
B. czerwonym
C. pomarańczowym
D. żółtym
Przewód elektroenergetyczny na mapie zasadniczej rysuje się kolorem czerwonym, co jest zgodne z obowiązującymi normami oraz standardami w branży elektroenergetycznej. Kolor ten został przyjęty jako uniwersalny sposób oznaczania wszelkiego rodzaju linii energetycznych, aby zminimalizować ryzyko pomyłek i zwiększyć bezpieczeństwo użytkowników map. Praktyczne zastosowanie tej konwencji jest nieocenione, zwłaszcza w kontekście planowania i zarządzania infrastrukturą energetyczną. Na przykład, inżynierowie i technicy często korzystają z map zasadniczych podczas lokalizacji przewodów, co ułatwia im wykonywanie prac konserwacyjnych, inspekcji oraz modernizacji. Dodatkowo, zgodność z ogólnokrajowymi i międzynarodowymi standardami, takimi jak normy ISO oraz regulacje dotyczące bezpieczeństwa, potwierdza zasadność przyjęcia koloru czerwonego do oznaczania przewodów elektroenergetycznych. Warto również zauważyć, że kolor czerwony jest powszechnie kojarzony z zagrożeniem, co dodatkowo zwiększa ostrożność podczas pracy w pobliżu instalacji energetycznych.

Pytanie 16

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. odwrotnie proporcjonalne do różnic wysokości ciągów
B. wprost proporcjonalne do różnic wysokości ciągów
C. odwrotnie proporcjonalne do długości ciągów
D. wprost proporcjonalne do długości ciągów
Wagi stosowane w niwelacji geometrycznej nie są wprost proporcjonalne do różnic wysokości ciągów ani długości ciągów. Założenie, że wagi powinny być wprost proporcjonalne do różnic wysokości, prowadzi do nieporozumienia w kontekście pomiarów geodezyjnych. W rzeczywistości różnice wysokości są jedynie jednym z czynników wpływających na dokładność pomiaru, a ich wpływ nie jest bezpośrednio proporcjonalny do długości ciągu. Dłuższe ciągi mogą generować większe błędy systematyczne z powodu wpływu warunków atmosferycznych oraz nierówności terenu, co sprawia, że ich waga musi być mniejsza, aby zrekompensować potencjalne błędy. Ponadto, waga wprost proporcjonalna do długości ciągów wprowadzałaby niepotrzebne złożoności w obliczeniach, co mogłoby prowadzić do błędnych wyników. Należy pamiętać, że zasady stosowane w niwelacji geometrycznej mają na celu zapewnienie wysokiej precyzji i dokładności pomiarów, co jest kluczowe w praktyce inżynieryjnej i geodezyjnej. Kluczowe jest, aby stosować odpowiednie metody i normy branżowe, które uwzględniają wszystkie istotne czynniki, a nie tylko różnice wysokości czy długości ciągów, co pozwala na precyzyjne i wiarygodne wyniki.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie kryterium musi zostać zrealizowane dla poprawek po wyrównaniu zmierzonych wartości o różnej dokładności, przy założeniu, że v to poprawka, a p to waga zmierzonej wartości?

A. [pvv] = max
B. [pvv] = min
C. [pv] = min
D. [pv] = max
Wybór odpowiedzi [pv] = min. sugeruje zrozumienie pojęcia wag pomiarowych, jednak jest to nieprawidłowe podejście. W kontekście wyrównania pomiarów, minimalizacja wartości wag pomiarowych prowadziłaby do zniekształcenia rzeczywistego obrazu danych, co jest niepożądane. Waga pomiaru (p) odnosi się do poziomu zaufania do danego pomiaru, a nie do jego wartości. W przypadku gdy różne pomiary mają różne stopnie dokładności, ich wpływ na wyniki powinien być uwzględniony w sposób, który odzwierciedla rzeczywistą precyzję tych pomiarów. Zastosowanie zasady minimum dla wag pomiarowych mogłoby prowadzić do nadmiernej redukcji wpływu wartości bardziej wiarygodnych, co jest sprzeczne z zasadami statystyki oraz analizą błędów. Wartości [pvv] = max. oraz [pv] = max. również są mylące. Maksymalizacja wag pomiarowych nie jest zgodna z potrzebą otrzymania najbardziej trafnych i precyzyjnych wyników. Dlatego kluczowym elementem jest zrozumienie, że minimalizowanie błędów wymaga zastosowania odpowiednich poprawek, a nie minimalizacji wag, co jest fundamentem dla każdego analityka danych oraz specjalisty zajmującego się pomiarami, który dąży do uzyskania rzetelnych wyników w swojej pracy.

