Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 15 kwietnia 2025 19:31
  • Data zakończenia: 15 kwietnia 2025 19:53

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do 300 g wody o temperaturze 30<sup>o</sup>C dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30<sup>o</sup>C?

A. 30 g
B. 20 g
C. 40 g
D. 50 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 2

Aby otrzymać roztwór AgNO<sub>3</sub> (masa molowa AgNO<sub>3</sub> to 169,8 g/mol) o stężeniu 0,1 mol/dm<sup>3</sup>, należy

A. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Aby przygotować roztwór AgNO<sub>3</sub> o stężeniu 0,1 mol/dm<sup>3</sup>, kluczowe jest dokładne obliczenie masy soli do odważenia. Masa molowa AgNO<sub>3</sub> wynosi 169,8 g/mol, co oznacza, że 1 mol roztworu zawiera 169,8 g substancji. Dla stężenia 0,1 mol/dm<sup>3</sup> obliczamy masę: 0,1 mol/dm<sup>3</sup> * 169,8 g/mol = 16,98 g. Jednak w przypadku 100 cm<sup>3</sup> roztworu potrzebujemy 1/10 tej masy, co daje 1,698 g. Właściwe wykonanie tego kroku jest zgodne z dobrą praktyką laboratoryjną, która podkreśla znaczenie precyzyjnego przygotowania roztworów, aby zapewnić powtarzalność wyników. Ważne jest również, aby całkowicie rozpuścić substancję w wodzie destylowanej przed uzupełnieniem do kreski w kolbie miarowej, co pozwoli uniknąć błędów związanych z niedostatecznym wymieszaniem. Tego typu procedury są standardem w laboratoriach chemicznych, co czyni je praktycznym doświadczeniem dla studentów oraz profesjonalistów w dziedzinie chemii.

Pytanie 3

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 90-99%
B. 99-99,9%
C. 99,99-99,999%
D. 99,9-99,99%
Odpowiedzi, które wskazują na inne zakresy czystości, mylą się w interpretacji standardów jakości substancji chemicznych. Na przykład, zakres 90-99% nie jest wystarczający dla substancji wymagających wysokiej czystości, co może prowadzić do błędnych wyników w eksperymentach czy produkcji farmaceutycznej. Tego rodzaju substancje mogą zawierać istotne zanieczyszczenia, co jest nieakceptowalne w kontekście wielu zastosowań, takich jak preparaty medyczne. Odpowiedź wskazująca na zakres 99,9-99,99% oraz 99,99-99,999% również wprowadza w błąd, gdyż są to wyższe klasy czystości, które nie odpowiadają definicji odczynnika czystego. W praktyce, substancje o czystości 99,9% mogą być uznawane za 'czyste', ale w kontekście czystości klasyfikowane są jako 'high-purity' lub 'ultra-purity'. To prowadzi do nieporozumień, gdyż w laboratoriach często stosuje się inne standardy do oceny czystości, takie jak HPLC lub GC, które mogą wskazywać na różne poziomy kontaminacji. Ponadto, myślenie, że każdy odczynnik musi mieć najwyższą możliwą czystość, jest błędne, ponieważ w wielu przypadkach czystość 99-99,9% jest wystarczająca do przeprowadzenia analiz czy syntez, zachowując równocześnie rentowność i dostępność materiałów. W związku z tym, zrozumienie różnicy pomiędzy różnymi poziomami czystości i ich praktycznym zastosowaniem jest kluczowe dla zapewnienia jakości w pracy laboratoryjnej.

Pytanie 4

Podczas transportu próbek wody wskazane jest, aby próbki były

A. schłodzone do temperatury 2 - 5°C.
B. wystawione na działanie światła.
C. zalkalizowane.
D. zakwaszone do pH < 6.
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 5

Piec muflowy służy do

A. zatężania próbek.
B. rozkładu próbek na sucho.
C. rozkładu próbek do postaci jonowej.
D. rozdzielania próbek.
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 6

Gdzie należy przechowywać cyjanek potasu KCN?

A. w stalowej szafie, zamkniętej na klucz
B. w szczelnie zamkniętym eksykatorze
C. w pojemniku, z dala od źródeł ciepła
D. w warunkach chłodniczych
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 7

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Data ważności, forma substancji
B. Metoda wydania, imię i nazwisko osoby wydającej
C. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
D. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
Odpowiedź dotycząca zapisania wydanych ilości, stanu zapasów oraz nazwiska osoby, której substancja została wydana, jest prawidłowa, ponieważ ewidencja rozchodu substancji niebezpiecznych wymaga szczegółowego dokumentowania tych informacji w celu zapewnienia bezpieczeństwa i zgodności z przepisami. Wydane ilości umożliwiają śledzenie zużycia substancji, co jest niezbędne do oceny ich dostępności i planowania zakupów. Stan zapasów pozwala na zarządzanie zasobami, minimalizując ryzyko ich niedoboru, co jest istotne w kontekście ciągłości pracy laboratorium. Imię i nazwisko osoby, której substancja została wydana, pozwala na identyfikację użytkownika, co jest kluczowe w przypadku ewentualnych incydentów związanych z bezpieczeństwem. W praktyce, takie podejście jest zgodne z normami ISO 14001, które podkreślają znaczenie dokumentacji w zarządzaniu substancjami niebezpiecznymi, a także z dobrą praktyką laboratoryjną (GLP), która nakłada obowiązek ścisłego rejestrowania obiegu substancji chemicznych.

