Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 maja 2025 16:04
  • Data zakończenia: 31 maja 2025 16:23

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. kask ochronny
B. okulary ochronne
C. maskę przeciwpyłową
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 2

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 66mm
B. 12mm
C. 8mm
D. 2mm
Poprawna odpowiedź to 8 mm, co zgadza się z parametrami czujnika podanymi w tabeli. Zasięg detekcji czujnika wynosi dokładnie 8 mm, co oznacza, że przedmiot musi znajdować się w tej odległości od czoła czujnika, aby mógł zostać skutecznie wykryty. W praktycznych zastosowaniach, takich jak automatyka przemysłowa, robotyka czy systemy zabezpieczeń, znajomość zasięgu detekcji czujników jest kluczowa. Umożliwia to prawidłowe zaprojektowanie systemów, które polegają na precyzyjnym wykrywaniu obiektów. Na przykład, w aplikacjach z wykorzystaniem czujników zbliżeniowych, jeśli odległość obiektu przekroczy zasięg czujnika, wykrycie nie będzie możliwe, co może prowadzić do błędów w działaniu całego systemu. Dlatego też, przy projektowaniu układów automatyki, ważne jest, aby zawsze uwzględniać parametry techniczne czujników, co zapewnia ich efektywne działanie i zgodność ze standardami branżowymi.

Pytanie 3

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy trójpołożeniowy (3/3)
B. pięciodrogowy dwupołożeniowy (5/2)
C. trójdrogowy dwupołożeniowy (3/2)
D. pięciodrogowy trójpołożeniowy (5/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 4

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HH
B. HL
C. HM
D. HR
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 5

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. umieścić poszkodowanego w bezpiecznej pozycji bocznej
B. założyć poszkodowanemu opatrunek uciskowy poniżej rany
C. założyć poszkodowanemu opatrunek uciskowy na ranę
D. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 6

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Zawór redukcyjny
B. Filtr
C. Smarownica
D. Sprężarka
Sprężarka to ważny element w systemie sprężonego powietrza, ale nie wchodzi w skład zespołu przygotowania. W tym zespole są inne części, takie jak zawory redukcyjne, filtry i smarownice. Te elementy mają swoje zadania, jak na przykład oczyszczanie powietrza, regulację jego ciśnienia i nawilżanie przed użyciem. Zawór redukcyjny dba o to, żeby ciśnienie było odpowiednie, co jest naprawdę ważne, żeby maszyny działały jak trzeba. Filtr zajmuje się usuwaniem zanieczyszczeń i wilgoci, a to prolonguje żywotność urządzeń i zwiększa ich efektywność. Smarownica z kolei dodaje odpowiednią ilość oleju, co zmniejsza tarcie i zapobiega uszkodzeniom. Jak dobrze się rozumie rolę każdego z tych elementów, to można lepiej zarządzać systemami pneumatycznymi i je optymalizować w przemyśle, co jest naprawdę ważne w tej branży.

Pytanie 7

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Filtr powietrza, reduktor, smarownica
B. Smarownica, filtr powietrza, reduktor
C. Reduktor, smarownica, filtr powietrza
D. Reduktor, filtr powietrza, smarownica
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza często opiera się na nieporozumieniach dotyczących funkcji poszczególnych komponentów i ich wzajemnych relacji. Na przykład, montaż reduktora przed filtrem powietrza jest błędny, ponieważ zanieczyszczone powietrze mogłoby uszkodzić mechanizmy regulacyjne reduktora, co prowadziłoby do jego awarii lub niewłaściwego działania. Podobnie, umieszczenie smarownicy przed filtrem może skutkować zatykaniem smarownicy cząstkami zanieczyszczeń, co również negatywnie wpłynie na cały system. W przemyśle pneumatycznym szczególnie ważne jest, aby każdy element działał optymalnie, a ich kolejność była zgodna z zaleceniami producentów i światowymi standardami. Niezrozumienie funkcji i sekwencji może prowadzić do poważnych problemów eksploatacyjnych, takich jak spadek wydajności, zwiększone ryzyko awarii mechanicznych oraz nieefektywne zużycie energii. Dlatego kluczowe jest odpowiednie przeszkolenie i znajomość norm, które regulują instalację systemów sprężonego powietrza.