Pytanie 19

Cyfra 2 w symbolu <sup>2</sup>/<sub>5</sub>, użytym podczas oznaczania w terenie punktów hektometrowych stworzonych w trakcie wytyczania linii profilu podłużnego, wskazuje na

A. całkowitą liczbę kilometrów od początku trasy
B. całkowitą liczbę metrów w jednym odcinku trasy
C. numer hektometra w konkretnym kilometrze
D. liczbę hektometrów w danym kilometrze trasy
Odpowiedź wskazująca, że cyfra 2 w symbolu <sup>2</sup>/<sub>5</sub> oznacza pełną liczbę kilometrów od początku trasy, jest prawidłowa. W kontekście wytyczenia linii profilu podłużnego, ten format graficzny jest powszechnie stosowany w inżynierii lądowej i geodezji. Cyfry w takim zapisie odpowiadają segmentom trasy, przy czym licznik (2) wskazuje na liczbę pełnych kilometrów. Oznacza to, że pomiar dotyczy odległości od punktu startowego trasy, co jest kluczowe dla poprawnej interpretacji danych geodezyjnych. W praktyce, takie oznaczenia są istotne podczas dokumentacji i analizy tras transportowych, ponieważ umożliwiają precyzyjne określenie lokalizacji punktów kontrolnych, co jest zgodne z normami branżowymi, takimi jak PN-EN ISO 19101. Na przykład, w projektach budowlanych czy inżynieryjnych, znajomość i poprawne odczytywanie tych symboli jest niezbędne do planowania i koordynacji prac budowlanych, co wpływa na efektywność realizacji zadań.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na jakiej długości od początku trasy usytuowany jest punkt oznaczony 2/3+57,00 m?

A. 2557,00 m
B. 357,00 m
C. 557,00 m
D. 2357,00 m
Prawidłowa odpowiedź to 2357,00 m, ponieważ oznaczenie 2/3+57,00 m wskazuje na sposób określania odległości na trasie. W kontekście geodezji i inżynierii lądowej, '2/3' oznacza dwa trzecie odcinka, które zostało już wyznaczone. Przyjmując, że '57,00 m' to dodatkowa odległość, którą należy dodać, obliczamy 2/3 z 3000 m (przykładowo, jeśli pełna długość trasy wynosi 3000 m), co daje 2000 m, a następnie dodajemy 57,00 m, co łącznie daje 2357,00 m. Takie podejście przydaje się w praktyce inżynieryjnej, gdyż pozwala na precyzyjne wyznaczanie punktów na trasach, co jest kluczowe dla prawidłowego prowadzenia robót budowlanych czy projektowania infrastruktury. W standardach geodezyjnych, takich jak PN-EN 1878, określone są metody pomiaru i oznaczania odległości, które są niezbędne w każdym projekcie budowlanym.

Pytanie 22

Jakie są dozwolone długości rzędnych w trakcie pomiarów szczegółów sytuacyjnych I grupy?

