Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 21:10
  • Data zakończenia: 24 maja 2025 21:24

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. silnik hydrauliczny.
B. silnik elektryczny.
C. kompresor olejowy.
D. pompę hydrauliczną.
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 2

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Indukcji
B. Pojemności
C. Rezystancji
D. Indukcyjności
W tensometrach foliowych wykorzystuje się zmianę rezystancji, co jest kluczowe dla pomiarów deformacji. Tensometry foliowe działają na zasadzie efektu piezoelektrycznego lub zmiany oporu elektrycznego materiału w odpowiedzi na naprężenia mechaniczne. Gdy materiał jest poddany deformacji, jego długość i przekrój poprzeczny ulegają zmianie, co wpływa na jego rezystancję. Przykładem zastosowania tensometrów foliowych jest monitorowanie obciążeń w konstrukcjach budowlanych oraz w systemach wagi. W praktyce, dzięki precyzyjnym pomiarom rezystancji, inżynierowie mogą ocenić, czy struktura jest bezpieczna i zgodna z normami budowlanymi. Warto zauważyć, że stosowanie tensometrów w różnych dziedzinach, takich jak mechanic, budownictwo czy automatyka, jest zgodne z międzynarodowymi standardami, co pozwala na wiarygodne i powtarzalne pomiary.

Pytanie 3

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Triaki
B. Diody i tyrystory
C. Triaki oraz diaki
D. Diody
Półsterowany mostek prostowniczy to układ, który wykorzystuje diody oraz tyrystory do konwersji prądu zmiennego na prąd stały. Użycie diod w tym układzie jest kluczowe, ponieważ pełnią one funkcję prostowników, umożliwiając przepływ prądu w jednym kierunku. Tyrystory natomiast pozwalają na kontrolowanie momentu, w którym prąd zaczyna płynąć, co jest szczególnie istotne w aplikacjach wymagających regulacji mocy. Przykładem zastosowania półsterowanego mostka prostowniczego jest zasilanie silników elektrycznych, gdzie konieczne jest nie tylko prostowanie, ale także kontrolowanie prędkości obrotowej silnika. W takich aplikacjach zarządzanie energią i efektywnością jest kluczowe, a użycie tyrystorów pozwala na uzyskanie lepszej jakości sygnału oraz redukcję strat energii. Zgodnie z normami branżowymi, takie układy są często wykorzystywane w przemyśle automatyki, a ich prawidłowe projektowanie wymaga znajomości zasad działania komponentów elektronicznych oraz ich interakcji w obwodach. W praktyce, dobrze zaprojektowany mostek prostowniczy zwiększa niezawodność i efektywność systemu zasilania.

Pytanie 4

Jak można zmierzyć prędkość przepływu gazu?

A. za pomocą zwężki Venturiego
B. przy pomocy pirometru radiacyjnego
C. używając czujnika termoelektrycznego
D. z wykorzystaniem impulsatora fotoelektrycznego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 5

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. przerwanym przewodem pneumatycznym
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. siłownikiem
D. tłoczyskiem siłownika
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 6

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
B. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
C. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
D. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 7

Jaką odległość określa skok siłownika?

A. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
B. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
C. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
D. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
Skok siłownika definiuje odległość pomiędzy jego skrajnymi położeniami, czyli w stanie całkowitego wsunięcia oraz całkowitego wysunięcia tłoczyska. Ta definicja jest kluczowa dla zrozumienia funkcji siłowników, które znajdują zastosowanie w wielu dziedzinach inżynierii, takich jak automatyka, robotyka czy przemysł motoryzacyjny. Przykładem praktycznym mogą być siłowniki hydrauliczne używane w prasach czy systemach podnoszenia, gdzie precyzyjne określenie skoku jest niezbędne do zapewnienia prawidłowego działania maszyn. W standardach branżowych, takich jak ISO 6432, definiowane są parametry siłowników, w tym skok, co pozwala na ich odpowiednie dobieranie do konkretnych zastosowań. Zrozumienie tej koncepcji umożliwia inżynierom właściwe projektowanie systemów, a także przeprowadzanie skutecznych analiz działania urządzeń. W praktyce, znajomość skoku siłownika jest kluczowa przy planowaniu układów automatyzacji oraz w procesie konserwacji i diagnostyki urządzeń.

