Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 6 czerwca 2025 02:39
  • Data zakończenia: 6 czerwca 2025 02:56

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,30 V)
B. 230 V (±1,40 V)
C. 230 V (±1,20 V)
D. 230 V (±1,50 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 2

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik kolejności faz.
B. Regulator temperatury.
C. Lampkę sygnalizacyjną trójfazową.
D. Przekaźnik czasowy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 3

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Kontrola temperatury przewodów
B. Zmniejszenie zużycia energii
C. Ochrona przed przeciążeniami
D. Zdalne sterowanie obwodami elektrycznymi
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 4

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Styczników.
B. Wyłączników różnicowoprądowych.
C. Wyłączników nadprądowych.
D. Transformatorów.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 5

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. przeciążenia obwodu elektrycznego
C. zwarcia w obwodzie elektrycznym
D. uszkodzenia podłączonego urządzenia elektrycznego
Wielu ludzi myśli, że zamontowanie gniazda bez styku ochronnego może prowadzić do zwarcia w instalacji elektrycznej, co jest błędnym rozumowaniem. Zwarcie występuje, gdy następuje niezamierzony kontakt między przewodami o różnym potencjale, co prowadzi do nadmiernego przepływu prądu. W przypadku gniazda bez styku ochronnego nie dochodzi do sytuacji zwarcia, ale raczej do braku bezpiecznego uziemienia dla urządzenia. Kolejnym mylnym przekonaniem jest to, że brak styku ochronnego może prowadzić do przeciążenia instalacji elektrycznej. Przeciążenie ma miejsce, gdy zbyt wiele urządzeń pobiera prąd jednocześnie, co nie jest bezpośrednio związane z uziemieniem. Również uszkodzenie urządzenia elektrycznego nie jest bezpośrednim skutkiem braku styku ochronnego. Uszkodzenia mogą powstać w wyniku innych czynników, takich jak zbyt wysokie napięcie czy awaria wewnętrzna. W rzeczywistości, najważniejszym zagrożeniem wynikającym z zastosowania gniazda bez styku ochronnego jest możliwość porażenia prądem elektrycznym, co jest powszechnie bagatelizowane. Wynika to z braku zrozumienia zasad działania urządzeń elektrycznych i standardów bezpieczeństwa, takich jak PN-IEC 60439, które podkreślają znaczenie odpowiedniej ochrony w instalacjach elektrycznych. Edukacja na temat właściwego użytkowania i ochrony w instalacjach elektrycznych jest kluczowa dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 6

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 10 mA
B. 30 mA
C. 100 mA
D. 300 mA
Jak dobrze wiesz, wybór wyłącznika różnicowoprądowego o prądzie na przykład 100 mA, 300 mA czy nawet 10 mA może mieć spore znaczenie dla bezpieczeństwa elektrycznego w naszych domach. Te wyłączniki na 100 mA i 300 mA są bardziej zaprojektowane do ochrony sprzętu niż do ochrony ludzi przed porażeniem prądem. Ich wysoki próg zadziałania to problem, bo mogą nie zauważyć małych nieszczelności, które mogą być niebezpieczne dla człowieka. Zazwyczaj stosuje się je w obwodach, gdzie nie chodzi głównie o chronienie ludzi. Z drugiej strony, wyłącznik na 10 mA, chociaż świetny w miejscach z wysokim ryzykiem, jak szpitale, może być za czuły w normalnych warunkach domowych i powodować niepotrzebne wyłączenia. Dlatego ważne jest, żeby wybierać wyłączniki zgodne z normami i przepisami, by naprawdę zapewnić bezpieczeństwo w instalacjach elektrycznych.

Pytanie 7

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony uzupełniającej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 8

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 2,3 Ω
C. 4,6 Ω
D. 8,0 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 9