Pytanie 8

Modulacja szerokości impulsu (PWM) w systemach sterujących odnosi się do regulacji poprzez zmianę

A. fazy sygnału
B. amplitudy impulsu
C. szerokości impulsu
D. częstotliwości sygnału
W poprzednich odpowiedziach pojawiły się koncepcje, które nie odpowiadają zasadom działania modulatorów PWM. Zmiana częstotliwości sygnału nie jest głównym sposobem działania PWM, ale może wpływać na wydajność w pewnych kontekstach. W rzeczywistości, w PWM częstotliwość pozostaje stała, a zmienia się szerokość impulsów. Amplituda impulsu również nie odgrywa kluczowej roli w PWM, gdyż sygnał PWM zazwyczaj operuje na stałym poziomie napięcia, a jego moc modyfikowana jest przez szerokość impulsu, a nie jego wysokość. W kontekście fazy sygnału, jest to zupełnie inna technika modulacji, która nie ma zastosowania w PWM. Zmiana fazy może wprowadzać inne zjawiska, takie jak interferencja w falach sinusoidalnych, ale nie ma związku z modulacją szerokości impulsu. Typowym błędem myślowym jest mylenie tych różnych technik, co prowadzi do nieporozumień dotyczących ich zastosowań i skuteczności. Zrozumienie, że PWM koncentruje się na szerokości impulsu, jest kluczowe dla prawidłowego zastosowania tej technologii w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja jasności światła.

Pytanie 9

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. ucinaczki boczne
B. pincety
C. praski ręcznej
D. kombinerki
Kombinerki, pęsety i ucinaczki boczne to narzędzia, które nie są przeznaczone do zaciskania końcówek przewodów elektrycznych, co może prowadzić do nieprawidłowych i niebezpiecznych połączeń. Kombinerki, mimo że są wielofunkcyjne i mogą być użyte do chwytania oraz cięcia, nie zapewniają odpowiedniej siły zacisku, co skutkuje luźnymi połączeniami. Długotrwałe eksploatowanie takich połączeń może prowadzić do zwiększenia oporu elektrycznego, co w konsekwencji może powodować przegrzanie przewodów oraz ich uszkodzenie. Używanie pęsety do zaciskania końcówek jest również nieodpowiednie, gdyż jest to narzędzie o zbyt małej siłę zacisku i skonstruowane do precyzyjnego chwytania małych elementów, a nie do pracy z przewodami elektrycznymi. Ucinaczki boczne, choć skuteczne w cięciu, nie są przystosowane do formowania połączeń, co czyni je nieodpowiednim wyborem w kontekście instalacji elektrycznych. Wybór niewłaściwego narzędzia do zaciskania końcówek prowadzi do ryzykownych sytuacji, w których połączenia mogą się rozluźnić, a w konsekwencji przyczynić się do powstawania zwarć czy innych awarii elektrycznych. Dlatego tak ważne jest, aby korzystać z narzędzi przeznaczonych do określonych zastosowań, co jest zgodne z normami bezpieczeństwa i dobrymi praktykami inżynieryjnymi.

Pytanie 10

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. obróbki
B. pomiarów
C. montażu
D. oględzin
W ocenie stanu technicznego podzespołów mechanicznych kluczowe jest zrozumienie, że każdy etap procesu diagnostycznego ma swoje miejsce i znaczenie. Rozpoczęcie od obróbki, pomiarów czy montażu jest niepoprawne, ponieważ te działania zakładają wcześniejsze zweryfikowanie ogólnego stanu urządzenia. Obróbka podzespołów, na przykład, odbywa się zazwyczaj po stwierdzeniu, że są one w odpowiednim stanie do dalszych działań. Pomiar, z kolei, bez uprzednich oględzin, może prowadzić do niepoprawnych wniosków, gdyż istotne niedoskonałości mogą zniekształcać wyniki. Montaż zestawów mechanicznych bez wcześniejszej analizy stanu podzespołów może skutkować niewłaściwym działaniem finalnego produktu, co jest niezwykle kosztowne i czasochłonne w naprawie. W praktyce inżynierskiej istotne jest stosowanie metodologii, które zaczynają się od detekcji widocznych problemów, co wpływa na efektywność całego procesu oceny i konserwacji. Prawidłowe podejście do diagnostyki jest kluczowe dla zapewnienia długotrwałej żywotności i niezawodności podzespołów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 11

