Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 6 czerwca 2025 00:47
  • Data zakończenia: 6 czerwca 2025 01:00

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyznacz całkowity koszt brutto materiałów potrzebnych do stworzenia sieci w topologii gwiazdowej dla 3 komputerów z kartami sieciowymi, używając przewodów o długości 2m. Ceny poszczególnych elementów przedstawiono w tabeli.

A. 89 zł
B. 92 zł
C. 252 zł
D. 249 zł
Błędne odpowiedzi na pytanie dotyczące obliczenia kosztów materiałów do połączenia komputerów w topologii gwiazdy mogą wynikać z kilku typowych nieporozumień. Warto zaznaczyć, że kluczowym aspektem jest prawidłowe zrozumienie, jakie elementy są potrzebne do stworzenia sieci. Uczestnicy mogą pomylić całkowity koszt brutto z sumą jedynie kosztów pojedynczych elementów, co prowadzi do zawyżenia lub zaniżenia całkowitych wydatków. Na przykład, odpowiedź 249 zł lub 252 zł może sugerować, że osoba dodaje koszty komponentów w sposób nieadekwatny do rzeczywistości, być może uwzględniając zbyt dużą ilość wtyków lub przewodów. Ponadto, niektórzy mogą nie wziąć pod uwagę, że w topologii gwiazdy każdy komputer łączy się bezpośrednio z centralnym przełącznikiem, a zatem potrzebne są tylko trzy przewody, a nie większa ich ilość. W kontekście praktycznym, przy planowaniu sieci lokalnej, zrozumienie schematu połączeń i dokładne obliczenia kosztów pozwalają nie tylko na optymalizację wydatków, ale także na uniknięcie sytuacji, w której brakuje materiałów do zrealizowania projektu. Kluczowe jest również zrozumienie, że ceny materiałów mogą się różnić w zależności od dostawcy, co powinno być brane pod uwagę w budżetowaniu. Nawet niewielkie różnice w cenach jednostkowych mogą prowadzić do dużych rozbieżności w ostatecznych kosztach, dlatego zawsze warto przed dokonaniem zakupu dokładnie sprawdzić wszystkie oferty na rynku.

Pytanie 2

Aby uzyskać listę procesów aktualnie działających w systemie Linux, należy użyć polecenia

A. ps
B. who
C. show
D. dir
Polecenie 'ps' w systemie Linux jest kluczowym narzędziem do monitorowania i zarządzania procesami działającymi w systemie. Jego pełna forma to 'process status', a jego zadaniem jest wyświetlenie informacji o aktualnie uruchomionych procesach, takich jak ich identyfikatory PID, wykorzystanie pamięci, stan oraz czas CPU. Dzięki możliwościom filtrowania i formatowania wyników, 'ps' jest niezwykle elastyczne, co czyni je niezastąpionym narzędziem w codziennej administracji systemami. Na przykład, użycie polecenia 'ps aux' pozwala uzyskać pełen widok na wszystkie procesy, w tym te uruchomione przez innych użytkowników. W praktyce, administratorzy często łączą 'ps' z innymi poleceniami, takimi jak 'grep', aby szybko zidentyfikować konkretne procesy, co jest zgodne z dobrymi praktykami zarządzania systemami. Zrozumienie i umiejętność korzystania z 'ps' jest fundamentem dla każdego, kto zajmuje się administracją systemów Linux, a jego znajomość jest kluczowym elementem w rozwiązywaniu problemów związanych z wydajnością czy zarządzaniem zasobami.

Pytanie 3

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalatora w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. ALT+F4
B. CTRL+Z
C. CTRL+SHIFT
D. SHIFT+F10
Odpowiedź SHIFT+F10 jest prawidłowa, ponieważ ta kombinacja klawiszy uruchamia Wiersz poleceń w trakcie instalacji systemu Windows. Jest to przydatne w sytuacjach, gdy użytkownik potrzebuje dostępu do narzędzi diagnostycznych lub chce wprowadzić dodatkowe polecenia przed zakończeniem procesu instalacji. Umożliwia to również modyfikację ustawień systemowych oraz naprawę problemów, które mogą wystąpić podczas konfiguracji. Przykładem zastosowania może być sytuacja, w której użytkownik chce uruchomić narzędzie DISKPART do zarządzania partycjami dyskowymi, co pozwala na tworzenie, usuwanie lub formatowanie partycji przed zainstalowaniem systemu. Ta funkcjonalność jest zgodna z najlepszymi praktykami w zakresie instalacji systemów operacyjnych, gdzie dostęp do dodatkowych narzędzi może znacząco ułatwić proces oraz zwiększyć elastyczność konfiguracji. Warto również zaznaczyć, że ta kombinacja klawiszy jest standardem w różnych wersjach systemów Windows, co czyni ją zrozumiałą i uniwersalną dla użytkowników.

Pytanie 4

Jakiego typu tablicę partycji trzeba wybrać, aby stworzyć partycję o pojemności 3TB na dysku twardym?

A. MBR
B. LBA
C. DRM
D. GPT
Wybór LBA (Logical Block Addressing) jako rodzaju tablicy partycji jest nieprawidłowy, ponieważ LBA nie jest typem tablicy partycji, lecz metodą adresowania bloków na dysku twardym. To podejście umożliwia korzystanie z bloków danych o stałej wielkości, co poprawia efektywność odczytu i zapisu, ale nie definiuje struktury partycji. With LBA, data is accessed by logical block numbers instead of physical cylinder-head-sector (CHS) addressing, which simplifies management of disk space but does not address the issue of partition types. MBR, z kolei, jest starszym standardem, który obsługuje maksymalnie 2 TB na partycję i ogranicza liczbę partycji do czterech podstawowych. Użytkownicy mogą zmagać się z poważnymi ograniczeniami, jeśli próbują wykorzystać przestrzeń dyskową większą niż 2 TB. DRM (Digital Rights Management) to technologia zarządzania prawami autorskimi, która również nie ma związku z tablicami partycji i ich strukturą. Pomylenie tych terminów może prowadzić do nieefektywnego zarządzania danymi i nieoptymalnego wykorzystania przestrzeni dyskowej. Dlatego istotne jest, aby zrozumieć różnice między tymi pojęciami oraz znać ich praktyczne zastosowania w codziennej pracy z systemami komputerowymi. Ważne jest, aby wybierać odpowiednie technologie, które odpowiadają potrzebom i wymaganiom danej aplikacji, zwracając szczególną uwagę na nowoczesne standardy jak GPT, które oferują lepsze wsparcie dla dużych dysków i bardziej zaawansowane funkcje.