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
Nieprawidłowe odpowiedzi opierają się na błędnych zasadach bezpieczeństwa i procedurach wykonywania prac elektrycznych. Przykładowo, propozycja rozpoczynająca się od załączenia napięcia jest fundamentalnie wadliwa. Włączenie zasilania przed jakąkolwiek weryfikacją stanu instalacji elektrycznej stwarza poważne ryzyko dla zdrowia i życia wykonawcy. Ponadto, sprawdzenie ciągłości połączeń przed upewnieniem się, że nie ma napięcia, jest niewłaściwe, ponieważ pomiar ciągłości w obwodzie z napięciem może prowadzić do uszkodzeń miernika lub, co gorsza, do porażenia prądem. Następnie, co do wymontowania uszkodzonego łącznika, nie powinno się go demontować bez wcześniejszego potwierdzenia, że cały obwód jest bezpieczny. Typowym błędem myślowym w tych podejściach jest zaufanie do założeń, że obwód jest wyłączony lub bezpieczny bez wcześniejszego sprawdzenia. Ignorowanie podstawowych procedur bezpieczeństwa może prowadzić do tragicznych konsekwencji, dlatego tak ważne jest przestrzeganie kolejności działań w zgodzie z ogólnie przyjętymi normami i przepisami, które mają na celu ochronę osób wykonujących takie prace. W każdej sytuacji związanej z pracą w instalacjach elektrycznych kluczowe jest stosowanie się do procedur, które zapewniają zarówno bezpieczeństwo, jak i prawidłowe działanie systemu. W tym kontekście, doświadczenie i świadomość potencjalnych zagrożeń są niezwykle istotne.

Pytanie 10

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Brąz
B. Stal
C. Aluminium
D. Miedź
Aluminium, brąz i stal mają swoje zastosowania, ale ich przewodność elektryczna jest znacznie gorsza niż miedzi. Aluminium niby jest okej, ale nie dorównuje miedzi, co jest istotne, gdy chodzi o efektywność przewodzenia. Często ludzie mylą niską masę aluminium z jego przewodnością, a to nie jest to samo; lżejsze aluminium ma gorszą przewodność, co w dłuższej perspektywie może prowadzić do większych strat energii. Brąz, który jest stopem miedzi, ma lepsze właściwości mechaniczne, ale przewodność elektryczna jest niższa od czystej miedzi. Stal to materiał budowlany, ale ma najniższą przewodność z wymienionych. Często nie zwraca się uwagi na różnice w przewodności, a to może skutkować wyborem niewłaściwych materiałów, co prowadzi do problemów jak nadmierne straty energii czy przegrzewanie. Dlatego ważne jest, aby znać właściwości materiałów i odpowiednio je dobierać, co jest teoretycznie zgodne z najlepszymi praktykami w inżynierii.

Pytanie 11

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Poluzowanie śruby mocującej w puszce
B. Wzrost napięcia zasilającego spowodowany przepięciem
C. Zbyt mały przekrój użytego przewodu
D. Zbyt wysoka wartość prądu długotrwałego
Zbyt duża wartość prądu długotrwałego jest często mylnie postrzegana jako główna przyczyna uszkodzeń instalacji elektrycznych. W rzeczywistości, przewody są projektowane z odpowiednimi normami i tolerancjami, które uwzględniają różne wartości prądu, a ich nadmierne obciążenie występuje w przypadkach, gdy przewody są nieodpowiednio dobrane do zastosowania. Kolejnym błędnym wnioskiem jest za mały przekrój zastosowanego przewodu. W przypadku, gdy przewód jest zbyt cienki, nie jest to jedyna przyczyna uszkodzenia izolacji. W rzeczywistości, nawet przewody o odpowiednim przekroju mogą ulegać uszkodzeniom, jeśli nie są prawidłowo zamocowane lub jeżeli występują inne problemy techniczne. Wzrost napięcia zasilającego spowodowany przepięciem również jest rzadziej przyczyną zwęglenia, ponieważ większość instalacji jest wyposażona w odpowiednie zabezpieczenia, które mają na celu ochronę przed takimi sytuacjami. Zrozumienie właściwego kontekstu dla tych problemów jest kluczowe w zapobieganiu ich występowaniu. Często błędne wnioski opierają się na braku zrozumienia zasad działania instalacji elektrycznych oraz ich projektowania zgodnie z normami. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi były dobrze wykształcone i miały świadomość znaczenia odpowiednich praktyk w ich pracy.