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody
B. Triaki
C. Diody i tyrystory
D. Triaki oraz diaki
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 12

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. śrub, nakrętek, podkładek
B. resorów, sprężyn i drążków skrętnych
C. narzędzi do obróbki skrawaniem
D. łożysk tocznych
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 13

Najważniejszym parametrem opisującym kondensator jest

A. ładunek
B. indukcyjność
C. rezystancja
D. pojemność
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 14

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. prędkości obrotowej na napięcie stałe
B. prędkości obrotowej na impulsy elektryczne
C. kąta obrotu na regulowane napięcie stałe
D. kąta obrotu na impulsy elektryczne
Komutatorowa prądnica tachometryczna to urządzenie przetwarzające prędkość obrotową na napięcie stałe, co czyni je niezwykle użytecznym w aplikacjach mechatronicznych, w tym w systemach automatyki i robotyki. Podczas pracy, prądnica generuje napięcie proporcjonalne do prędkości obrotowej wału silnika, co umożliwia dokładne pomiary i kontrolę prędkości. Przykładowo, w systemach regulacji prędkości silników elektrycznych, informacje dostarczane przez prądnice tachometryczne stanowią feedback dla regulatorów PID, co pozwala na precyzyjne dostosowanie mocy dostarczanej do silnika. Zastosowanie takich urządzeń przyczynia się do zwiększenia efektywności i bezpieczeństwa systemów mechatronicznych, a ich standardy budowy i działania są zgodne z normami IEC i ISO, zapewniając niezawodność i zgodność w różnych warunkach pracy. Wiedza na temat działania prądnic tachometrycznych jest zatem kluczowa dla inżynierów projektujących nowoczesne systemy automatyki.

Pytanie 15

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Filtr oleju
B. Tłokowy pierścień uszczelniający
C. Zawór bezpieczeństwa
D. Sprężynę zaworu zwrotnego
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 16

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Przelotowy
B. Odcinający
C. Zwrotny
D. Rozdzielający
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 17

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. technicznym mostkiem Thomsona
B. omomierzem
C. laboratoryjnym mostkiem Thomsona
D. megaomomierzem
Pomiary rezystancji izolacji instalacji elektrycznej wykonuje się za pomocą megaomomierza, który jest specjalistycznym urządzeniem zaprojektowanym do oceny stanu izolacji. Megaomomierze działają na zasadzie generowania wysokiego napięcia, co pozwala na dokładne zmierzenie rezystancji izolacyjnej. Zgodnie z normami PN-EN 61557, pomiar rezystancji izolacji jest kluczowym elementem w ocenie bezpieczeństwa instalacji elektrycznych. W praktyce, podczas regularnych kontroli, technicy zalecają wykonywanie takich pomiarów co najmniej raz na rok, aby zminimalizować ryzyko awarii spowodowanych uszkodzeniem izolacji. Pomiary te są szczególnie istotne w obiektach przemysłowych, gdzie występują różne czynniki zewnętrzne mogące wpływać na stan izolacji, takie jak wilgoć, zanieczyszczenia czy zmiany temperatury. W przypadku stwierdzenia niskiej rezystancji, może to wskazywać na degradację materiału izolacyjnego, co wymaga podjęcia działań naprawczych.

Pytanie 18

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
B. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
C. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
D. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
Zastosowanie opaski powyżej rany lub poniżej rany w kontekście krwotoku zewnętrznego jest nieprawidłowe z kilku powodów. Głównym celem opatrunku w przypadku krwawienia jest bezpośrednie uciskanie rany, co pozwala na fizyczne zatrzymanie krwi. Zakładanie opaski powyżej rany, czyli na zdrową tkankę, może nie tylko nie pomóc w zatrzymaniu krwawienia, ale także spowodować uszkodzenie tkanek w wyniku ucisku. Takie podejście jest zgodne z nieprawidłowymi założeniami, które skupiają się na lokalizacji opaski, zamiast na bezpośrednim działaniu na ranę. Z kolei zastosowanie opaski poniżej rany również nie przynosi pożądanych efektów, ponieważ krew nadal będzie płynąć do rany, co może prowadzić do dalszej utraty krwi. Dodatkowo, zmiana opatrunku w krótkim czasie bez odpowiedniego ucisku na ranie jest błędem, ponieważ może prowadzić do wznowienia krwawienia. W kontekście standardów pierwszej pomocy, niezwykle ważne jest, aby skupić się na ucisku na miejscu krwawienia i zastosowaniu jałowego opatrunku, co stwarza warunki do skutecznej interwencji. Praktyka pokazuje, że odpowiednie działania powinny być oparte na zrozumieniu anatomii i mechanizmów krwawienia, a także na stosowaniu sprawdzonych metod, które zwiększają szanse na zatrzymanie krwawienia i udzielenie skutecznej pomocy przedmedycznej.