Pytanie 5

Jakie urządzenie sieciowe zostało pokazane na ilustracji?

Ilustracja do pytania
A. Adapter Bluetooth
B. Adapter IrDA
C. Karta sieciowa WiFi
D. Modem USB
Modem USB to urządzenie, które pozwala na połączenie komputera z Internetem za pośrednictwem sieci komórkowych. Używa technologii mobilnej, takiej jak LTE lub 3G, do transmisji danych. Jego główną zaletą jest mobilność i łatwość użycia – wystarczy podłączyć go do portu USB komputera, aby uzyskać dostęp do Internetu. Jest szczególnie przydatny w miejscach, gdzie dostęp do sieci kablowej jest ograniczony lub niemożliwy. Modemy USB często wymagają karty SIM, podobnie jak telefony komórkowe, co umożliwia korzystanie z usług dowolnego operatora. Dzięki nowoczesnym technologiom modem USB obsługuje szybkie transfery danych, co czyni go atrakcyjnym rozwiązaniem zarówno dla użytkowników indywidualnych, jak i biznesowych. Wybierając modem USB, warto zwrócić uwagę na jego kompatybilność z systemem operacyjnym komputera oraz obsługiwane standardy sieciowe. Zastosowanie modemu USB jest szerokie – od codziennego przeglądania Internetu po bardziej zaawansowane zastosowania, takie jak wideokonferencje czy zdalna praca. Modem USB jest zgodny z międzynarodowymi standardami, co umożliwia jego użycie w różnych krajach bez dodatkowej konfiguracji.

Pytanie 6

Na komputerze klienckim z systemem Windows XP plik "hosts" to plik tekstowy, który wykorzystywany jest do przypisywania

A. nazw hostów na adresy MAC
B. nazw hostów przez serwery DNS
C. dysków twardych
D. nazw hostów na adresy IP
Plik 'hosts' w systemie Windows XP jest kluczowym elementem systemu operacyjnego, pozwalającym na lokalne mapowanie nazw hostów na adresy IP. Działa to w ten sposób, że gdy użytkownik wpisuje nazwę domeny w przeglądarce, system najpierw sprawdza ten plik, zanim skontaktuje się z serwerem DNS. Dzięki temu można zdefiniować indywidualne przekierowania, co jest szczególnie przydatne w środowiskach testowych lub w przypadku blokowania niektórych stron internetowych. Na przykład, dodając linię "127.0.0.1 example.com" do pliku 'hosts', przekierowujemy ruch na ten adres lokalny, co skutkuje tym, że przeglądarka nie załadowuje strony. Tego typu praktyki są zgodne z dobrymi praktykami zarządzania siecią, umożliwiając administratorom łatwą kontrolę nad ruchem sieciowym oraz testowanie aplikacji bez potrzeby zmiany konfiguracji DNS. Często wykorzystywane są także w procesach debugowania, gdzie szybka modyfikacja pliku 'hosts' pozwala na testowanie nowych rozwiązań bez trwałych zmian w systemie DNS.

Pytanie 7

Parametr pamięci RAM określany czasem jako opóźnienie definiuje się jako

A. RAS to CAS Delay
B. Command Rate
C. RAS Precharge
D. CAS Latency
CAS Latency, czyli opóźnienie dostępu do pamięci, jest kluczowym parametrem pamięci RAM, który określa, jak długo procesor musi czekać na dane po wydaniu polecenia odczytu. Skrót CAS oznacza Column Address Strobe, a 'latency' odnosi się do liczby cykli zegara, jakie są potrzebne, aby uzyskać dostęp do określonej kolumny w pamięci. Przykładowo, jeśli pamięć ma CAS Latency równą 16, oznacza to, że procesor musi czekać 16 cykli zegara na dostęp do danych po wysłaniu polecenia. W praktyce, mniejsze wartości CAS Latency oznaczają szybsze czasy dostępu, co może przekładać się na lepszą wydajność systemu, szczególnie w zastosowaniach wymagających dużej przepustowości danych, takich jak gry komputerowe czy obróbka wideo. Standardy branżowe, takie jak JEDEC, określają różne klasy pamięci RAM i ich parametry, co pozwala na odpowiednie dobieranie komponentów w zależności od potrzeb użytkownika. Dlatego przy wyborze pamięci RAM warto zwracać uwagę na CAS Latency, aby zapewnić optymalną wydajność i stabilność systemu.

Pytanie 8

Jakie jest nominalne wyjście mocy (ciągłe) zasilacza o parametrach przedstawionych w tabeli?