Pytanie 8

Roztwory o ściśle określonym stężeniu, używane w analizach miareczkowych, nazywamy

A. roztworami koloidowymi
B. roztworami niejednorodnymi
C. roztworami mianowanymi
D. roztworami nasyconymi
Roztwory mianowane, znane również jako roztwory o dokładnie znanym stężeniu, są kluczowym elementem w analizie miareczkowej, ponieważ umożliwiają precyzyjne pomiary, co jest niezbędne do określenia stężenia substancji w badanym roztworze. W praktyce laboratoryjnej roztwory mianowane są przygotowywane z wysoką starannością, często z wykorzystaniem substancji o czystości analitycznej. Na przykład, roztwór kwasu solnego o stężeniu 0,1 mol/l może być użyty do miareczkowania zasadowych roztworów, co pozwala na dokładne określenie ich stężenia. Stosowanie roztworów mianowanych jest zgodne z dobrymi praktykami laboratoryjnymi, które wymagają regularnego sprawdzania i kalibracji sprzętu. Warto również zauważyć, że roztwory te muszą być przechowywane w odpowiednich warunkach, aby uniknąć zmian stężenia spowodowanych parowaniem czy reakcjami chemicznymi. To podkreśla znaczenie precyzji i staranności w przygotowywaniu roztworów mianowanych, które są fundamentem wielu analiz chemicznych.

Pytanie 9

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w szklanych słoikach z plastikowym wieczkiem
B. w pojemnikach na odpady komunalne
C. w kartonowych opakowaniach
D. w workach z polietylenu i oznaczyć zawartość
Umieszczanie odpadów stałych typu resztki sączków oraz zbitego szkła w pojemnikach na odpady komunalne jest zgodne z obowiązującymi normami i regulacjami dotyczącymi gospodarki odpadami. Tego rodzaju odpady, ze względu na swoje właściwości, powinny być segregowane i składowane w odpowiednich pojemnikach, które są przystosowane do tego celu. Zgodnie z dyrektywami unijnymi i krajowymi, odpady te nie mogą być wrzucane do ogólnych pojemników, ponieważ mogą stwarzać zagrożenie dla ludzi oraz środowiska. Na przykład, zbite szkło w laboratoriach analitycznych wymaga szczególnej uwagi, ponieważ może powodować urazy. Praktyczne podejście do zarządzania tymi odpadami obejmuje nie tylko ich odpowiednie pakowanie, ale także prowadzenie dokumentacji dotyczącej ich pochodzenia i rodzaju. Odpowiednia segregacja i składowanie odpadów są kluczowe dla ich późniejszego przetwarzania oraz recyklingu, co pozwala na minimalizację negatywnego wpływu na środowisko i zdrowie publiczne.

Pytanie 10

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. rozpuszczalność
B. czystość
C. reaktywność
D. palność
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 11

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość głównego składnika wynosi 99,9-99,99%
B. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
C. zawartość głównego składnika wynosi 99-99,9%
D. odczynnik jest przeznaczony do analiz spektralnych
Zrozumienie oznaczenia 'cz.' jest kluczowe dla każdego, kto pracuje w laboratoriach chemicznych. Wiele osób myli to oznaczenie z innymi wskaźnikami czystości chemikaliów, co prowadzi do nieporozumień. Na przykład, pierwsza z dostępnych odpowiedzi sugeruje, że skrót ten odnosi się do możliwości stosowania odczynnika do analiz spektralnych. To podejście jest błędne, ponieważ czystość chemiczna nie jest bezpośrednio związana z metodą analizy, ale raczej z jakością używanego odczynnika. Zastosowanie reagentów o wysokiej czystości jest ważne w kontekście dokładności wyników, a nie samego sposobu przeprowadzania analizy. Kolejna sugestia dotycząca zawartości głównego składnika na poziomie 99,9-99,99% również jest myląca. Oznaczenie 'cz.' jednoznacznie wskazuje na zakres 99-99,9%, co jest akceptowane w standardach laboratoryjnych. Ostatnia odpowiedź, mówiąca o maksymalnej zawartości zanieczyszczeń, sugeruje jakoby czystość była mierzona w bardziej rygorystyczny sposób niż w rzeczywistości. Zanieczyszczenia zawsze są obecne, ale ich akceptowalny poziom w odczynnikach chemicznych to właśnie 0,1-0,01% dla klasy reagentów czystych. Pojawiające się błędne koncepcje często wynikają z mylenia terminologii i różnorodności standardów stosowanych w praktyce laboratoryjnej, co może prowadzić do nieodpowiednich wyborów reagenty, a tym samym do błędnych wyników badań.