Pytanie 12

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Prąd błądzący
C. Przepięcie
D. Zwarcie bezimpedancyjne
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 13

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Regulator temperatury.
C. Czujnik zaniku fazy.
D. Przekaźnik czasowy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 14

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na pół roku
B. co najmniej raz na 10 lat
C. raz na rok
D. co najmniej raz na 5 lat
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 15

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
B. niemożność załączenia wyłącznika pod obciążeniem
C. brak możliwości zadziałania załączonego wyłącznika
D. prawidłowe działanie wyłącznika
W przypadku niewłaściwego podłączenia przewodu PE zamiast N, pojawiają się różne nieporozumienia dotyczące funkcji i działania wyłącznika różnicowoprądowego. Wiele osób może błędnie sądzić, że takie podłączenie nie wpłynie na działanie urządzenia, jednak jest to dalekie od prawdy. Wyłącznik różnicowoprądowy działa na zasadzie porównywania prądów w przewodach fazowym i neutralnym, a jego funkcją jest zabezpieczenie użytkowników przed porażeniem prądem oraz uszkodzeniem urządzeń. Podłączenie PE zamiast N spowoduje, że wyłącznik nie będzie w stanie prawidłowo monitorować różnic prądowych, co jest niezbędne do jego działania. W związku z tym, pojawi się sytuacja, w której wyłącznik nie zadziała w przypadku wystąpienia prądu upływu, co zwiększa ryzyko porażenia prądem. Ponadto, istnieje przekonanie, że wyłącznik będzie działał przy mniejszych prądach upływu, ale to również jest błędne, ponieważ z powodu braku właściwego podłączenia, nie będzie on mógł zareagować w żadnej sytuacji. Takie nieprawidłowe założenia mogą prowadzić do niebezpiecznych konsekwencji, które mogą zagrażać zdrowiu i życiu użytkowników. Ostatecznie, kluczowe jest, aby stosować się do standardów dotyczących instalacji elektrycznych oraz przestrzegać zasad bezpieczeństwa, aby uniknąć tego typu pomyłek.

Pytanie 16

Przeciążenie w instalacji elektrycznej polega na

A. wystąpieniu w instalacji fali przepięciowej spowodowanej wyładowaniem atmosferycznym.
B. nagłym wzroście napięcia elektrycznego w sieci powyżej wartości nominalnej.
C. przekroczeniu maksymalnego prądu znamionowego instalacji.
D. bezpośrednim połączeniu dwóch faz w systemie.
Przeciążenie instalacji elektrycznej polega na przekroczeniu prądu znamionowego, co ma istotne znaczenie dla bezpieczeństwa i funkcjonowania systemów elektrycznych. Prąd znamionowy to maksymalny prąd, jaki instalacja lub urządzenie może bezpiecznie przewodzić bez ryzyka uszkodzenia. Przekroczenie tej wartości może prowadzić do przegrzewania się przewodów, co z kolei może skutkować uszkodzeniem izolacji, a w skrajnych przypadkach nawet pożarem. Dlatego tak ważne jest, aby projektując instalację elektryczną, odpowiednio dobrać przekroje przewodów oraz zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe, które chronią przed skutkami przeciążenia. W praktyce, w przypadku zakupu nowych urządzeń elektrycznych, należy zwracać uwagę na ich moc i prąd znamionowy, aby uniknąć przeciążenia instalacji. Przykładowo, jeżeli w danym obwodzie zainstalowane są urządzenia, których łączna moc przekracza wartość znamionową obwodu, może to prowadzić do poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 17

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 9,6 kW
B. 6,9 kW
C. 3,9 kW
D. 2,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 18

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Rezystancji izolacji
C. Czasu działania wyłącznika RCD
D. Prądu zadziałania wyłącznika RCD
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 19

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony uzupełniającej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 20

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 5 lat
B. 4 lata
C. 6 lat
D. 8 lat
Wybór innych okresów, takich jak 4, 6 czy 8 lat, jest błędny, ponieważ nie odzwierciedla rzeczywistych przepisów oraz norm odnoszących się do eksploatacji sieci elektrycznych w budynkach jednorodzinnych. Rekomendacja przeprowadzania badań co 4 lata opiera się na mylnym założeniu, że częstsze kontrole mogą zapewnić wyższy poziom bezpieczeństwa, co w rzeczywistości jest nieuzasadnione i może prowadzić do niepotrzebnych kosztów. Z kolei wydłużenie okresu do 6 lub 8 lat stwarza ryzyko, że istotne usterki mogą nie zostać wykryte na czas, co może skutkować poważnymi awariami. W kontekście regulacji prawnych, w Polsce ustawa Prawo energetyczne oraz normy PN-IEC określają konkretne terminy przeprowadzania badań, a ich niewłaściwe interpretowanie może prowadzić do nieprzestrzegania zasad bezpieczeństwa. Ważne jest, aby pamiętać, że regularne przeglądy nie tylko spełniają wymogi prawne, ale także przyczyniają się do dłuższej żywotności instalacji oraz redukcji ryzyka wystąpienia wypadków związanych z użytkowaniem energii elektrycznej. Ignorowanie tych zasad prowadzi do mylnych wniosków i może zagrażać bezpieczeństwu osób korzystających z instalacji elektrycznych.