Napięcie wyjściowe+5 V+3.3 V+12 V1+12 V2-12 V+5 VSB
Prąd wyjściowy18,0 A22,0 A18,0 A17,0 A0,3 A2,5 A
Moc wyjściowa120 W336 W3,6 W12,5 W

A. 456,0 W
B. 576,0 W
C. 336,0 W
D. 472,1 W
Wybór innych odpowiedzi może wynikać z błędnych obliczeń albo tego, że nie wzięto pod uwagę wszystkich parametrów zasilacza. Przykładowo, jeśli ktoś podaje moc 336,0 W, to pewnie zsumował tylko część napięć albo pominął prąd dla jakiegoś napięcia, co prowadzi do niższej wartości. Inny błąd to złe pomnożenie napięcia przez prąd, co może spowodować, że wynik wyjdzie za wysoki. Mnożenie prądu dla -12 V jest problematyczne, bo tam prąd jest ujemny, więc to może wprowadzać w błąd; moc w zasilaczu powinna być traktowana tak, by sumować wartości dodatnie, a nie robić prostą sumę. Często ludzie też nie biorą pod uwagę, że zasilacz z różnymi napięciami może mieć wspólne linie zasilające, co znowu wpływa na końcową moc. Właściwe zaprojektowanie zasilacza wymaga zrozumienia, jak działają różne napięcia i co one znaczą dla całkowitej mocy wyjściowej. Błędy w obliczeniach często pojawiają się przez nieodpowiednie odczytywanie danych technicznych, niezrozumienie jednostek miary czy brak umiejętności łączenia wyników z różnych napięć. Kiedy budujesz coś elektronicznego, musisz brać pod uwagę nie tylko nominalne wartości, ale też ich tolerancje i szczytowe obciążenia, bo to jest ważne dla stabilności i bezpieczeństwa systemu.

Pytanie 9

Rozmiar pliku wynosi 2 KiB. Co to oznacza?

A. 2048 bitów
B. 2000 bitów
C. 16384 bitów
D. 16000 bitów
Odpowiedź 16384 bitów jest poprawna, ponieważ 1 KiB (kibibajt) to 1024 bajty, a każdy bajt składa się z 8 bitów. Zatem, aby przeliczyć 2 KiB na bity, należy wykonać następujące obliczenia: 2 KiB * 1024 bajtów/KiB * 8 bitów/bajt = 16384 bitów. Znajomość jednostek miary danych jest kluczowa w informatyce, ponieważ pozwala na efektywne zarządzanie pamięcią oraz transferem danych. W praktyce, przy projektowaniu systemów informatycznych, programiści i inżynierowie muszą uwzględniać rozmiar danych, aby zoptymalizować wydajność systemu, zarówno pod względem szybkości przetwarzania, jak i zużycia zasobów. Stosowanie standardowych jednostek, takich jak KiB, MiB czy GiB, jest zgodne z normami ustalonymi przez Międzynarodową Organizację Normalizacyjną (ISO), co zapewnia spójność i jasność w komunikacji technicznej. Dlatego też, zrozumienie tego przelicznika jest niezbędne w codziennej pracy inżynierów oprogramowania, administratorów systemów oraz specjalistów IT.

Pytanie 10

Aby po załadowaniu systemu Windows program Kalkulator uruchamiał się automatycznie, konieczne jest dokonanie ustawień

A. pulpitu systemowego
B. funkcji Snap i Peak
C. harmonogramu zadań
D. pliku wymiany
Harmonogram zadań w systemie Windows to zaawansowane narzędzie, które umożliwia automatyzację zadań, takich jak uruchamianie aplikacji w określonych momentach. Aby skonfigurować automatyczne uruchamianie programu Kalkulator przy starcie systemu, należy otworzyć Harmonogram zadań, utworzyć nowe zadanie, a następnie wskazać, że ma się ono uruchamiać przy starcie systemu. Użytkownik powinien określić ścieżkę do pliku kalkulatora (calc.exe) oraz ustawić odpowiednie warunki, takie jak uruchamianie zadania tylko wtedy, gdy komputer jest zasilany z sieci elektrycznej. Użycie Harmonogramu zadań jest zgodne z najlepszymi praktykami administracyjnymi, ponieważ pozwala na zarządzanie różnymi procesami w sposób zautomatyzowany, co zwiększa efektywność operacyjną systemu. Dodatkowo, użytkownik może dostosować parametry zadania, co pozwala na lepsze zarządzanie zasobami systemowymi oraz ich optymalizację.

Pytanie 11

Farad to jednostka

A. rezystancji
B. mocy
C. natężenia prądu
D. pojemności elektrycznej
Farad (F) jest podstawową jednostką pojemności elektrycznej w układzie SI. Oznacza zdolność kondensatora do gromadzenia ładunku elektrycznego. Przykładowo, kondensator o pojemności 1 farada zgromadzi 1 kulomb ładunku przy napięciu 1 wolt. Pojemność ma kluczowe znaczenie w różnych zastosowaniach, takich jak obwody elektroniczne, gdzie kondensatory są wykorzystywane do wygładzania napięcia, filtracji sygnałów, a także do przechowywania energii. W praktyce, aplikacje takie jak zasilacze impulsowe, audiofilskie systemy dźwiękowe, a nawet układy elektromagnetyczne wymagają precyzyjnego doboru kondensatorów o odpowiedniej pojemności. Warto również zauważyć, że w praktyce inżynierskiej stosowane są różne jednostki pojemności, a farad jest używany w kontekście dużych wartości; dla mniejszych zastosowań często używa się mikrofaradów (µF) oraz nanofaradów (nF).

Pytanie 12

Chusteczki nasączone substancją o właściwościach antystatycznych służą do czyszczenia

A. wyświetlaczy monitorów LCD
B. wyświetlaczy monitorów CRT
C. wałków olejowych w drukarkach laserowych
D. rolek prowadzących papier w drukarkach atramentowych
Ekrany monitorów CRT, zwane także monitorami kineskopowymi, są szczególnie wrażliwe na zjawiska elektrostatyczne, co czyni je odpowiednimi do czyszczenia za pomocą chusteczek nasączonych płynem antystatycznym. Te płyny skutecznie eliminują ładunki elektrostatyczne, które mogą przyciągać kurz i zanieczyszczenia, co wpływa na jakość obrazu. Używając chusteczek antystatycznych, można nie tylko oczyścić ekran z zanieczyszczeń, ale także zredukować ryzyko osadzania się kurzu w przyszłości. W praktyce, chusteczki te są często stosowane w biurach, serwisach komputerowych oraz w domowych warunkach, gdzie użytkownicy monitorów CRT mogą odczuwać potrzebę utrzymania czystości swoich urządzeń. Warto również zauważyć, że zgodnie z zaleceniami producentów sprzętu, stosowanie specjalistycznych środków czyszczących jest kluczowe, aby nie uszkodzić powłoki ekranu i zachować jego właściwości optyczne przez dłużej.