Pytanie 19

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego anizotropowego
B. z litego materiału magnetycznego izotropowego
C. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
D. z pakietu blach elektrotechnicznych nie izolowanych od siebie
Sugerowanie, że rdzeń wirnika silnika indukcyjnego można wykonać z litego materiału magnetycznego anizotropowego, jest nieprawidłowe z perspektywy inżynierii elektrycznej. Anizotropowość materiału oznacza, że jego właściwości magnetyczne są różne w różnych kierunkach, co w przypadku rdzenia wirnika byłoby niekorzystne. W silnikach indukcyjnych istotne jest, aby rdzeń miał jednorodne właściwości magnetyczne, co zapewnia optymalne zachowanie się pola magnetycznego. Lite materiały mogą prowadzić do powstawania silnych prądów wirowych, co zwiększa straty mocy i obniża efektywność silnika. Użycie pakietów blach elektrotechnicznych, które są wzajemnie izolowane, z kolei pozwala na ograniczenie tych strat. Zastosowanie litego materiału magnetycznego izotropowego nie rozwiązuje problemu strat prądów wirowych, ponieważ chociaż materiał jest jednorodny, to nadal sprzyja powstawaniu strat energetycznych poprzez generowanie prądów wirowych w strukturze. Wreszcie, wykonanie rdzenia z pakietu blach elektrotechnicznych nieizolowanych od siebie jest również nieprawidłowe. Takie podejście prowadziłoby do znacznych strat energii, a także do przegrzewania się rdzenia, co mogłoby wpłynąć na bezpieczeństwo i trwałość silnika. W przemyśle i inżynierii energetycznej stosuje się blachy elektrotechniczne o odpowiedniej grubości i właściwościach magnetycznych, aby zoptymalizować wydajność i niezawodność urządzeń elektrycznych.

Pytanie 20

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. śruby mikrometrycznej
C. mikroskopu technicznego
D. przymiaru kreskowego
Śruba mikrometryczna to narzędzie pomiarowe, które umożliwia uzyskanie wyjątkowo dokładnych wyników pomiarów średnicy wałków oraz innych elementów cylindrycznych. Posiada ona mechaniczną konstrukcję, która pozwala na odczyt wartości z dokładnością do setnych lub nawet tysięcznych części milimetra. Dzięki zastosowaniu śruby mikrometrycznej użytkownik może precyzyjnie ustawić narzędzie na obiekcie pomiarowym, a następnie odczytać wynik z podziałki, co zapewnia wysoką powtarzalność i dokładność. W praktyce, śruby mikrometryczne są powszechnie stosowane w laboratoriach pomiarowych, zakładach produkcyjnych oraz w warsztatach mechanicznych, gdzie precyzja pomiarów jest kluczowa. Przykładem zastosowania może być kontrola średnicy wałków w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe mają bezpośredni wpływ na bezpieczeństwo i funkcjonalność pojazdów. Biorąc pod uwagę standardy takie jak ISO 2878, precyzyjne pomiary przy użyciu śrub mikrometrycznych są niezbędne do zapewnienia zgodności z wymaganiami jakościowymi.