Pytanie 21

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 4,6 Ω
B. 8,0 Ω
C. 2,3 Ω
D. 7,7 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 22

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Zaprasowywania przewodów w połączeniach wsuwanych.
B. Formowania oczek na końcach żył.
C. Montażu zacisków zakleszczających.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 23

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. miedzianymi umieszczonymi pod tynkiem
B. aluminiowymi umieszczonymi pod tynkiem
C. miedzianymi umieszczonymi na tynku
D. aluminiowymi umieszczonymi na tynku
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 24

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Luźne połączenie w listwie neutralnej
C. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
D. Zbyt duża moc urządzenia
Źle dobrana wartość znamionowa wyłącznika nadprądowego nie jest bezpośrednią przyczyną nadpalenia izolacji przewodu neutralnego. Wyłącznik nadprądowy ma na celu ochronę instalacji przed przeciążeniem i zwarciem, a jego dobór powinien być zgodny z wymaganiami obciążeniowymi instalacji, co określa norma PN-IEC 60947. W przypadku, gdy wyłącznik jest zbyt mały, może on zadziałać przy przeciążeniu, ale nie spowoduje bezpośrednio uszkodzenia izolacji przewodu. Zbyt duży przekrój przewodu także nie prowadzi do nadpalenia izolacji; w rzeczywistości, większy przekrój przewodu oznacza mniejsze opory i mniejsze nagrzewanie. Z kolei zbyt duża moc odbiornika może prowadzić do przeciążenia, ale kluczowe jest to, że nie ma to wpływu na przewód neutralny, jeśli instalacja jest poprawnie wykonana i zabezpieczona. W praktyce, nadpalenie izolacji wynika głównie z problemów z połączeniami, a nie z parametrów przewodów czy wyłączników. Należy zatem pamiętać, że każdy komponent w instalacji elektrycznej ma swoje funkcje, a właściwe połączenia są kluczowe dla bezpieczeństwa całej instalacji.

Pytanie 25

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik różnicowoprądowy
B. ochronnik przeciwprzepięciowy
C. bezpiecznik instalacyjny
D. wyłącznik instalacyjny płaski
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 26

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. jednodrutowe
B. wielodrutowe
C. płaskie
D. sektorowe
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 27

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na olej
B. Odporność na ciepło
C. Zwiększenie wytrzymałości mechanicznej
D. Niepalność
Wybór złej odpowiedzi może wprowadzić w błąd, gdy chodzi o materiały izolacyjne. Odporność na olej jest przydatna w przemyśle, gdzie przewody mają styczność z chemikaliami, ale to nie to, co oznacza LYc. Inżynierowie patrzą na różne czynniki przy wyborze materiałów elektrycznych, ale w przypadku oznaczenia LYc chodzi głównie o to, jak przewód znosi ciepło. Zwiększanie wytrzymałości na naprężenia mechaniczne jest ważne w wielu przypadkach, ale nie zawsze znaczy, że przewód będzie odporny na wysokie temperatury. To może prowadzić do problemów, jeżeli użyjesz go w nieodpowiednich warunkach. Niepalność to również ważna cecha, ale to nie ma nic wspólnego z oznaczeniem LYc. Kluczowe jest, żeby znać standardy i normy związane z materiałami, żeby uniknąć zagrożeń przy ich używaniu.

Pytanie 28

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA

A. P304 40-30-AC
B. P302 25-10-AC
C. P202 25-30-AC
D. P304 40-100-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 29

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Słabo dokręcone złącza wyłącznika
B. Niewłaściwe napięcie zasilania
C. Zbyt niski prąd znamionowy wyłącznika
D. Zbyt wysoka moc zasilanego odbiornika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 30

Jaką wartość ma znamionowa sprawność silnika jednofazowego, którego dane to: PN = 3,7 kW (moc mechaniczna na wale), UN = 230 V, IN = 21,4 A, cos φ = 0,95?