Pytanie 13

Aby odzyskać dane z dysku, który został sformatowany, warto użyć programu typu

A. sniffer
B. IRC
C. recovery
D. p2p
Odpowiedź "recovery" jest poprawna, ponieważ programy typu recovery (odzyskiwania danych) są specjalnie zaprojektowane do przywracania utraconych lub usuniętych plików z dysków twardych, które zostały sformatowane lub usunięte. Proces formatowania dysku nie usuwa fizycznie danych, lecz jedynie oznacza obszary dysku jako dostępne do zapisu. Programy do odzyskiwania danych potrafią skanować dysk w poszukiwaniu pozostałości plików oraz ich struktur, co umożliwia ich przywrócenie. Przykładem popularnych narzędzi są Recuva, EaseUS Data Recovery Wizard oraz TestDisk, które są stosowane w praktyce zarówno przez specjalistów IT, jak i użytkowników indywidualnych. W branży informatycznej standardem jest również wykonywanie regularnych kopii zapasowych, co może znacząco ułatwić proces odzyskiwania danych. W sytuacji, gdy dane zostały utracone, zaleca się nie zapisywać nowych informacji na danym dysku, aby zwiększyć szanse na odzyskanie danych.

Pytanie 14

Jakie urządzenie powinno być podłączone do lokalnej sieci w miejscu zaznaczonym na rysunku, aby komputery mogły korzystać z Internetu?

Ilustracja do pytania
A. Router.
B. Bridge.
C. Switch.
D. Hub.
Ruter jest urządzeniem sieciowym, które łączy dwie sieci komputerowe, w tym przypadku sieć lokalną z Internetem. Ruter pełni kluczową rolę w przekazywaniu pakietów danych między siecią lokalną a siecią zewnętrzną, dzięki czemu urządzenia w sieci lokalnej mogą wymieniać dane z urządzeniami w Internecie. Ruter działa na warstwie sieciowej modelu OSI i wykorzystuje tablice routingu oraz protokoły routingu, takie jak OSPF czy BGP, do wyznaczania optymalnych tras dla pakietów danych. Ponadto, ruter często posiada funkcje NAT (Network Address Translation), które umożliwiają maskowanie prywatnych adresów IP urządzeń w sieci lokalnej na jeden publiczny adres IP. Dzięki temu, ruter nie tylko pozwala na dostęp do Internetu, ale także zapewnia dodatkową warstwę bezpieczeństwa. W praktyce ruter jest niezbędny w każdym domu i biurze, gdzie istnieje potrzeba podłączenia sieci lokalnej do Internetu. Wybór odpowiedniego rutera zależy od wielu czynników, takich jak przepustowość łącza, liczba obsługiwanych urządzeń, a także dodatkowe funkcje jak QoS czy zabezpieczenia firewall.

Pytanie 15

W nowoczesnych panelach dotykowych prawidłowe działanie wyświetlacza zapewnia mechanizm rozpoznający zmianę

A. oporu pomiędzy przezroczystymi diodami wtopionymi w ekran
B. pola elektrostatycznego
C. pola elektromagnetycznego
D. położenia ręki dotykającej ekranu z zastosowaniem kamery
Wykrywanie dotyku w ekranach dotykowych można realizować za pomocą wielu różnych mechanizmów, jednak odpowiedzi, które wprowadziły Cię w błąd, opierają się na niepoprawnych założeniach dotyczących działania tych technologii. Na przykład, opór między przezroczystymi diodami wtopionymi w ekran nie jest podstawowym mechanizmem wykrywania dotyku. Dioda, działająca w sposób przewodnictwa, nie jest w stanie dostarczyć precyzyjnych informacji o lokalizacji dotyku; takie rozwiązania są zbyt mało czułe i nie są stosowane w nowoczesnych urządzeniach. Z kolei pola elektromagnetyczne, chociaż mogą być stosowane w niektórych urządzeniach, nie są standardem w ekranach dotykowych, które w większości polegają na interakcji z polem elektrostatycznym. Ponadto, zastosowanie kamery do wykrywania położenia ręki również nie jest powszechnym rozwiązaniem w ekranach dotykowych. Techniki oparte na obrazowaniu mogą wprowadzać dodatkowe opóźnienia oraz problemy z precyzją, co czyni je mniej pożądanymi w kontekście szybkiej reakcji, której oczekuje użytkownik. W praktyce, głównym celem ekranów dotykowych jest zapewnienie jak najszybszej i najdokładniejszej interakcji, co najlepiej osiąga się poprzez technologie pojemnościowe i wykrywanie zmian pola elektrostatycznego. Zrozumienie tych mechanizmów pozwala na lepsze dostosowanie się do dynamicznie rozwijającego się rynku technologicznym i zastosowań interaktywnych.

Pytanie 16

Okablowanie strukturalne klasyfikuje się jako część infrastruktury

A. pasywnej
B. aktywnej
C. terytorialnej
D. dalekosiężnej
Okablowanie strukturalne jest kluczowym elementem infrastruktury pasywnej w systemach telekomunikacyjnych. W odróżnieniu od infrastruktury aktywnej, która obejmuje urządzenia elektroniczne takie jak przełączniki i routery, infrastruktura pasywna dotyczy komponentów, które nie wymagają zasilania ani aktywnego zarządzania. Okablowanie strukturalne, które obejmuje kable miedziane, światłowodowe oraz elementy takie jak gniazdka, związki oraz paneli krosowniczych, jest projektowane zgodnie z międzynarodowymi standardami, takimi jak ISO/IEC 11801 oraz ANSI/TIA-568. Te standardy definiują normy dotyczące instalacji, wydajności i testowania systemów okablowania. Przykładem zastosowania okablowania strukturalnego jest zapewnienie szybkiej i niezawodnej łączności w biurach oraz centrach danych, gdzie poprawne projektowanie i instalacja systemu okablowania mają kluczowe znaczenie dla efektywności operacyjnej. Dobre praktyki inżynieryjne w tej dziedzinie obejmują staranne planowanie topologii sieci oraz przestrzeganie zasad dotyczących długości kabli i zakłóceń elektromagnetycznych, co przekłada się na wysoką jakość sygnału i minimalizację błędów transmisji.