Pytanie 12

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 18,33%
B. 65,80%
C. 34,20%
D. 81,77%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 13

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 0,1563 g
B. 1,5635 g
C. 3,1250 g
D. 0,3125 g
Odpowiedź 0,3125 g jest prawidłowa, ponieważ można ją obliczyć za pomocą wzoru na masę gazu w warunkach normalnych. W warunkach normalnych (0°C i 1 atm) 1 mol gazu zajmuje objętość 22,4 litra (22400 cm³). Mając objętość 250 cm³, możemy obliczyć ilość moli azotu: n = V / V_m, gdzie V_m to objętość molowa gazu. Zatem n = 250 cm³ / 22400 cm³/mol = 0,01116 mol. Następnie, wykorzystując masę molową azotu (28 g/mol), obliczamy masę: m = n * M, co daje m = 0,01116 mol * 28 g/mol = 0,3125 g. W laboratoriach chemicznych, dokładne pomiary masy gazów są kluczowe, szczególnie w reakcjach, które wymagają precyzyjnych ilości reagentów. Zastosowanie pipet gazowych oraz znajomość zależności między objętością, ilością moli a masą jest fundamentalne w analityce chemicznej oraz w syntezach chemicznych, gdzie precyzja wpływa na wyniki eksperymentów oraz ich powtarzalność.

Pytanie 14

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. CaCO3 → CaO + CO2
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
D. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 15

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. HNO3 i HCl w proporcji objętościowej 3:1
B. HCl i HNO3 w proporcji objętościowej 3:1
C. H2SO4 i HCl w proporcji objętościowej 1:3
D. H2SO4 i HCl w proporcji objętościowej 3:1
Wybór odpowiedzi, która wskazuje na stosunek HNO3 i HCl w proporcji 3:1, jest mylący. Choć kwasy te rzeczywiście stanowią składniki wody królewskiej, to ich stosunek objętościowy jest kluczowy dla skuteczności tej mieszanki. Stosunek 3:1, z HCl jako głównym składnikiem, zapewnia, że reakcja chemiczna między tymi kwasami przebiega efektywnie, co jest istotne przy rozpuszczaniu metali szlachetnych. Z kolei propozycja użycia H2SO4 w połączeniu z HCl w różnych proporcjach, takich jak 1:3 czy 3:1, jest nieprawidłowa, ponieważ kwas siarkowy (H2SO4) nie jest składnikiem wody królewskiej. W rzeczywistości, H2SO4 ma inne właściwości chemiczne i nie działa synergicznie z HCl w kontekście rozpuszczania metali szlachetnych. Powszechnym błędem jest mylenie tych kwasów, co może prowadzić do niewłaściwego użycia i, co ważniejsze, do niebezpiecznych sytuacji w laboratoriach. Warto zauważyć, że skuteczność wody królewskiej, jako rozpuszczalnika dla metali, wynika z odpowiednich proporcji, które stymulują reakcję chemiczną. Dlatego ważne jest, aby mieć pełne zrozumienie właściwych stosunków oraz zastosowań tych substancji w praktyce laboratoryjnej.

Pytanie 16

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. kolba ssawkowa
B. aparat Soxhleta
C. aparat Kippa
D. pompa próżniowa
Kolba ssawkowa jest narzędziem stosowanym w chemii, ale jej głównym przeznaczeniem jest inna funkcja niż proces ekstrakcji. Kolba ta jest używana przede wszystkim do przechowywania, podgrzewania i mieszania cieczy. Jej konstrukcja umożliwia wygodne mieszanie substancji, jednakże nie zapewnia efektywności wymaganej do przeprowadzenia ekstrakcji, ponieważ nie jest zaprojektowana do ciągłego obiegu rozpuszczalnika i nie pozwala na kontrolę temperatury i ciśnienia, które są kluczowe w procesie ekstrakcji. Pompa próżniowa, z drugiej strony, jest urządzeniem stosowanym do usuwania powietrza z systemu, co może być użyteczne w niektórych procesach, ale nie jest dedykowana do ekstrakcji substancji. Wreszcie, aparat Kippa jest zupełnie innym narzędziem, służącym do wytwarzania gazów w reakcjach chemicznych, co również nie ma zastosowania w procesie ekstrakcji. Często pomyłki dotyczące wyboru odpowiednich narzędzi wynikają z błędnego zrozumienia ich funkcji i zastosowania. Kluczowe jest rozróżnienie między urządzeniami przeznaczonymi do różnych zadań w laboratoriach, co jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników w badaniach chemicznych.