Pytanie 21

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być układane jak najdalej od przewodów silnoprądowych
B. być wciągane do osłon jako pierwsze
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być wciągane do osłon jako ostatnie
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 22

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 25 V
C. 15 V
D. 5 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 23

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Nieszczelność w przewodzie ssawnym pompy
B. Nieszczelność zaworu bezpieczeństwa
C. Wytarte pierścienie uszczelniające tłokowe
D. Wytarte pierścienie uszczelniające rozdzielaczy
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 24

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 36 000 Ω
B. 36 Ω
C. 3600 Ω
D. 360 Ω
Wyniki, które wskazują na wartości takie jak 3600 Ω, 360 Ω czy 36 000 Ω, opierają się na błędnej interpretacji kodów kolorów rezystora. Kluczowym błędem jest zrozumienie, że każdy kolor na rezystorze ma przypisaną konkretną cyfrę, a także, że ostatni pasek odnosi się do mnożnika. Odpowiedzi wskazujące na 3600 Ω oraz 36 000 Ω sugerują, że za wartość rezystancji przyjęto niepoprawne wartości cyfr. W przypadku 3600 Ω, można zauważyć, że ktoś mógł pomylić kolor pomarańczowy z kolorem czerwonym, który oznaczałby 2 jako cyfrę, w efekcie uzyskując błędną wartość. Z kolei 360 Ω to wynik, który mógłby być mylnie obliczany, gdyby założono, że czarny pasek oznacza mnożnik 1. W rzeczywistości jednak czarny pasek wskazuje, że nie ma mnożnika, co obniża wartość do 36 Ω. W praktyce, zrozumienie tego systemu kodów jest niezmiernie ważne, ponieważ niewłaściwa wartość rezystora może prowadzić do nieprawidłowego działania obwodów, a w konsekwencji do uszkodzenia komponentów. Dlatego kluczowe jest dokładne zapoznanie się z normami i wytycznymi, które regulują oznaczanie wartości rezystorów, aby uniknąć takich pomyłek w przyszłości.

Pytanie 25

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. pokrycie klejem
B. rozdzielenie papierem
C. rozdzielenie folią aluminiową
D. pokrycie pastą termoprzewodzącą
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 26

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
B. zbliża się do linii punktu rosy
C. nie zmienia się w stosunku do linii punktu rosy
D. oddala się od linii punktu rosy
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 27

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik pojemnościowy
B. Czujnik ultradźwiękowy
C. Czujnik hydrostatyczny
D. Czujnik pływakowy
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 28

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach i okularach ochronnych
B. kasku ochronnym i rękawicach elektroizolacyjnych
C. rękawicach skórzanych i fartuchu skórzanym
D. obuwiu z gumową podeszwą oraz fartuchu ochronnym
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 29

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. MAG
C. TIG
D. SAW
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 30

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. przepływomierz
B. miernik mętności
C. czujnik poziomu
D. miernik prędkości
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 31

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak największą rezystancją wewnętrzną
B. z rezystancją wewnętrzną równą rezystancji obciążenia
C. z jak najmniejszą rezystancją wewnętrzną
D. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
Odpowiedź dotycząca użycia amperomierza z jak najmniejszą rezystancją wewnętrzną jest poprawna, ponieważ niska rezystancja wewnętrzna minimalizuje wpływ przyrządu pomiarowego na układ elektryczny, w którym dokonujemy pomiaru natężenia prądu. Gdy amperomierz ma dużą rezystancję wewnętrzną, wprowadza znaczące zmiany w obwodzie, co prowadzi do zniekształcenia wyników pomiarów. W praktyce oznacza to, że amperomierze stosowane w aplikacjach mechatronicznych, takich jak pomiary w systemach automatyki przemysłowej czy robotyce, powinny być projektowane tak, aby miały jak najmniejszy wpływ na mierzony obwód. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie odpowiednich parametrów technicznych przyrządów pomiarowych, aby zapewnić ich dokładność i wiarygodność. Przykładowo, w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, jak w diagnostyce sprzętu czy pomiarach laboratoryjnych, wybór amperomierza o niskiej rezystancji wewnętrznej staje się kluczowy dla uzyskania rzetelnych wyników. Dodatkowo, w sytuacjach gdzie prąd jest zmienny, a nie stały, zastosowanie odpowiedniego amperomierza pozwala na dokładne monitorowanie parametrów pracy urządzeń elektrycznych.