Pytanie 17

Jakie medium transmisyjne używają myszki Bluetooth do interakcji z komputerem?

A. Fale radiowe w paśmie 2,4 GHz
B. Promieniowanie podczerwone
C. Promieniowanie ultrafioletowe
D. Fale radiowe w paśmie 800/900 MHz
Wybór innych odpowiedzi opiera się na pewnych nieporozumieniach dotyczących technologii bezprzewodowej. Promieniowanie ultrafioletowe, chociaż może być używane w niektórych zastosowaniach technologicznych, nie jest medium transmisyjnym dla urządzeń takich jak myszki Bluetooth. Promieniowanie ultrafioletowe ma zupełnie inne właściwości i zastosowanie, głównie w obszarze medycyny i nauki, a nie w komunikacji bezprzewodowej. Kolejną niepoprawną odpowiedzią jest fala radiowa w paśmie 800/900 MHz; ten zakres częstotliwości jest bardziej powszechnie używany w telekomunikacji mobilnej, ale nie jest standardowo stosowany w technologii Bluetooth. Takie pomylenie może wynikać z braku zrozumienia różnych pasm częstotliwości oraz ich zastosowań. Promieniowanie podczerwone, chociaż było używane w przeszłości w niektórych bezprzewodowych urządzeniach wejściowych, takich jak myszy i piloty zdalnego sterowania, jest ograniczone w zakresie zasięgu i wymaga bezpośredniej linii widzenia między nadajnikiem a odbiornikiem. Nie zapewnia więc elastyczności i wszechstronności, jakie oferuje Bluetooth w paśmie 2,4 GHz. Zrozumienie różnicy pomiędzy tymi technologiami oraz ich zastosowaniami jest kluczowe dla prawidłowego doboru urządzeń i optymalizacji środowiska pracy.

Pytanie 18

Jakie parametry otrzyma interfejs sieciowy eth0 po wykonaniu poniższych poleceń w systemie Linux?

ifconfig eth0 10.0.0.100
netmask 255.255.255.0
broadcast 10.0.0.255 up
route add default gw 10.0.0.10

A. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
B. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
C. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
D. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
Dobra robota! Odpowiedź, którą wybrałeś, dobrze określa, jak wygląda konfiguracja sieci w tym przypadku. Interfejs eth0 dostaje adres IP 10.0.0.100 oraz maskę podsieci /24, co oznacza, że mamy do czynienia z 255.255.255.0. To całkiem standardowe ustawienie dla wielu lokalnych sieci. Z pomocą komendy ifconfig ustalamy nasz adres IP i maskę dla interfejsu. Fajnie, że to wiesz. A co do polecenia route – dodaje ono bramę domyślną, przez którą przechodzą pakiety, gdy chcą wyjść z naszej lokalnej sieci. To wszystko jest bardzo istotne dla administratorów sieci, bo często zdarza się, że muszą oni wszystko ustawiać ręcznie. Automatyczne przypisywanie przez DHCP nie zawsze wystarcza, więc manualna konfiguracja daje pełną kontrolę nad tym, co się dzieje w sieci.

Pytanie 19

Na którym z zewnętrznych nośników danych nie dojdzie do przeniknięcia wirusa podczas przeglądania jego zawartości?

A. na pamięć Flash
B. na płytę DVD-ROM
C. na dysk zewnętrzny
D. na kartę SD
W przypadku pamięci Flash, dysków zewnętrznych i kart SD istnieje znaczne ryzyko, że wirusy mogą przenikać na te nośniki podczas odczytu danych. Pamięci Flash, wykorzystywane powszechnie w pendrive'ach, działają na zasadzie zapisu i odczytu danych, co umożliwia wirusom osadzenie się w systemie plików. Podobnie, dyski zewnętrzne, które często są podłączane do różnych komputerów, mogą łatwo ulegać infekcjom wirusami poprzez złośliwe oprogramowanie obecne na innych urządzeniach. Karty SD, używane w aparatach i telefonach, również są narażone na podobne zagrożenia. Często użytkownicy nie są świadomi, że wirusy mogą podróżować między urządzeniami, a zainfekowane pliki mogą być przenoszone do pamięci Flash czy kart SD, co prowadzi do niebezpieczeństwa infekcji. Z tego względu, ważne jest stosowanie zgodnych z najlepszymi praktykami metod ochrony, takich jak regularne skanowanie nośników przy użyciu aktualnego oprogramowania antywirusowego oraz unikanie podłączania urządzeń do obcych komputerów, które mogą być zainfekowane. Warto także pamiętać o regularnym tworzeniu kopii zapasowych danych, aby w razie infekcji móc je przywrócić bez utraty informacji. W kontekście bezpieczeństwa, zrozumienie różnicy w działaniu tych nośników jest kluczowe dla ochrony danych przed złośliwym oprogramowaniem.