Pytanie 17

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:<br> NaOH + HCl → NaCl + H<sub>2</sub>O Masy molowe: M<sub>NaOH</sub> = 40 g/mol, M<sub>HCl</sub> = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 10 g roztworu kwasu solnego o stężeniu 38%
B. 24,013 g roztworu kwasu solnego o stężeniu 38%
C. 36,5 g roztworu kwasu solnego o stężeniu 38%
D. 9,125 g roztworu kwasu solnego o stężeniu 38%
Obliczenia związane ze zobojętnianiem kwasów i zasad są kluczowe w chemii analitycznej. Wiele osób w odpowiedziach myli masy reagentów z ich molami. Często zjawisko to prowadzi do nieprawidłowych wniosków dotyczących ilości potrzebnych substancji chemicznych. Na przykład, niektórzy mogą sądzić, że masa roztworu HCl o stężeniu 38% odpowiada bezpośrednio masie HCl, co jest błędne. Należy zrozumieć, że stężenie odnosi się do ilości substancji w łącznej masie roztworu, a nie tylko do masy czystej substancji. Stąd, jeżeli ktoś obliczałby masę roztworu jako sumę mas reagentów, pomijałby kluczowy krok dotyczący stężenia. Innym powszechnym błędem jest utożsamianie mas molowych z wagą rzeczywistą substancji w roztworze, co prowadzi do zafałszowanych wyników. Każda reakcja chemiczna wymaga precyzyjnego obliczenia ilości reagentów, a zaniedbanie tego kroku może prowadzić do niebezpiecznych sytuacji w laboratoriach. Przygotowując roztwory lub przeprowadzając reakcje chemiczne, należy zawsze wykonać dokładne obliczenia, aby uniknąć nieprawidłowych wyników, co jest szczególnie istotne w kontekście przestrzegania standardów bezpieczeństwa i jakości w pracy laboratoryjnej.

Pytanie 18

Stężenie roztworu HNO<sub>3</sub> otrzymanego przez zmieszanie 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 i 25 cm3 roztworu HNO<sub>3</sub> o stężeniu 0,5 mol/dm3 wynosi

A. 0,3 mol/dm3
B. 0,003 mol/dm3
C. 0,03 mol/dm3
D. 0,0003 mol/dm3
Często, kiedy wybierasz złą odpowiedź, to znaczy, że coś nie tak zrozumiałeś w obliczeniach stężenia roztworów. Na przykład, stężenia mówią o ilości substancji w danej objętości. To, co może powodować błąd, to niewłaściwe przeliczenie objętości lub moli kwasu. Często ludzie zapominają zamienić jednostki z cm³ na dm³, a to prowadzi do złych wyników. Warto też pamiętać, że zasady dotyczące mieszania roztworów są trochę skomplikowane i nie zawsze są jasne. Niekiedy uczniowie mylą różne rodzaje stężeń, co może się źle skończyć. Kluczowe jest zrozumienie, że przy łączeniu roztworów musimy brać pod uwagę objętość i ilość moli. Bez tego nie da się dobrze przygotować roztworów do analiz chemicznych, bo precyzyjne obliczenia są naprawdę ważne. Dlatego, żeby uniknąć błędów, warto starannie przeliczać i dobrze zrozumieć, jak to wszystko działa.

Pytanie 19

Jakie roztwory chemiczne powinny być stanowczo pobierane przy włączonym dygestorium?

A. kwasu solnego o stężeniu 36%
B. etanolu o stężeniu 36%
C. kwasu cytrynowego o stężeniu 36%
D. glicerolu o stężeniu 36%
Glicerol, etanol i kwas cytrynowy, choć mogą być stosunkowo bezpieczniejsze niż kwas solny, wciąż wymagają ostrożności w obiegu. Glicerol o stężeniu 36% jest substancją o niskiej toksyczności, ale może powodować podrażnienia skóry i błon śluzowych przy długotrwałym kontakcie. Głównym błędem w myśleniu o glicerolu jest przekonanie, że jest on całkowicie bezpieczny. W rzeczywistości, każda substancja chemiczna, nawet te uznawane za mniej niebezpieczne, powinny być stosowane z odpowiednimi środkami ostrożności, jednak niekoniecznie wymagają one pracy pod dygestorium. Etanol, jako rozpuszczalnik organiczny, ma swoje ryzyka związane z łatwopalnością i potencjalnymi skutkami zdrowotnymi w przypadku wdychania oparów, ale nie jest na tyle niebezpieczny jak kwas solny, co może prowadzić do błędnych przekonań na temat jego stosowania. Kwas cytrynowy z kolei jest substancją stosunkowo bezpieczną, jednak w laboratoriach chemicznych powinien być traktowany z należytą ostrożnością, zwłaszcza w przypadku stężonych roztworów. Przykładem typowego błędu myślowego jest niedocenianie potencjalnych zagrożeń związanych z danymi substancjami, co może prowadzić do nieodpowiednich praktyk w laboratoriach. Właściwe przygotowanie i przestrzeganie zasad BHP powinno być zawsze priorytetem, niezależnie od rodzaju używanych odczynników.