A. 25 m
B. 75 m
C. 80 m
D. 50 m
Odpowiedź 25 m jest na pewno dobra. W geodezji i kartografii mamy określone normy, które mówią, że dla pomiarów szczegółów sytuacyjnych I grupy maksymalna długość rzędnej to właśnie 25 m. To ważne, bo dzięki temu możemy mieć większą pewność, że pomiary będą dokładne. Na przykład, gdy mierzysz granice działek czy punkty osnowy, trzymanie się tej długości pomaga uniknąć błędów, które mogą się pojawić z powodu różnych zakłóceń, takich jak drgania czy sam sprzęt. A według normy PN-EN ISO 19130, precyzyjność pomiarów jest kluczowa, więc warto się tego trzymać, żeby mieć wiarygodne dane na później.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 100 m
B. 50 m
C. 200 m
D. 150 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 26

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:1000
B. 1:250
C. 1:2000
D. 1:500
Odpowiedź 1:2000 jest prawidłowa, ponieważ skala mapy jest wyrażona jako stosunek długości w terenie do długości na mapie. W tym przypadku długość odcinka w terenie wynosi 86,00 m, co przelicza się na 86000 mm, zaś na mapie długość tego odcinka wynosi 43,00 mm. Aby obliczyć skalę, należy podzielić długość w terenie przez długość na mapie: 86000 mm / 43 mm = 2000. Oznacza to, że 1 mm na mapie odpowiada 2000 mm (czyli 2 m) w terenie. Przykładowo, w praktyce skala 1:2000 jest często stosowana w planowaniu urbanistycznym oraz w szczegółowych mapach geodezyjnych, co pozwala na precyzyjne odwzorowanie obiektów i ich lokalizacji. Dobrą praktyką jest również uwzględnianie w dokumentacji mapowej aspektów takich jak dokładność pomiarów oraz zastosowanie odpowiednich symboli i oznaczeń, co zapewnia lepsze zrozumienie prezentowanych informacji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy<br> 20 cm, zmierzonego na osnowę?

A. ks20
B. ksP200
C. ks200
D. ksB20
Odpowiedź ks200 jest poprawna, ponieważ zgodnie z obowiązującymi normami w inżynierii lądowej i wodnej, oznaczenia dla przewodów kanalizacyjnych sanitarno-ściekowych o średnicy 20 cm wskazują na ich średnicę w milimetrach. W przypadku przewodów sanitarnych, standardowe oznaczenie składa się z prefiksu 'ks' (kanalizacja sanitarna), a następnie z liczby wskazującej średnicę w mm. Oznaczenie ks200 odnosi się więc bezpośrednio do przewodu o średnicy 200 mm, co jest zgodne z powszechnie uznawanymi praktykami w branży. W praktyce, takie oznaczenie ułatwia zarówno projektowanie, jak i realizację inwestycji budowlanych, ponieważ inżynierowie i projektanci mogą łatwo identyfikować konkretne elementy systemu kanalizacyjnego. Warto również przypomnieć, że stosowanie jednolitych oznaczeń zgodnych z normami europejskimi poprawia komunikację między różnymi uczestnikami procesu budowlanego.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to jego pole na mapie w skali 1:1000 będzie wynosić

A. 0,1 cm2
B. 1,0 cm2
C. 100,0 cm2
D. 10,0 cm2
Aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, należy najpierw przeliczyć długość boku kwadratu z metra na centymetry. Dla boku o długości 10 m, mamy 10 m x 100 cm/m = 1000 cm. Pole powierzchni kwadratu obliczamy ze wzoru P = a², gdzie a to długość boku. Zatem, pole wynosi 1000 cm x 1000 cm = 1 000 000 cm² w rzeczywistości. Na mapie w skali 1:1000, pole to będzie reprezentowane przez 1 000 000 cm² / 1 000 000 = 1 cm². Przykład zastosowania tej wiedzy można znaleźć w geodezji, gdzie skale map używane są do przedstawiania dużych obszarów na małych powierzchniach, a dokładne obliczenia są kluczowe dla prawidłowego odwzorowania terenu. Dobra praktyka wymaga, aby geodeci i kartografowie dokładnie przeliczywali wymiary obiektów, aby zapewnić dokładność mapy oraz informacji, które ona przekazuje.