Pytanie 20

Urządzenie funkcjonujące w warstwie łącza danych, które umożliwia połączenie segmentów sieci o różnych architekturach, to

A. ruter
B. regenerator
C. koncentrator
D. most
Koncentrator, regenerator i ruter to urządzenia, które pełnią różne funkcje w ekosystemie sieciowym, ale nie są odpowiednie do opisanego zadania łączenia segmentów sieci o różnych architekturach. Koncentrator działa na poziomie fizycznym, działając jako prosty przekaźnik sygnału, co oznacza, że nie analizuje danych ani nie podejmuje decyzji dotyczących ich przekazywania. Oznacza to, że każde przesyłane przez niego dane są wysyłane do wszystkich podłączonych urządzeń, co może prowadzić do zatorów i nieefektywności w sieci. Regenerator jest urządzeniem stosowanym do wzmacniania sygnałów w sieciach, które są rozciągnięte na dużą odległość, co jest niezbędne w przypadku, gdy sygnał może ulegać degradacji, ale nie ma on zdolności do łączenia segmentów o różnych architekturach. Ruter natomiast operuje na warstwie trzeciej modelu OSI i jest odpowiedzialny za przekazywanie pakietów między różnymi sieciami, ale nie łączy segmentów o różnych standardach na poziomie warstwy łącza danych. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między warstwami modelu OSI oraz funkcjami poszczególnych urządzeń sieciowych. Ważne jest, aby dokładnie rozumieć, jakie zadania pełnią te urządzenia, aby móc skutecznie projektować i zarządzać infrastrukturą sieciową.

Pytanie 21

Użycie trunkingowego połączenia między dwoma przełącznikami umożliwia

A. zablokowanie wszelkich niepotrzebnych połączeń na danym porcie
B. zwiększenie wydajności połączenia poprzez użycie dodatkowego portu
C. ustawienie agregacji portów, która zwiększa przepustowość między przełącznikami
D. przesyłanie w jednym łączu ramek pochodzących od wielu wirtualnych sieci lokalnych
Połączenie typu trunk umożliwia przesyłanie ramek z wielu wirtualnych sieci lokalnych (VLAN) przez jedno łącze. Dzięki temu administratorzy sieci mogą efektywniej wykorzystać dostępne zasoby, eliminując potrzebę posiadania oddzielnych połączeń dla każdej VLAN. W praktyce, gdy dwa przełączniki są połączone w trybie trunk, mogą wymieniać dane z różnych VLAN-ów, co jest kluczowe w dużych, złożonych środowiskach sieciowych. Umożliwia to zminimalizowanie kosztów związanych z okablowaniem i uproszczenie architektury sieci, co jest zgodne z najlepszymi praktykami w zakresie projektowania sieci. Standardy takie jak IEEE 802.1Q definiują sposób tagowania ramek dla różnych VLAN-ów, co jest niezbędne do prawidłowego funkcjonowania trunków. To podejście jest szeroko stosowane w sieciach korporacyjnych oraz w centrach danych, gdzie zarządzanie wieloma sieciami lokalnymi jest kluczowe dla zapewnienia wydajności i bezpieczeństwa. W efekcie, trunking stanowi fundament nowoczesnych architektur sieciowych, umożliwiając elastyczne i skalowalne rozwiązania.

Pytanie 22

Rejestry przedstawione na diagramie procesora mają zadanie

Ilustracja do pytania
A. przechowywania argumentów obliczeń
B. przeprowadzania operacji arytmetycznych
C. kontrolowania realizowanego programu
D. zapamiętywania adresu do kolejnej instrukcji programu
Rejestry w procesorze pełnią kluczową rolę w przechowywaniu danych podczas wykonywania operacji obliczeniowych. Ich główną funkcją jest tymczasowe przechowywanie argumentów, które są używane w obliczeniach arytmetycznych i logicznych. Działa to na zasadzie szybkiego dostępu do danych, co znacząco przyspiesza proces przetwarzania informacji w jednostce centralnej. Rejestry są kluczowe dla działania jednostki arytmetyczno-logicznej (ALU), która wykonuje operacje takie jak dodawanie, odejmowanie, mnożenie czy dzielenie. Dzięki rejestrom procesor nie musi każdorazowo odwoływać się do pamięci RAM w celu pobrania danych co jest procesem wolniejszym. W praktyce rejestry umożliwiają wykonywanie wielu operacji w jednym cyklu zegara co jest standardem w nowoczesnych procesorach. Dobre praktyki w projektowaniu układów scalonych uwzględniają optymalizację liczby i pojemności rejestrów aby zrównoważyć między szybkością a kosztami produkcji. Zastosowanie rejestrów jest także widoczne w technologiach takich jak mikroprocesory wbudowane gdzie wydajność i efektywność energetyczna są kluczowe.

Pytanie 23

Gdy użytkownik wpisuje w przeglądarkę internetową adres www.egzamin.pl, nie ma możliwości otwarcia strony WWW, natomiast wprowadzenie adresu 211.0.12.41 umożliwia dostęp do niej. Problem ten spowodowany jest brakiem skonfigurowanego serwera

A. DHCP
B. DNS
C. SQL
D. WWW
Odpowiedzi SQL, DHCP i WWW nie są właściwe w kontekście opisanej sytuacji. SQL, czyli Structured Query Language, to język zapytań używany do zarządzania danymi w relacyjnych bazach danych. Nie ma bezpośredniego związku z procesem rozpoznawania nazw domenowych. Problemy z dostępem do strony internetowej nie leżą w obszarze zarządzania bazami danych, chyba że zastosowanie SQL dotyczy problemów z pobieraniem treści z bazy, co nie jest przyczyną opisaną w pytaniu. DHCP, czyli Dynamic Host Configuration Protocol, służy do automatycznego przydzielania adresów IP urządzeniom w sieci lokalnej. Choć DHCP jest niezbędny do zapewnienia, że urządzenia mają dostęp do lokalnej sieci, nie odpowiada za tłumaczenie nazw domenowych na adresy IP. Dlatego, jeśli adres IP jest znany i dostęp do serwisu internetowego jest możliwy poprzez jego wpisanie, problem leży w systemie DNS, a nie w DHCP. WWW, czyli World Wide Web, odnosi się do całego systemu publikowania i organizacji treści w Internecie, ale nie jest zjawiskiem technicznym, które wpływa na rozpoznawanie adresów w sieci. Często pomyłka wynika z mylenia terminów technicznych i ich funkcji. Kluczowe jest zrozumienie roli systemu DNS w dostępie do zasobów internetowych oraz jego wpływu na funkcjonowanie sieci jako całości.