Pytanie 8

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 150 N
B. 130 N
C. 160 N
D. 140 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 9

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. generuje mgłę olejową
C. łączy sprężone powietrze z mgłą olejową
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 10

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe przygotowanie produkcji
B. Komputerowe wspomaganie wytwarzania
C. Komputerowa kontrola jakości
D. Komputerowe wspomaganie projektowania
Skrót CAM oznacza 'Computer-Aided Manufacturing', co w języku polskim tłumaczy się jako 'Komputerowe wspomaganie wytwarzania'. Jest to technologia, która wykorzystuje oprogramowanie i systemy komputerowe do wsparcia procesów produkcyjnych. CAM pozwala na automatyzację procesów wytwarzania, co prowadzi do zwiększenia efektywności i precyzji produkcji. Przykładem zastosowania CAM jest programowanie maszyn CNC (Computer Numerical Control), które wykorzystują dane generowane przez oprogramowanie do precyzyjnego wykonywania operacji mechanicznych. Dzięki zastosowaniu CAM przedsiębiorstwa mogą optymalizować swoje procesy, redukując czas cyklu produkcyjnego oraz minimalizując błędy ludzkie. W branży produkcyjnej, standardy takie jak ISO 9001 podkreślają znaczenie jakości i efektywności, co w połączeniu z technologią CAM przyczynia się do wytwarzania wyrobów o wysokiej jakości. Zastosowanie CAM jest szczególnie istotne w przemyśle, gdzie precyzja i efektywność są kluczowe, na przykład w produkcji części do pojazdów czy elektroniki.

Pytanie 11

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. woltomierz
B. omomierz
C. induktor
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 12

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. syntetyczny
C. o polepszonych parametrach lepkości i temperatury
D. mineralny bez dodatków uszlachetniających
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 13

Czy panewka stanowi część składową?

A. łożyska kulkowego
B. sprzęgła sztywnego tulejowego
C. zaworu pneumatycznego
D. łożyska ślizgowego
Wybór łożyska kulkowego, zaworu pneumatycznego lub sprzęgła sztywnego tulejowego jako elementów składowych panewki jest niepoprawny i wynika z nieporozumień dotyczących funkcji i konstrukcji tych komponentów. Łożyska kulkowe, bazujące na kulkach jako elementach tocznych, działają na zasadzie redukcji tarcia dzięki rozdzieleniu powierzchni kontaktowych, co różni się od funkcji panewki w łożyskach ślizgowych, które polegają na bezpośrednim kontakcie między powierzchniami, ale przy zastosowaniu odpowiednich materiałów redukujących tarcie. Zawory pneumatyczne to zupełnie inna kategoria podzespołów, które służą do kontrolowania przepływu powietrza w systemach pneumatycznych, co nie ma związku z funkcją panewki. Sprzęgła sztywne, z kolei, są używane do łączenia wałów w taki sposób, że nie absorbują drgań, co również nie dotyczy panewki, która ma na celu umożliwienie ruchu wału w sposób kontrolowany. Te nieprawidłowe odpowiedzi pokazują typowe błędy myślowe wynikające z braku zrozumienia podstawowych zasad działania mechanizmów w maszynach oraz specyfiki poszczególnych komponentów. Kluczowe jest zrozumienie, że każdy element ma swoją unikalną funkcję i zastosowanie, a ich zrozumienie jest fundamentem inżynierii mechanicznej. W branży inżynieryjnej a także w codziennej praktyce technicznej, znajomość charakterystyki i zastosowania poszczególnych elementów jest niezbędna do prawidłowego projektowania i eksploatacji maszyn.