Pytanie 33

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks200
B. ksB20
C. ksP200
D. ks20
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m1
B. m
C. mj
D. mj2
Wybór symboli 'm1', 'm' czy 'mj2' jest niepoprawny z kilku powodów. Symbol 'm1' odnosi się do różnego typu budynków mieszkalnych, ale nie precyzuje, że chodzi o obiekty jednorodzinne, co może prowadzić do niejednoznaczności w dokumentacji urbanistycznej. Z kolei symbol 'm' jest zbyt ogólny, ponieważ nie wskazuje na specyfikę budynku jednorodzinnego, a jedynie na budynki mieszkalne w ogóle. Dodatkowo, 'mj2' nie jest standardowym symbolem w systemie klasyfikacji obiektów budowlanych, co powoduje, że jego zastosowanie mogłoby wprowadzać chaos w interpretacji mapy. Mylące jest również podejście, które de facto ignoruje wytyczne określające różnice w klasyfikacji budynków zależnie od ich przeznaczenia i charakterystyki. W praktyce, stosowanie niewłaściwych symboli prowadzi do trudności w identyfikacji obiektów, co może mieć negatywne konsekwencje w zakresie planowania przestrzennego oraz zarządzania infrastrukturą. Przykładem negatywnego skutku może być błędne zaplanowanie usług komunalnych w okolicy, gdzie nieodpowiednie oznaczenie budynku może wpłynąć na dostępność wody czy energii. Dlatego kluczowe jest stosowanie odpowiednich symboli zgodnie z ich przeznaczeniem i standardami branżowymi.

Pytanie 38

W teodolicie oś rotacji instrumentu jest oznaczona

A. vv
B. cc
C. ll
D. hh
Odpowiedź 'vv' jest prawidłowa, ponieważ oznaczenie to odnosi się do osi obrotu teodolitu. Teodolit jest precyzyjnym instrumentem stosowanym w geodezji do pomiarów kątów poziomych i pionowych. Oś obrotu instrumentu jest kluczowym elementem, który pozwala na dokonywanie dokładnych pomiarów. Jest to oś, wokół której instrument obraca się, co umożliwia precyzyjne celowanie na obiekty. W praktyce, podczas ustawiania teodolitu, operator musi zapewnić, że oś obrotu jest idealnie wyrównana z punktem pomiarowym. Wykorzystanie oznaczenia 'vv' jest standardem w branży, co ułatwia komunikację między specjalistami. Warto również zauważyć, że dobrym zwyczajem jest regularne kalibrowanie teodolitu, aby zapewnić jego dokładność i wiarygodność w pomiarach. Wiedza na temat funkcji i oznaczeń elementów teodolitu jest kluczowa dla skutecznego prowadzenia prac geodezyjnych oraz inżynieryjnych, co potwierdzają międzynarodowe normy ISO dotyczące pomiarów geodezyjnych.

Pytanie 39

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030<sup>g</sup>, KP = 304,9980<sup>g</sup>, to jaki ma wartość błąd indeksu?

A. +10cc
B. +5cc
C. +15cc
D. +20cc
Aby obliczyć błąd indeksu lunety, należy wykorzystać różnicę kątów pomierzonych w dwóch położeniach. W tym przypadku mamy kąt pionowy KL równy 95,0030<sup>g</sup> oraz kąt pionowy KP równy 304,9980<sup>g</sup>. Obliczamy różnicę pomiędzy tymi kątami: 304,9980<sup>g</sup> - 95,0030<sup>g</sup> = 209,9950<sup>g</sup>. Teoretycznie, w idealnych warunkach kąt ten powinien wynosić 200<sup>g</sup>, ponieważ luneta powinna mierzyć pełny obrót. W związku z tym, błąd indeksu wynosi: 209,9950<sup>g</sup> - 200<sup>g</sup> = 9,9950<sup>g</sup>. Ten błąd jest bliski wartości 10cc, co sugeruje, że zmierzone kąty mogą być zniekształcone przez błąd w ustawieniu lunety. Przyjmuje się, że w praktycznych zastosowaniach geodezyjnych zaleca się staranne kalibracje instrumentów, aby zminimalizować takie błędy i zapewnić wysoką dokładność pomiarów.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.