Pytanie 24

Który protokół zajmuje się konwersją adresów IP na adresy MAC (kontroli dostępu do nośnika)?

A. SMTP
B. RARP
C. ARP
D. SNMP
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem komunikacji w sieciach komputerowych, ponieważ odpowiada za konwersję adresów IP na adresy MAC. Gdy urządzenie w sieci lokalnej chce wysłać pakiet danych do innego urządzenia, musi znać jego adres MAC, ponieważ jest to adres używany na poziomie warstwy 2 modelu OSI. ARP wykonuje tę konwersję, wykorzystując zapytania i odpowiedzi. Przykładem zastosowania ARP jest sytuacja, gdy komputer A chce wysłać dane do komputera B. Komputer A najpierw wysyła zapytanie ARP, które jest broadcastowane w sieci, aby dowiedzieć się, kto ma dany adres IP. Gdy komputer B odbiera to zapytanie, odpowiada swoim adresem MAC. Taki mechanizm jest fundamentalny dla działania protokołów sieciowych i stanowi część dobrych praktyk w projektowaniu sieci, zapewniając efektywną komunikację między urządzeniami. Zrozumienie ARP jest niezbędne dla administratorów sieci oraz inżynierów, aby móc diagnozować problemy sieciowe i optymalizować ruch danych.

Pytanie 25

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. ósemkowym
B. dwójkowym
C. szesnastkowym
D. dziesiętnym
Wybór innych systemów liczbowych jako reprezentacji adresu IP 172.16.0.1 może prowadzić do nieporozumień dotyczących interpretacji danych. System ósemkowy, oparty na liczbach od 0 do 7, nie jest używany do przedstawiania adresów IP, ponieważ jego zakres ogranicza możliwość bezpośredniego odwzorowania wartości oktetów, które mieszczą się w zakresie 0-255. Takie podejście może prowadzić do błędów w konfiguracji i identyfikacji urządzeń w sieci. Z kolei system szesnastkowy, w którym liczby są przedstawiane za pomocą cyfr 0-9 oraz liter A-F, jest stosowany głównie w kontekście reprezentacji danych binarnych w bardziej skondensowanej formie, ale nie jest standardem w adresowaniu IPv4. Użytkownicy mogą pomylić ten system z adresowaniem w protokołach, które używają notacji szesnastkowej do reprezentowania adresów MAC. System dwójkowy, z kolei, chociaż fundamentalny w kontekście działania komputerów, nie jest używany w codziennej pracy związanej z adresowaniem IP, gdyż jego zapis byłby zbyt skomplikowany i mało czytelny. Powszechnym błędem jest mylenie różnych systemów liczbowych, co wynika z braku zrozumienia ich zastosowania. W praktyce, znajomość i umiejętność poprawnej interpretacji adresów IP w systemie dziesiętnym jest kluczowa dla skutecznego zarządzania sieciami komputerowymi.

Pytanie 26

Wskaż komponent, który reguluje wartość napięcia pochodzącego z sieci elektrycznej, wykorzystując transformator do przeniesienia energii między dwoma obwodami elektrycznymi z zastosowaniem zjawiska indukcji magnetycznej?

A. Przerzutnik synchroniczny
B. Rejestr szeregowy
C. Rezonator kwarcowy
D. Zasilacz transformatorowy
Zasilacz transformatorowy jest kluczowym elementem w systemach elektrycznych, którego zadaniem jest dostosowanie poziomu napięcia z sieci energetycznej do wymagań urządzeń elektrycznych. Działa on na zasadzie indukcji magnetycznej w transformatorze, który przenosi energię elektryczną między dwoma obwodami przy użyciu zmiennego pola magnetycznego. Transformator składa się z dwóch cewek: pierwotnej i wtórnej, które są nawinięte na wspólnym rdzeniu. W praktyce, zasilacze transformatorowe są szeroko stosowane w różnych aplikacjach, od zasilania małych urządzeń elektronicznych po duże systemy przemysłowe. Na przykład, w zasilaczach sieciowych do komputerów, transformator obniża napięcie z sieci 230V do bezpieczniejszego poziomu, co jest nie tylko zgodne z normami bezpieczeństwa, ale także zapewnia stabilność pracy urządzeń. W branży stosuje się standardy takie jak IEC 61558, które regulują wymagania dotyczące bezpieczeństwa transformatorów. Dlatego zasilacze transformatorowe są nie tylko istotne, ale również niezbędne dla efektywnego i bezpiecznego przepływu energii elektrycznej.

Pytanie 27

Jaki zakres adresów IPv4 jest prawidłowo przypisany do danej klasy?

A. Poz. A
B. Poz. C
C. Poz. D
D. Poz. B
Wybór odpowiedzi A, C lub D odnosi się do nieprawidłowych zakresów adresów IPv4 przypisanych do niewłaściwych klas. Klasa A obejmuje adresy od 1.0.0.0 do 126.255.255.255, co oznacza, że posiada tylko 7 bitów identyfikatora sieci, co pozwala na obsługę bardzo dużych sieci, ale z ograniczoną liczbą dostępnych adresów hostów. Klasa C, z kolei, obejmuje zakres od 192.0.0.0 do 223.255.255.255, oferując 24 bity dla hostów, co jest idealne dla mniejszych sieci, które nie wymagają dużej liczby adresów. Klasa D, z adresami od 224.0.0.0 do 239.255.255.255, jest zarezerwowana dla multicastu, co oznacza, że nie jest używana do przypisywania adresów dla indywidualnych hostów ani dla standardowego routingu. Powszechnym błędem jest mylenie zakresów adresów oraz ich przeznaczenia, co może prowadzić do problemów z konfiguracją sieci i bezpieczeństwem. Właściwe zrozumienie klas adresów IPv4 i ich zastosowania jest niezbędne do efektywnego zarządzania sieciami, a także do unikania kolizji w przydzielaniu adresów IP oraz zapewnienia ich prawidłowego funkcjonowania w różnych kontekstach sieciowych.