Pytanie 14

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. diamagnetyki
B. paramagnetyki
C. ferromagnetyki
D. antyferromagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 15

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. łożyskach ślizgowych
B. zaworach kulowych
C. łożyskach kulkowych
D. hamulcach tarczowych
Zasada smarowania hydrostatycznego w łożyskach ślizgowych polega na rozdzieleniu współpracujących powierzchni za pomocą cienkiej warstwy oleju, która tworzy klin smarny. Ten proces jest kluczowy dla minimalizacji tarcia oraz zużycia elementów. W łożyskach ślizgowych, podczas pracy, dochodzi do wytworzenia ciśnienia w oleju, co umożliwia uniesienie elementu ruchomego i zredukowanie kontaktu metal-metal. Przykłady zastosowania obejmują maszyny przemysłowe, takie jak tokarki czy frezarki, gdzie precyzyjne ruchy są kluczowe. Dobre praktyki w projektowaniu takich łożysk uwzględniają odpowiednie dobranie materiałów, które nie tylko zmniejszają tarcie, ale także zwiększają trwałość. Stosowanie smarowania hydrostatycznego pozwala na wydłużenie okresów między konserwacjami oraz zwiększenie efektywności energetycznej urządzeń, co jest zgodne z normami ISO 281 dotyczącymi trwałości łożysk.

Pytanie 16

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozchodzenie się mgły olejowej w instalacji
B. rozbijanie kropli oleju strumieniem sprężonego powietrza
C. spływ kondensatu wodnego do najniższego punktu instalacji
D. odfiltrowanie cząstek stałych z powietrza
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 17

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 4,5 V
C. 10,0 V
D. 7,5 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 18

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. dwoma kluczami nasadowymi
B. jednym kluczem nasadowym
C. dwoma kluczami płaskimi
D. jednym kluczem płaskim
Użycie dwóch kluczy płaskich do zabezpieczenia połączeń gwintowych poprzez zastosowanie przeciwnakrętki jest standardową praktyką w branży. Dwa klucze płaskie pozwalają na jednoczesne blokowanie nakrętki oraz przeciwnakrętki, co minimalizuje ryzyko ich samoczynnego odkręcenia. W praktyce, jeden klucz jest używany do obracania nakrętki, podczas gdy drugi klucz stabilizuje przeciwnakrętkę. Tego typu połączenia są powszechnie stosowane w mechanice, budownictwie oraz inżynierii, gdzie obciążenia i wibracje mogą prowadzić do poluzowania elementów. Zastosowanie dwóch kluczy płaskich jest zgodne z zasadami dobrej praktyki inżynieryjnej, które podkreślają znaczenie prawidłowego montażu i konserwacji połączeń gwintowych. Ważne jest również, aby używać kluczy o odpowiednim rozmiarze, co zapewnia właściwe dopasowanie oraz minimalizuje ryzyko uszkodzenia zarówno gwintów, jak i narzędzi. Takie podejście jest kluczowe dla zapewnienia trwałości i niezawodności połączeń mechanicznych.

Pytanie 19

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Nitowanie
B. Klejenie
C. Zgrzewanie
D. Spawanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 20

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. wyjęcie tranzystora z gniazda
B. odkręcenie tranzystora
C. wylutowanie tranzystora
D. wycięcie tranzystora
Wylutowanie tranzystora jest poprawną metodą jego wymiany, ponieważ pozwala na usunięcie uszkodzonego komponentu z płytki PCB w sposób bezpieczny i skuteczny. Proces ten polega na podgrzaniu lutów łączących tranzystor z płytą za pomocą lutownicy lub stacji lutowniczej, co umożliwia jego wydobycie bez uszkodzenia otaczających elementów. Praktyka ta jest zgodna z normami IPC, które definiują wysokie standardy jakości w lutowaniu. W przypadkach, gdy tranzystor jest uszkodzony, wylutowanie jest często jedyną sensowną opcją, aby wymienić go na nowy. Należy również pamiętać o podjęciu odpowiednich środków ostrożności, takich jak użycie odpowiednich narzędzi i okularów ochronnych, aby uniknąć oparzeń czy uszkodzeń komponentów. Ponadto, w przypadku profesjonalnych napraw, warto stosować metody takie jak podgrzewanie całej płytki w piecu lutowniczym, co minimalizuje ryzyko uszkodzenia pozostałych elementów. Oprócz tego, znajomość technik wylutowywania i lutowania jest niezbędna dla osób zajmujących się elektroniką, aby zapewnić trwałość i niezawodność naprawionych urządzeń.