Pytanie 20

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. zestaw sit
B. rozdzielacz
C. płuczka
D. chłodnica
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 21

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
B. ciekła, czysta, niehigroskopijna
C. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
D. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
Wiele z niepoprawnych odpowiedzi bazuje na niepełnym zrozumieniu istoty substancji podstawowych w analizie miareczkowej. Odpowiedzi wskazujące na substancje higroskopijne wskazują na fundamentalny błąd w rozumieniu, ponieważ substancje te mogą absorbować wilgoć z otoczenia, co prowadzi do zmiany ich masy oraz stężenia. Taka zmiana wpływa na rezultaty miareczkowania, wprowadzając niepewność i potencjalne błędy pomiarowe. Dlatego w praktyce laboratoryjnej stosuje się substancje, które są niehigroskopijne, aby uniknąć tych problemów. Dodatkowo, stwierdzenie, że przebieg reakcji nie musi być ściśle stechiometryczny, jest mylące i niepoprawne. Dokładna znajomość stechiometrii reakcji chemicznych jest kluczowa dla uzyskania rzetelnych wyników. W miareczkowaniu każdy mol reagentu reaguje ze ściśle określoną ilością drugiego reagenta, co jest podstawą obliczeń miareczkowych. Stąd, stwierdzenie, że reakcje mogą nie przebiegać w sposób stechiometryczny, jest fałszywe i może prowadzić do nieprawidłowych wniosków. W każdej analizie chemicznej kluczowe znaczenie ma zapewnienie precyzyjności i powtarzalności, co wyklucza użycie substancji, które nie spełniają rygorystycznych norm czystości oraz stabilności.

Pytanie 22

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. azotowym(V)
B. bromowodorowym
C. siarkowym(VI)
D. chlorowodorowym
Roztwarzanie mosiądzu w stężonym kwasie azotowym(V) jest prawidłowym podejściem, ponieważ kwas ten jest silnym utleniaczem, zdolnym do rozkładu mosiądzu, który jest stopem miedzi i cynku. Kwas azotowy(V) powoduje utlenienie miedzi do tlenków miedzi oraz rozpuszczenie cynku, a reakcja ta prowadzi do powstania azotanu miedzi i azotanu cynku. Stosowanie kwasu azotowego w analizie jakościowej ma zastosowanie w laboratoriach chemicznych oraz w przemyśle metalurgicznym, gdzie dokładna analiza składników stopów jest kluczowa dla kontrolowania jakości produktów. Na przykład, w procesach produkcji i recyklingu metali nieżelaznych, analiza jakościowa przy użyciu kwasu azotowego pozwala na dokładne określenie proporcji składników w stopach, co ma istotne znaczenie dla ich dalszego przetwarzania oraz zastosowania. W pracy laboratoryjnej należy pamiętać o zachowaniu odpowiednich środków ostrożności, ponieważ kwas azotowy jest substancją silnie żrącą i toksyczną, co wymaga stosowania odpowiednich zabezpieczeń osobistych oraz procedur BHP.

Pytanie 23

Kalibracja pH-metru nie jest konieczna po

A. wymianie elektrody.
B. długotrwałym używaniu tej samej elektrody.
C. dłuższej przerwie w pomiarach.
D. każdym pomiarze w danej serii.
No więc wymiana elektrody, dłuższa przerwa w pomiarach czy długotrwałe używanie tej samej elektrody to sytuacje, kiedy kalibracja pH-metru jest wręcz niezbędna. Nowa elektroda ma inne właściwości, więc trzeba ją skalibrować, żeby pomiary były wiarygodne. Z przerwami to jest tak, że elektroda mogła stracić swoje właściwości, więc w takim wypadku kalibracja staje się kluczowym krokiem przed powrotem do pomiarów. Z czasem elektrody mogą się psuć, czy zanieczyszczać, co wpływa na dokładność pomiarów. Zaniedbanie kalibracji może prowadzić do błędnych wyników, a to w laboratoriach chemicznych, gdzie trzeba mieć precyzyjne pomiary pH, może mieć ogromne konsekwencje. Warto znać te branżowe standardy, które mówią, żeby regularnie sprawdzać kalibrację, żeby nie wpaść w pułapki myślowe, jak to, że pH-metr, raz skalibrowany, zawsze będzie dokładny.

Pytanie 24

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. piknometr
B. manometr
C. waga hydrostatyczna
D. areometr
Piknometr, areometr i waga hydrostatyczna to przyrządy, które mają na celu pomiar gęstości cieczy, każdy z nich w nieco inny sposób. Piknometr jest naczyniem o znanej objętości, które umożliwia dokładny pomiar masy cieczy, co pozwala na obliczenie gęstości przez zastosowanie prostego wzoru. Areometr, z kolei, działa na zasadzie pływania w cieczy, gdzie głębokość zanurzenia jest proporcjonalna do gęstości cieczy, co ułatwia pomiar w praktycznych sytuacjach, takich jak kontrola stężenia roztworów. Waga hydrostatyczna stosuje zasadę Archimedesa do pomiaru masy cieczy w powietrzu i w wodzie, dostarczając precyzyjnych informacji o gęstości. Wybór niewłaściwego przyrządu, jak manometr, do pomiaru gęstości może prowadzić do błędnych wniosków oraz problemów operacyjnych w laboratoriach i zakładach przemysłowych. Manometr, skonstruowany do pomiaru ciśnienia, nie dostarcza informacji o masie ani objętości cieczy, co jest kluczowe do wyznaczenia gęstości. Dlatego ważne jest, aby dobrze znać funkcje poszczególnych przyrządów i ich zastosowanie w określonych kontekstach pomiarowych, aby uniknąć nieporozumień i błędów w analizach chemicznych oraz fizycznych.