Pytanie 32

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. przełącznik obiegu.
C. rozdzielacz czterodrogowy.
D. zawór z popychaczem.
Wybór odpowiedzi innej niż zawór z popychaczem może wynikać z nieporozumienia dotyczącego funkcji i wyglądu różnych elementów pneumatycznych. Przełącznik obiegu jest elementem, który służy do kierowania przepływu powietrza, ale nie ma popychacza i działa na innych zasadach. Z kolei rozdzielacz czterodrogowy to bardziej skomplikowane urządzenie, które pozwala na kontrolę kierunku przepływu powietrza w czterech różnych kierunkach, również nie posiada typowego popychacza. Zawór zwrotno-dławiący, z drugiej strony, jest przeznaczony do regulacji przepływu i zapobiega cofaniu się medium, ale również nie jest odpowiedni w kontekście opisanego elementu. Typowym błędem jest mylenie funkcji różnych zaworów i elementów pneumatycznych oraz niedostateczne zwrócenie uwagi na ich specyfikę. W branży pneumatycznej kluczowe jest odpowiednie dobranie elementów do konkretnego zastosowania, co wymaga znajomości ich właściwości i zastosowań. W związku z tym, dokładne zrozumienie każdego z wymienionych elementów oraz ich różnic jest niezbędne, aby uniknąć nieporozumień i błędów w projektowaniu systemów pneumatycznych.

Pytanie 33

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 34

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 3,001 bar
B. 4,001 bar
C. 5,001 bar
D. 2,001 bar
Czasami przy przeliczaniu ciśnienia można się pogubić i nie zwrócić uwagi na to, że jednostki są różne. Na przykład, gdy próbujesz przeliczyć 1500 mmHg na bary, możesz po prostu spojrzeć na liczby i myśleć, że coś się zgadza. A to wcale nie jest takie jasne. Musisz pamiętać, że milimetry rtęci i paskale to dwa różne rodzaje jednostek. Bez odpowiedniego przeliczenia, możesz łatwo popełnić błąd. Wiele osób myśli, że same mmHg wystarczą, żeby od razu przejść na bary, ale to nie tak działa. Każda jednostka ma swoje zastosowanie i nie można ich porównywać bez wcześniejszej konwersji. Spoko, że są standardy branżowe, które mówią o tych sprawach, ale chodzi o to, żeby wiedzieć, co robić przed przeliczeniami, żeby nie było nieporozumień w przyszłości.

Pytanie 35

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
B. nastąpiła awaria wewnętrzna sterownika
C. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
D. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 36

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik magnetyczny
B. Czujnik indukcyjny
C. Czujnik tensometryczny
D. Czujnik optyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 37

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Podłączenie kondensatora rozruchowego
B. Zmiana kolejności faz
C. Odłączenie uziemienia silnika
D. Zastosowanie wyłącznika instalacyjnego zwłocznego
Zastosowanie wyłącznika instalacyjnego zwłocznego to rozwiązanie, które pozwala na bezpieczne użytkowanie urządzeń z silnikiem trójfazowym, zwłaszcza w sytuacjach, gdy przy rozruchu silnika występują chwilowe przeciążenia. Wyłącznik zwłoczny działa na zasadzie odroczenia zadziałania na krótki okres, co pozwala na rozruch silnika bez ryzyka natychmiastowego wyłączenia z powodu chwilowego wzrostu prądu. W praktyce, tego rodzaju wyłączniki są często stosowane w instalacjach przemysłowych, gdzie silniki mogą doświadczać większych obciążeń przy starcie. Ponadto, takie wyłączniki zgodne są z normami bezpieczeństwa, które zalecają stosowanie urządzeń chroniących przed przeciążeniem. Należy pamiętać, że w sytuacji, gdy silnik jest sprawny, a problemem jest tylko zbyt duży prąd rozruchowy, ważne jest, aby dobrać odpowiedni wyłącznik, który zminimalizuje ryzyko fałszywych alarmów oraz zapewni ciągłość pracy maszyny. W praktyce, instalatorzy powinni również zwracać uwagę na charakterystykę pracy silnika oraz jego zastosowanie, aby dobrać odpowiedni wyłącznik zwłoczny.

Pytanie 38

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 50 mm
B. 63 mm
C. 80 mm
D. 100 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 39

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Rezystancją w obwodzie wzbudzenia
C. Rezystancją w obwodzie twornika
D. Napięciem przyłożonym do obwodu twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 40

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. smarowanie
B. bicie osiowe
C. naprężenie
D. temperaturę
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.