Pytanie 21

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak

A. HV
B. HL
C. HH
D. HM
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 22

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Odcinający
B. Rozdzielający
C. Przelotowy
D. Zwrotny
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 23

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Proszek
B. Silikon
C. Olej
D. Pastę
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 24

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Lutowania miękkiego
B. Klejenia
C. Lutowania twardego
D. Zgrzewania
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 25

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Poliuretan
B. Lateks
C. Silikon
D. Poliamid
Wybór nieodpowiednich tworzyw sztucznych do produkcji kół zębatych może prowadzić do znacznych problemów w funkcjonowaniu całego systemu. Poliuretan, choć elastyczny i odporny na ścieranie, ma ograniczone właściwości mechaniczne, które mogą prowadzić do deformacji pod wpływem obciążeń, co jest nieakceptowalne w przypadku kół zębatych wymagających precyzyjnego dopasowania. Silikon, z kolei, jest materiałem charakteryzującym się doskonałą odpornością na wysokie temperatury i chemikalia, ale jego niska wytrzymałość na rozciąganie i kruchość czynią go niewłaściwym wyborem dla elementów narażonych na intensywne obciążenia mechaniczne. Lateks, mimo że jest elastyczny, nie zapewnia odpowiedniej twardości i odporności na ścieranie, co czyni go mało praktycznym w zastosowaniach wymagających dużej precyzji i trwałości. Wybierając materiał do produkcji kół zębatych, kluczowe jest zrozumienie, że odpowiednie właściwości mechaniczne, takie jak wytrzymałość, odporność na ścieranie oraz niskie tarcie, są niezbędne dla zapewnienia ich długowieczności i efektywności, co w przypadku wymienionych materiałów nie jest spełnione.

Pytanie 26

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 1 500 mm2
C. 2 000 mm2
D. 3 000 mm2
Aby obliczyć powierzchnię czynną tłoka siłownika, należy skorzystać z równania związku między siłą, ciśnieniem i powierzchnią: F = P × A, gdzie F to siła, P to ciśnienie, a A to powierzchnia. W tym przypadku mamy siłę czynną równą 1600 N oraz ciśnienie wynoszące 1 MPa, co odpowiada 1 000 000 Pa. Przekształcamy równanie, aby znaleźć powierzchnię: A = F / P. Po podstawieniu wartości: A = 1600 N / 1 000 000 Pa = 0,0016 m², co po przeliczeniu na milimetry kwadratowe (1 m² = 1 000 000 mm²) daje 1600 mm². Jednak uwzględniając współczynnik sprawności równy 0,8, końcowy wynik wynosi: A = 1600 mm² / 0,8 = 2000 mm². Taka wiedza jest niezbędna w kontekście projektowania i analizy układów hydraulicznych, gdzie dokładność obliczeń ma kluczowe znaczenie dla bezpieczeństwa i efektywności działania systemów. W praktyce, dobrą praktyką jest również przeprowadzenie walidacji wyników przez pomiar rzeczywistych wartości w aplikacjach inżynieryjnych, co pomaga w optymalizacji projektów.

Pytanie 27

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 36 000 Ω
B. 3600 Ω
C. 360 Ω
D. 36 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 28

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. termistora
B. pirometru
C. tensometru
D. manometru
Pirometr to urządzenie, które służy do bezkontaktowego pomiaru temperatury obiektów, co sprawia, że jest szczególnie przydatne w przypadku wirujących łopat sprężarek przepływowych. Wirujące elementy w sprężarkach osiągają wysokie prędkości oraz temperatury, co utrudnia zastosowanie tradycyjnych czujników temperatury, które wymagają fizycznego kontaktu z mierzonym obiektem. Pirometry działają na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na skuteczne mierzenie temperatury z zachowaniem bezpieczeństwa i dokładności. W zastosowaniach przemysłowych pirometry są szeroko stosowane w monitorowaniu procesów technologicznych, gdzie istotne jest ciągłe kontrolowanie temperatury, na przykład w turbinach gazowych czy silnikach odrzutowych. Dobre praktyki w zakresie pomiarów temperatury wskazują na konieczność kalibracji pirometrów oraz uwzględnienia warunków otoczenia, takich jak obecność dymu czy pary, które mogą wpływać na dokładność odczytów. Użycie pirometru w tym kontekście jest zgodne z normami branżowymi dotyczącymi monitorowania procesów i zapewnienia efektywności energetycznej maszyn.