Pytanie 25

Symbol "In" jest umieszczany na

A. kolbach miarowych i oznacza sprzęt kalibrowany "na wlew".
B. kolbach miarowych i oznacza sprzęt kalibrowany "na wylew".
C. biuretach i oznacza sprzęt kalibrowany "na wlew".
D. pipetach i oznacza sprzęt kalibrowany "na wylew".
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 26

Laboratoryjna apteczka powinna zawierać m.in.

A. alkohol etylowy, perhydrol, płyn Lugola
B. adrenalinę, bandaż, wodę utlenioną
C. bandaż, watę higroskopijną, gips
D. gazę opatrunkową, wodę utlenioną, plaster
Poprawna odpowiedź to gazę opatrunkową, wodę utlenioną i plaster, ponieważ te elementy są kluczowe w przypadku udzielania pierwszej pomocy w laboratoriach. Gazę opatrunkową można wykorzystać do pokrywania ran, aby zabezpieczyć je przed zanieczyszczeniem oraz zminimalizować ryzyko infekcji. Woda utleniona jest skutecznym środkiem dezynfekującym, który może być użyty do oczyszczania ran, usuwania zanieczyszczeń oraz wspomagania procesu gojenia. Plaster z kolei jest niezbędny do zabezpieczenia drobnych ran i otarć, a także może służyć do ochrony miejsca urazu przed dalszym uszkodzeniem. Zgodnie z normami BHP oraz dobrymi praktykami w zakresie bezpieczeństwa pracy, apteczka laboratoryjna powinna być kompletnie zaopatrzona w te podstawowe materiały pierwszej pomocy, aby szybko reagować na sytuacje awaryjne i minimalizować ryzyko poważniejszych urazów. Warto również pamiętać o regularnym sprawdzaniu dat ważności tych produktów oraz ich dostępności w apteczce, aby zapewnić skuteczność udzielanej pomocy.

Pytanie 27

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną i wodociągowo-kanalizacyjną
B. wodociągową i grzewczą
C. elektryczną oraz chłodniczą
D. elektryczną, próżniową oraz hydrantową
Wybór pozostałych opcji może wynikać z pewnych nieporozumień dotyczących funkcji, jakie pełnią różne instalacje w laboratoriach. Instalacja elektryczna i chłodnicza, mimo że są istotne, nie stanowią kompletu dla stołu laboratoryjnego, ponieważ chłodzenie nie jest zawsze wymagane, a jego funkcjonalność może być realizowana przez oddzielne urządzenia, takie jak chłodziarki czy komory chłodnicze. Instalacja wodociągowa i grzewcza również nie zapewnia pełnej funkcjonalności, gdyż nie obejmuje konieczności odprowadzenia zużytej wody, co jest kluczowe w kontekście bezpieczeństwa, szczególnie w laboratoriach zajmujących się substancjami chemicznymi. W przypadku instalacji elektrycznej, próżniowej i hydrantowej, połączenie tych trzech systemów nie uwzględnia podstawowego elementu, jakim jest dostęp do wody, który jest kluczowy do codziennych czynności w laboratoriach. Wybór odpowiednich instalacji powinien opierać się na analizie specyficznych potrzeb danego laboratorium oraz przestrzeganiu przepisów dotyczących ochrony środowiska i bezpieczeństwa pracy. Ignorowanie konieczności posiadania systemu kanalizacyjnego może prowadzić do naruszeń norm prawnych oraz do zagrożenia dla personelu i środowiska.

Pytanie 28

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. zielonym
B. żółtym
C. szarym
D. niebieskim
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 29

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. bardzo toksyczne, niepalne
B. stałe, palne
C. toksyczne, palne
D. stałe, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 30

W jakim stosunku objętościowym należy zmieszać roztwór etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby otrzymać roztwór o stężeniu 50% (V/V)?

A. 1:2
B. 2:1
C. 3:7
D. 1:1
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 31

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. obniżają temperaturę wrzenia cieczy
C. umożliwiają równomierne wrzenie cieczy
D. przyspieszają proces wrzenia cieczy
Odpowiedzi, które sugerują, że kamyczki wrzenne przyspieszają proces destylacji, przyspieszają wrzenie cieczy lub obniżają temperaturę wrzenia, opierają się na nieporozumieniach dotyczących mechanizmów zachodzących podczas tego procesu. Kamyczki wrzenne nie mają właściwości, które mogłyby przyspieszyć samego procesu destylacji; ich zadaniem jest raczej stabilizowanie procesu wrzenia. Stosowanie kamyczków wrzennych sprzyja równomiernemu rozkładowi ciepła w cieczy, co zapobiega tworzeniu się dużych bąbelków pary, które mogą prowadzić do niekontrolowanego wrzenia, znanego jako „bum wrzenia”. Ponadto, stwierdzenie, że kamyczki obniżają temperaturę wrzenia cieczy, jest błędne, ponieważ temperatura wrzenia substancji jest określona przez jej właściwości fizykochemiczne, a nie przez obecność kamyczków. Te niepoprawne odpowiedzi mogą prowadzić do mylnych wniosków, szczególnie w kontekście projektowania procesów chemicznych, gdzie precyzyjne zrozumienie dynamiki wrzenia jest kluczowe. W rzeczywistości, stosowanie kamyczków wrzennych ma na celu raczej poprawienie efektywności i bezpieczeństwa procesu destylacji, a nie jego przyspieszanie, co jest ważne w przemysłowych zastosowaniach destylacji, zwłaszcza w sektorze chemicznym i farmaceutycznym.

