Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 6 czerwca 2025 19:20
  • Data zakończenia: 6 czerwca 2025 20:01

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. równym ciśnieniu roboczemu
B. niższym o 20% od ciśnienia roboczego
C. wyższym o 100% od ciśnienia roboczego
D. wyższym o 50% od ciśnienia roboczego
Ocena szczelności układu hydraulicznego przy ciśnieniu równym roboczemu nie jest wystarczająca, ponieważ nie pozwala na identyfikację potencjalnych słabości układu. Ustalenie, że ciśnienie testowe powinno być mniejsze o 20% od roboczego, może prowadzić do niebezpiecznych sytuacji, gdyż nie bada się wówczas charakterystyki układu przy warunkach przeciążeniowych. Należy zauważyć, że przy korzystaniu z ciśnienia roboczego jako punktu odniesienia nie identyfikuje się potencjalnych nieszczelności, które mogą wystąpić tylko przy wyższych ciśnieniach. Z kolei testowanie układu przy ciśnieniach mniejszych o 20% wprowadza dodatkowe ryzyko, gdyż nie odzwierciedla rzeczywistych warunków pracy, jakie mogą wystąpić w wyniku wahań ciśnienia czy awarii. Praktyka ta może być szczególnie niebezpieczna w kontekście systemów hydraulicznych, gdzie w przypadku niewłaściwego przygotowania do pracy może dojść do poważnych uszkodzeń lub wypadków. Dlatego istotne jest, aby przy przeprowadzaniu testów szczelności zawsze stosować się do sprawdzonych standardów i procedur, które zalecają przeprowadzanie testów ciśnieniowych wyższych od roboczych, co zwiększa bezpieczeństwo i niezawodność systemów hydraulicznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Pomiar rezystancji izolacji
B. Zasilanie obwodów niskim napięciem
C. Obserwacja kształtu sygnałów elektrycznych
D. Zwiększenie częstotliwości sygnałów
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω

A. zwarcie między uzwojeniem W1-W2, a obudową silnika.
B. przerwę w uzwojeniu V1-V2.
C. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
D. przerwę w uzwojeniu U1-U2.
W przypadku analizowania niepoprawnych odpowiedzi, warto zwrócić uwagę na szereg kluczowych aspektów, które mogą prowadzić do nieporozumień. Po pierwsze, twierdzenie o przerwie w uzwojeniu U1-U2 jest w tym kontekście błędne, ponieważ właściwe pomiary rezystancji nie wskazują na takie uszkodzenie. Przerwa w uzwojeniu zazwyczaj charakteryzuje się znacznie wyższymi wartościami rezystancji, co nie miało miejsca w analizowanych wynikach. Kolejną mylną koncepcją jest zwarcie między uzwojeniami U1-U2 oraz W1-W2; wyniki testów jasno pokazują, że rezystancje tych uzwojeń mieszczą się w normalnych zakresach, co eliminuje tę możliwość. Można również zauważyć, iż nazywanie niskiej rezystancji izolacji między uzwojeniem W1-W2 a obudową silnika jako zwarcia to typowy błąd myślowy wynikający z niepełnego zrozumienia zasad działania silników elektrycznych i ich izolacji. Często mylnie interpretowane są wyniki pomiarów, co prowadzi do nieprawidłowego diagnozowania usterki. Aby uniknąć takich błędów, zaleca się stosowanie sprawdzonych metod diagnostycznych oraz weryfikacji wyników pomiarów zgodnie z przyjętymi standardami, np. IEC 60034, które dokładnie określają, jakie wartości izolacji są akceptowalne dla różnych typów silników. Wiedza na temat norm i praktycznych aspektów diagnostyki silników elektrycznych jest kluczowa dla utrzymania bezpieczeństwa i efektywności pracy urządzeń.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką czynność należy zrealizować w pierwszej kolejności przy wymianie filtru ssawnego w instalacji hydraulicznej?