Pytanie 29

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 1% roztworu kwasu cytrynowego
B. wody destylowanej
C. 3% roztworu sody oczyszczonej
D. 1% roztworu kwasu octowego
Zastosowanie 1% kwasu cytrynowego lub 1% kwasu octowego w celu złagodzenia skutków oparzenia kwasem siarkowym jest niewłaściwe i może prowadzić do dalszego poważnego uszkodzenia skóry. Zarówno kwas cytrynowy, jak i kwas octowy są substancjami kwasowymi, które mogą w reakcji chemicznej z kwasem siarkowym prowadzić do powstania dodatkowych produktów reakcji, co zintensyfikuje proces oparzenia. Zamiast neutralizacji, ich użycie może spowodować dalsze uszkodzenia tkanek oraz zaostrzenie objawów. W przypadku chemicznych poparzeń, kluczowe jest szybkie usunięcie czynnika drażniącego, co powinno być realizowane przede wszystkim poprzez płukanie wodą. Woda działa jako rozpuszczalnik, a jej obfite użycie może pomóc w usunięciu resztek kwasu z powierzchni skóry. Ponadto, 3% roztwór sody oczyszczonej jest neutralizatorem, który może pomóc w przywróceniu równowagi pH i zminimalizować szkodliwe skutki oparzeń. Zrozumienie tych zasad jest kluczowe dla skutecznego udzielania pierwszej pomocy w przypadku kontaktu ze szkodliwymi substancjami chemicznymi, co podkreśla znaczenie znajomości właściwych protokołów postępowania oraz dobrych praktyk w dziedzinie ochrony zdrowia i bezpieczeństwa.

Pytanie 30

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
B. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
C. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
D. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 31

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu regulacji automatycznej
B. sterowania w układzie otwartym
C. układu sterowania programowalnego
D. sterowania sekwencyjnego
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 32

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. kasować za pomocą promieniowania ultrafioletowego
B. tylko odczytywać
C. bezpowrotnie stracić po odłączeniu zasilania
D. programować i usuwać elektrycznie
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 33

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Nieszczelność instalacji
B. Niewystarczające smarowanie tłoczyska
C. Zablokowany zawór przelewowy
D. Otwarty odpowietrznik filtra wlewowego
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 34

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Regularna wymiana filtrów
C. Codzienna wymiana oleju
D. Regularna wymiana rozdzielacza
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 35

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca dorywcza
B. Praca ciągła
C. Praca przerywana
D. Praca długotrwała
Właściwie zidentyfikowałeś rodzaj pracy silnika oznaczony symbolem S3 jako pracę przerywaną. Praca przerywana odnosi się do pracy, w której silnik działa z przerwami, co pozwala na jego schłodzenie i uniknięcie przegrzania. Taki typ pracy jest typowy dla aplikacji, gdzie silnik nie jest obciążony ciągłym wysiłkiem, na przykład w przypadku użytkowania w maszynach budowlanych czy w urządzeniach mobilnych. Przykładem może być silnik w wózku widłowym, który wykonuje cykle podnoszenia i transportu, a pomiędzy nimi następują krótkie przerwy na schłodzenie. W kontekście norm, praca przerywana jest zgodna z klasyfikacjami zawartymi w dokumentach takich jak IEC 60034-1, które definiują różne tryby pracy maszyn elektrycznych. Dobrą praktyką jest monitorowanie temperatury silnika oraz jego obciążenia, aby zapewnić jego długotrwałą eksploatację bez ryzyka uszkodzeń.

Pytanie 36

Silniki, które mają największy moment rozruchowy to

A. bocznikowe prądu stałego
B. asynchroniczne prądu przemiennego
C. synchroniczne prądu przemiennego
D. szeregowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 37

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 50 mm
B. 80 mm
C. 100 mm
D. 63 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 38

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
B. oblać dłoń wodą utlenioną i nałożyć opatrunek
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 39

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Efektywność
B. Iskrobezpieczeństwo
C. Bezobsługowość
D. Niezawodność
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 40

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. płaskiego
C. nasadowego
D. imbusowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.