Pytanie 32

Mianowanie roztworu KMnO<sub>4</sub> następuje według poniższej procedury:<br> Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm<sup>3</sup> wody destylowanej, następnie dodaje się 10 cm<sup>3</sup> roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO<sub>4</sub> do momentu uzyskania trwałego, jasnoróżowego koloru.<br> Powyższa procedura odnosi się do miareczkowania

A. kompleksometrycznego
B. redoksymetrycznego
C. alkacymetrycznego
D. potencjometrycznego
Miareczkowanie alkacymetryczne, potencjometryczne oraz kompleksometryczne to trzy różne techniki analizy chemicznej, które różnią się zasadami działania oraz rodzajem reakcji, które są stosowane. Miareczkowanie alkacymetryczne koncentruje się na zmianach pH roztworu oraz zastosowaniu wskaźników kwasowo-zasadowych, co jest nieodpowiednie w przypadku reakcji redoks, jak ta z manganianem(VII) potasu, gdzie zmiany kolorystyczne są spowodowane reakcjami utleniania i redukcji, a nie zmianą pH. Potencjometryczne metody pomiaru polegają na stosowaniu elektrody do pomiaru potencjału elektrochemicznego, co również nie pasuje do opisanego przypadku, ponieważ nie wykorzystuje się elektrochemicznych pomiarów do oceny końcowego punktu miareczkowania. Z kolei miareczkowanie kompleksometryczne opiera się na tworzeniu kompleksów między metalami a ligandami, co jest również nieadekwatne do działania manganianu(VII), który działa jako utleniacz. Właściwe zrozumienie tych technik jest kluczowe, aby uniknąć zamieszania i oszczędzić czas w laboratoriach, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników analitycznych. Często błędne rozumienie różnic między tymi metodami może prowadzić do niewłaściwej interpretacji wyników oraz nieprawidłowego doboru odczynników, co może mieć poważne konsekwencje w badaniach chemicznych.

Pytanie 33

Czego się używa w produkcji z porcelany?

A. szkiełka zegarkowe oraz szalki Petriego
B. zlewki oraz bagietki
C. naczynia wagowe oraz krystalizatory
D. moździerze i parowniczki
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 34

250 cm<sup>3</sup> roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 2,5%
B. 2%
C. 5%
D. 1,25%
Roztwór kwasu octowego o stężeniu 10% objętościowych zawiera 10 g kwasu octowego w 100 cm³ roztworu. W przypadku 250 cm³ tego roztworu mamy 25 g kwasu octowego (10 g/100 cm³ * 250 cm³). Rozcieńczenie pięciokrotne oznacza, że całkowitą objętość roztworu zwiększamy pięciokrotnie, co daje 250 cm³ * 5 = 1250 cm³. Aby obliczyć stężenie, dzielimy masę kwasu octowego przez objętość nowego roztworu: 25 g / 1250 cm³ = 0,02 g/cm³, co odpowiada 2% objętościowych. Praktyczne zastosowanie tej wiedzy znajduje się w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne przygotowywanie roztworów o określonych stężeniach jest kluczowe dla jakości produkcji i bezpieczeństwa. Dobre praktyki wskazują, że zawsze należy dokładnie obliczać ilości reagentów przed ich użyciem, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 35

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO<sub>3</sub> → CaO + CO<sub>2</sub>. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?<br> Masy molowe: M<sub>Ca</sub> = 40 g/mol, M<sub>C</sub> = 12 g/mol, M<sub>O</sub> = 16 g/mol.

A. 12,5 kg
B. 50,0 kg
C. 25,0 kg
D. 37,5 kg
Wybór niewłaściwej odpowiedzi często wynika z błędnego zrozumienia zachodzących procesów chemicznych oraz pomieszania koncepcji wydajności reakcji i ilości reagentu. Przykładowo, podanie 50 kg wapnia palonego jako odpowiedzi może sugerować, że respondenci nie uwzględnili wydajności reakcji. W rzeczywistości, wydajność 50% oznacza, że tylko połowa teoretycznie uzyskanych produktów reakcji jest pozyskiwana. Z tego powodu, aby uzyskać 7 kg wapna palonego, najpierw należałoby obliczyć, ile CaCO<sub>3</sub> jest potrzebne, przy założeniu, że 100% wydajność dostarczyłaby 14 kg. Następnie, uwzględniając wydajność, trzeba pomyśleć o tym, że do uzyskania takiej ilości trzeba podwoić ilość węglanu wapnia. Osoby dokonujące obliczeń mogą również popełnić błąd w obliczeniach mas molowych, co może prowadzić do mylnych wyników. Kolejnym typowym błędem jest ignorowanie jednostek miary, gdzie niektórzy mogą skupić się tylko na samych liczbach, zapominając, że kilogramy i gramy to różne jednostki. Zrozumienie tego aspektu jest kluczowe w praktycznych zastosowaniach chemii, gdzie precyzyjne pomiary są niezbędne dla uzyskania pożądanych efektów reakcji chemicznych.