A. 0,75
B. 0,79
C. 0,95
D. 0,71
Prawidłowe zrozumienie sprawności silnika elektrycznego jest kluczowe dla oceny jego efektywności. Błędne odpowiedzi, takie jak 0,71, 0,95 czy 0,75, wynikają z niepoprawnego zastosowania wzorów lub mylnych założeń. Na przykład, wybór 0,95 może prowadzić do wniosku, że silnik przekształca większość energii elektrycznej w pracę mechaniczną, co jest nierealistyczne. W rzeczywistości żaden silnik nie osiąga 100% sprawności ze względu na straty związane z oporem wewnętrznym, tarciem oraz stratami cieplnymi. Współczynniki sprawności w zakresie 0,7 do 0,9 są powszechnie akceptowane dla silników jednofazowych, a ich wartość zależy od konstrukcji oraz zastosowanych materiałów. Typowym błędem jest także nieprawidłowe zrozumienie pojęcia współczynnika mocy (cos φ), który wskazuje na efektywność wykorzystania energii elektrycznej. Zbyt mała wartość tego współczynnika oznacza, że więcej energii jest tracone w formie ciepła, co negatywnie wpływa na ogólną sprawność. Dlatego ważne jest, aby właściwie obliczać sprawność silnika, uwzględniając wszystkie wymienione parametry, co pozwala na lepsze zarządzanie energią i kosztami w zakładach przemysłowych.

Pytanie 31

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (5÷10) · In
B. (3÷5) · In
C. (5÷10) · In
D. (2÷3) · In
Odpowiedź (5÷10) · In jest prawidłowa, ponieważ wyzwalacze elektromagnetyczne samoczynnych wyłączników instalacyjnych nadprądowych typu C działają w określonym zakresie krotności prądu znamionowego. Zgodnie z normą IEC 60947-2, wyzwalacze te są zaprojektowane do zadziałania przy prądzie zwarciowym równym 5 do 10 razy prąd znamionowy (In). Oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zadziała, aby chronić obwód przed uszkodzeniem, w przypadku gdy prąd przekroczy 5-krotną wartość znamionową. Przykładem praktycznym może być instalacja elektryczna w budynku komercyjnym, gdzie zastosowanie wyłączników typu C jest zalecane w obwodach z silnikami elektrycznymi, które mogą przy rozruchu generować wyższe prądy. Ich zastosowanie minimalizuje ryzyko fałszywego zadziałania wyłącznika podczas normalnego funkcjonowania obwodu, jednocześnie zapewniając odpowiednią ochronę w przypadku rzeczywistego zagrożenia.

Pytanie 32

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. mają wzmocnioną izolację.
B. wymagają uziemienia obudowy.
C. muszą być zasilane wyłącznie przez transformator separacyjny.
D. muszą być zasilane wyłącznie z sieci PELV.
Wybór odpowiedzi wskazujących na konieczność zasilania opraw oświetleniowych wyłącznie przez transformator separacyjny lub z sieci PELV oraz wymaganie uziemienia obudowy wynika z niewłaściwego zrozumienia zasad klasyfikacji urządzeń elektrycznych. Oprawy z symbolem podwójnej izolacji nie wymagają separacji zasilania, ponieważ ich konstrukcja zapewnia wystarczający poziom ochrony przed porażeniem prądem. Transformator separacyjny jest stosowany w urządzeniach, które nie mają podwójnej izolacji i wymagają dodatkowego zabezpieczenia, co oznacza, że jego zastosowanie w przypadku opraw z wzmocnioną izolacją jest zbędne. Ponadto, zasada dotycząca uziemienia nie ma zastosowania w przypadku urządzeń klasy II, ponieważ ich konstrukcja nie przewiduje tego typu zabezpieczeń. Zamiana zasilania na system PELV, który bazuje na niskich napięciach, również jest nieadekwatna, ponieważ oprawy z podwójną izolacją są projektowane do pracy w standardowych warunkach zasilania. Takie nieporozumienia mogą prowadzić do niebezpiecznych praktyk montażowych oraz użytkowania, w których bezpieczeństwo użytkowników może być zagrożone. Kluczowe jest zrozumienie, że podwójna izolacja sama w sobie stanowi wystarczający poziom ochrony, eliminując potrzebę stosowania dodatkowych zabezpieczeń, które są dedykowane innym klasom ochronności.