A. Spuścić olej do właściwego naczynia przez korek spustowy
B. Wyciągnąć wkład filtra oleju i powietrza
C. Usunąć zanieczyszczenia z wnętrza zbiornika zasilacza hydraulicznego
D. Napełnić zbiornik czystym olejem oraz odpowietrzyć system
Spuszczenie oleju do odpowiedniego naczynia przez korek spustowy to naprawdę ważny krok, gdy wymieniasz filtr ssawny w urządzeniu hydraulicznym. Dzięki temu unikniesz zanieczyszczenia nowego filtra oleju, co jest kluczowe dla prawidłowego działania. W praktyce, warto pamiętać, żeby spuścić olej w kontrolowany sposób, bo rozlanie go może narobić sporo problemów. Poza tym, olej, który już był używany, może zawierać niebezpieczne substancje, więc trzeba być ostrożnym. Zanim zrobisz coś więcej, jak czyszczenie zbiornika czy montaż nowego filtra, upewnij się, że zbiornik nie jest brudny. Takie podejście do wymiany filtra to nie tylko dobra praktyka, ale także dbałość o dłuższą żywotność sprzętu i lepszą wydajność hydrauliki.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. protokółu przekazania urządzenia do eksploatacji
B. karty gwarancyjnej
C. dokumentacji techniczno-ruchowej urządzenia
D. dowodu zakupu urządzenia
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. elementy sygnalizacyjne
B. pompy
C. zawory pneumatyczne
D. siłowniki
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TT
B. TN – S
C. TI
D. TN – C
Odpowiedź TN-S jest prawidłowa, ponieważ oznaczenie 400 V ~ 3/N/PE wskazuje na sieć trójfazową z przewodem neutralnym oraz przewodem ochronnym. W układzie TN-S przewód neutralny (N) oraz przewód ochronny (PE) są odseparowane, co zwiększa bezpieczeństwo użytkowania urządzeń mechatronicznych. Stosowanie sieci TN-S jest zgodne z normami IEC 60364, które zalecają, by w przypadku zasilania systemów wymagających wysokiego poziomu bezpieczeństwa elektrycznego, stosować właśnie ten typ układu. Przykładem zastosowania układu TN-S mogą być środowiska przemysłowe, gdzie urządzenia mechatroniczne zasilane są z sieci o wysokiej mocy, minimalizując ryzyko porażenia prądem. Dodatkowo, TN-S pozwala na lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w przypadku wrażliwych urządzeń elektronicznych. Z tego względu układ TN-S jest preferowany w nowoczesnych instalacjach elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Różniczkujący
B. Całkujący
C. Dwustawny
D. Proporcjonalny
Odpowiedź "dwustawny" jest prawidłowa, ponieważ regulator dwustawny jest idealnym rozwiązaniem w systemach mechatronicznych, które wymagają nieciągłej regulacji temperatury. Tego typu regulator działa na zasadzie włączania i wyłączania elementu wykonawczego, takiego jak grzałka, w zależności od aktualnej temperatury w stosunku do zadanej wartości. Przykładowo, w systemach ogrzewania, gdy temperatura spada poniżej progu, regulator włącza grzałkę, a gdy temperatura osiąga wartość docelową, grzałka jest wyłączana. Taka strategia regulacji jest nie tylko energooszczędna, ale także prosta w implementacji. Zastosowanie regulatora dwustawnego jest zgodne z dobrymi praktykami w projektowaniu systemów automatyki, gdzie kluczowe jest zapewnienie stabilności i efektywności energetycznej. Standardy takie jak IEC 61131 w kontekście programowania sterowników PLC również podkreślają użycie regulatorów, które najlepiej pasują do charakterystyki danego procesu, co potwierdza wybór regulatora dwustawnego w tym przypadku.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. zwarcia w uzwojeniach stojana lub wirnika
B. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
C. przerw w obwodzie zasilania silnika
D. uszkodzenia łożysk
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 39

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. omomierz
B. mostek pomiarowy
C. induktor pomiarowy
D. multimetr
Pomiar rezystancji izolacji w urządzeniach mechatronicznych jest procesem, który wymaga zastosowania odpowiednich narzędzi, a wykorzystanie omomierza, mostka pomiarowego czy multimetru do tego celu jest niewłaściwe z wielu powodów. Omomierz, mimo że jest przyrządem dedykowanym do pomiaru rezystancji, nie jest w stanie sprostać wymaganiom związanym z pomiarem izolacji. W jego przypadku mogą występować problemy z niskimi wartościami rezystancji, co prowadzi do zniekształcenia wyników, a także do ryzyka uszkodzenia izolacji. Mostek pomiarowy, z drugiej strony, zazwyczaj stosowany jest w przypadku pomiarów precyzyjnych, ale jego zastosowanie do pomiaru rezystancji izolacji może być nieodpowiednie, gdyż nie jest zaprojektowany do wykrywania problemów związanych z izolacjami przy wysokich napięciach, co jest istotne w kontekście bezpieczeństwa. Multimetr to narzędzie wszechstronne, jednak jego pomiarowe ograniczenia dotyczące rezystancji izolacji i niskiej pewności pomiarowej w takich zastosowaniach sprawiają, że nie jest on odpowiedni do tego zadania. Niezrozumienie różnic między tymi urządzeniami może prowadzić do wniosków, które mogą zagrażać bezpieczeństwu urządzeń oraz ich użytkowników. Właściwe metody pomiaru są kluczowe dla zapewnienia długotrwałej i bezpiecznej pracy urządzeń mechatronicznych oraz zgodności z normami branżowymi.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.