Pytanie 36

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. mianowania
B. rozcieńczania
C. utrwalania
D. oczyszczania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 37

W urządzeniu Soxhleta wykonuje się

A. sublimację
B. krystalizację
C. ługowanie
D. dekantację
Wybór krystalizacji, sublimacji lub dekantacji jako metod prowadzenia procesów w aparacie Soxhleta jest mylny, ponieważ każda z tych technik ma swoje specyficzne zastosowanie i nie jest przeznaczona do ekstrakcji materiałów stałych za pomocą cieczy w sposób charakterystyczny dla Soxhleta. Krystalizacja to proces, w którym substancja przechodzi ze stanu ciekłego do stałego w formie kryształów, a nie polega na wydobywaniu związków chemicznych z innego materiału. Jest to metoda wykorzystywana do oczyszczania związków chemicznych, ale nie ma związku z aparatem Soxhleta. Sublimacja z kolei odnosi się do transformacji substancji bezpośrednio z fazy stałej w gazową, co nie ma zastosowania w kontekście aparatu Soxhleta. Dekantacja to proces oddzielania cieczy od osadu, również nie związany z podstawowym działaniem Soxhleta, który opiera się na cyklicznym przepuszczaniu rozpuszczalnika przez próbkę. W związku z tym, wybór tych odpowiedzi może wynikać z nieporozumienia dotyczącego zasadności stosowania poszczególnych metod w kontekście ekstrakcji. Aby uniknąć takich błędów, warto zrozumieć, że aparaty Soxhleta są zaprojektowane specjalnie do efektywnej ekstrakcji substancji, a każda inna technika ma swoje unikalne zastosowanie, które nie pokrywa się z funkcjonalnością Soxhleta.

Pytanie 38

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. buforowe
B. zasadowe
C. kalibracyjne
D. kwasowe
Roztwory buforowe są kluczowe w kalibracji pehametrów, ponieważ utrzymują stałe pH pomimo dodania niewielkich ilości kwasów lub zasad. Dzięki swojej właściwości stabilizacji pH, roztwory buforowe pozwalają na dokładne pomiary, co jest niezbędne w różnych zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach analitycznych, gdzie pomiar pH jest istotny dla jakości analizowanych próbek, kalibracja pehametru za pomocą roztworów buforowych zapewnia wiarygodność wyników. Standardami ISO dla pomiaru pH zaleca się stosowanie roztworów buforowych o znanych wartościach pH, co umożliwia precyzyjne ustawienie punktów kalibracyjnych. Dobre praktyki wymagają także, aby roztwory buforowe były świeże i odpowiednio przechowywane, aby uniknąć zmian ich właściwości chemicznych. Właściwa kalibracja przyczynia się do minimalizacji błędów pomiarowych, a tym samym zwiększa dokładność wyników i niezawodność procesów analitycznych.

Pytanie 39

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. rozcieńczania
B. utrwalania
C. oczyszczania
D. zagęszczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 40

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm<sup>3</sup>, jeśli przygotowano go z 0,1 mola KOH?

A. 200 dm3
B. 20 ml
C. 200 cm3
D. 20 dm3
Pozostałe odpowiedzi są niepoprawne z różnych powodów, które wynikają z niewłaściwego zastosowania wzoru na stężenie roztworu. Na przykład odpowiedzi sugerujące objętości 20 ml (0,02 dm<sup>3</sup>), 200 dm<sup>3</sup> i 20 dm<sup>3</sup> pokazują nieporozumienie w kontekście jednostek oraz relacji między ilościami moli a objętością. 20 ml to zbyt mała objętość, aby zawierać 0,1 mola KOH przy stężeniu 0,5 mol/dm<sup>3</sup>. Takie stężenie oznacza, że w 1 dm<sup>3</sup> roztworu zawiera się 0,5 mola substancji, co w przypadku 20 ml sugerowałoby, że zawartość KOH byłaby znacznie poniżej 0,1 mola. Z kolei 200 dm<sup>3</sup> i 20 dm<sup>3</sup> to nieadekwatne wielkości, które wskazują na zupełnie inne skale, co prowadzi do absurdalnych wniosków w kontekście przygotowania roztworów. Niezrozumienie wymagań dotyczących molarności i objętości może prowadzić do poważnych błędów w eksperymentach chemicznych. W praktyce laboratoriach chemicznych, umiejętność prawidłowego przeliczania tych parametrów jest kluczowa i wpływa na dokładność wyników oraz bezpieczeństwo pracy z substancjami chemicznymi.