Pytanie 33

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX5
B. IPX2
C. IPX4
D. IPX3
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 34

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. montażu nowych punktów świetlnych
B. czyszczenia urządzeń w rozdzielniach
C. wymiany gniazd zasilających
D. czyszczenia lamp oświetleniowych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 35

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. układu tablic informacyjnych i ostrzegawczych
B. doboru oraz oznaczenia przewodów
C. doboru zabezpieczeń i urządzeń
D. wartości natężenia oświetlenia w miejscach pracy
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 36

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 5 lat
B. 10 lat
C. 2 lata
D. 1 rok
Przeglądy instalacji elektrycznej co 2 lata, 1 rok czy 10 lat mogą być mylące, ponieważ każdy z tych okresów nie uwzględnia rzeczywistych wymagań dotyczących bezpieczeństwa i stanu technicznego instalacji. Przegląd co 2 lata może wydawać się rozsądny w kontekście częstotliwości, jednak nie odpowiada on rzeczywistym potrzebom użytkowników, ponieważ pomija dłuższe, udokumentowane okresy, w których instalacja może funkcjonować prawidłowo bez poważnych usterek. Z kolei roczny przegląd wydaje się być nadmiernie rygorystyczny i nieekonomiczny, co może prowadzić do zbędnych kosztów. Przegląd co 10 lat z kolei może stwarzać złudne poczucie bezpieczeństwa, ponieważ przez tak długi okres mogą wystąpić zmiany w warunkach użytkowania, które mogą wpłynąć na stan instalacji, takie jak zużycie materiałów czy zmiany norm prawnych. Dlatego kluczowe jest, aby stosować się do ustalonej przez normy praktyki pięcioletniej, co jest uzasadnione zarówno technicznie, jak i prawnymi wymaganiami. Niedostateczna częstotliwość przeglądów może prowadzić do poważnych konsekwencji, takich jak awarie, które niosą za sobą nie tylko ryzyko dla zdrowia i życia, ale również mogą skutkować wysokimi kosztami naprawy i odszkodowań.

Pytanie 37

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do formowania oczek na końcach żył jednodrutowych.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 38

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja izolacji miejsca pracy jest zbyt duża
B. impedancja pętli zwarcia jest zbyt wysoka
C. impedancja sieci zasilającej jest zbyt niska
D. rezystancja uziemienia jest zbyt niska
W kontekście ochrony przed porażeniem prądem elektrycznym, zrozumienie roli różnych parametrów instalacji jest niezwykle istotne. Rezystancja izolacji stanowiska nie jest bezpośrednio związana z efektywnością ochrony w układzie TN-C. Wysoka rezystancja izolacji może świadczyć o dobrym stanie izolacji, co w teorii zmniejsza ryzyko porażenia prądem, ale nie eliminuje potrzeby niskiej impedancji pętli zwarcia. Z kolei zbyt mała rezystancja uziomu nie gwarantuje właściwej ochrony, ponieważ kluczowym parametrem jest to, jak szybko prąd zwarciowy może przepłynąć przez obwód, co zależy od impedancji pętli zwarcia. Impedancja sieci zasilającej jest także mniej istotna w kontekście bezpośredniego bezpieczeństwa, ponieważ to nie ona decyduje o skuteczności wyłączenia obwodu w przypadku zwarcia. Typowym błędem myślowym jest skupianie się na pojedynczych parametrach, zamiast na całościowym zrozumieniu interakcji między różnymi elementami instalacji. Bez właściwej analizy impedancji pętli zwarcia, jakiekolwiek poprawki dotyczące uziemienia czy rezystancji izolacji mogą nie przynieść oczekiwanych rezultatów, a tym samym zagrażać bezpieczeństwu użytkowników instalacji elektrycznych. Kluczowe jest zatem podejście holistyczne, które uwzględnia wszystkie parametry, aby zapewnić pełną ochronę przed porażeniem prądem elektrycznym.

Pytanie 39

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 344 C-16-30-AC
C. P 312 B-16-30-AC
D. P 302 25-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 40

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. TN-C
C. IT
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.