Pytanie 28

Jakie są zakresy częstotliwości oraz maksymalne prędkości przesyłu danych w standardzie 802.11g WiFi?

A. 2,4 GHz, 300 Mbps
B. 5 GHz, 54 Mbps
C. 2,4 GHz, 54 Mbps
D. 5 GHz, 300 Mbps
Odpowiedzi wskazujące na pasmo 5 GHz są błędne, ponieważ standard 802.11g został zaprojektowany do działania wyłącznie w zakresie 2,4 GHz. Pasmo 5 GHz jest właściwe dla nowszych standardów, takich jak 802.11n czy 802.11ac, które oferują lepszą szybkość transmisji i mniejsze zakłócenia, ale 802.11g nie jest jednym z nich. Ponadto, maksymalna szybkość transmisji danych 300 Mbps jest charakterystyczna dla standardu 802.11n, który wprowadził wiele usprawnień, takich jak MIMO (Multiple Input Multiple Output), zyskując przewagę nad starszymi standardami. W przypadku 802.11g, 54 Mbps to maksymalna prędkość, która została osiągnięta dzięki zastosowaniu modulacji QPSK oraz 64-QAM, co zapewniała efektywne wykorzystanie dostępnego pasma. Typowym błędem jest mylenie różnych standardów Wi-Fi i ich możliwości, co prowadzi do niewłaściwego doboru sprzętu oraz ustawień sieciowych. Dobrze jest zrozumieć, jakie ograniczenia i możliwości niosą ze sobą różne standardy, a także jak wpływają one na użyteczność oraz efektywność sieci w praktyce. Dlatego kluczowe jest, aby przy projektowaniu sieci lokalnych zwracać uwagę na specyfikacje poszczególnych standardów, aby uniknąć nieporozumień i zapewnić optymalne działanie systemów komunikacyjnych.

Pytanie 29

Jaki jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz maską 26 bitową?

A. 192.168.35.192
B. 192.168.35.63
C. 192.168.35.255
D. 192.168.35.0
Adresy rozgłoszeniowe są często mylone z innymi typami adresów IP, co prowadzi do błędnych wniosków. Na przykład, adres 192.168.35.0 jest adresem sieciowym, a nie rozgłoszeniowym. Z definicji, adres sieciowy identyfikuje daną sieć, w której znajdują się hosty. Ponadto, adres 192.168.35.63, w kontekście maski 255.255.255.192, nie może być adresem rozgłoszeniowym, ponieważ w rzeczywistości jest to adres hosta w tej samej sieci. Z kolei adres 192.168.35.192 to adres, który nie jest adresem rozgłoszeniowym w tej konfiguracji, lecz również należy do puli dostępnych adresów dla hostów. Kluczową koncepcją, którą należy zapamiętać, jest to, że adres rozgłoszeniowy dla danej podsieci jest zawsze najwyższym możliwym adresem, co oznacza, że wszystkie bity hosta są ustawione na '1'. Typowym błędem jest nieprawidłowe rozumienie rozgraniczenia pomiędzy adresami sieciowymi, hostów i adresami rozgłoszeniowymi, co może prowadzić do problemów w konfiguracji sieci czy podczas diagnostyki. Właściwe zrozumienie tych pojęć jest fundamentalne dla efektywnego zarządzania siecią oraz zapewnienia jej prawidłowego funkcjonowania.

Pytanie 30

Symbol "LGA 775" obecny w dokumentacji technicznej płyty głównej wskazuje na typ gniazda dla procesorów:

A. których obudowa zawiera piny
B. których obudowa zawiera pola dotykowe
C. które mają mniej połączeń zasilających niż gniazdo dla procesorów w obudowie PGA
D. które są zgodne z szyną systemową o maksymalnej częstotliwości taktowania do 1 333 MHz
Stwierdzenie, że 'LGA 775' odnosi się do procesorów, których obudowa posiada piny, jest nieprawidłowe, ponieważ koncept pinu w kontekście LGA odnosi się do technologii PGA, gdzie procesor ma wystające piny, które wchodzą w gniazdo na płycie głównej. W przypadku LGA, procesor jest płaski i posiada pola dotykowe, co eliminuje wiele problemów związanych z mechanicznym uszkodzeniem pinów. Wybór gniazda LGA 775 ma swoje uzasadnienie w potrzebie zwiększenia niezawodności połączeń oraz prostoty montażu. Kolejna nieścisłość dotyczy połączeń zasilających. W rzeczywistości LGA 775 obsługuje standardowe połączenia zasilające, które są wystarczające dla większości procesorów z tej serii, a stwierdzenie, że obudowy te mają mniej połączeń zasilających niż ich odpowiedniki w technologii PGA jest mylące. To zróżnicowanie w konstrukcji gniazd nie wpływa bezpośrednio na efektywność zasilania procesora, lecz na sposób, w jaki procesor łączy się z płytą główną. Warto również zwrócić uwagę na częstotliwość szyny systemowej. Podczas gdy LGA 775 obsługuje procesory z różnymi częstotliwościami taktowania, twierdzenie, że gniazdo to ogranicza się do częstotliwości 1 333 MHz, jest zbyt ogólne, ponieważ różne modele procesorów mogą współpracować z szyną systemową o różnych prędkościach, co było istotne w kontekście rozwoju technologii oraz zastosowań w standardowych komputerach i zaawansowanych stacjach roboczych.

Pytanie 31

Urządzenie sieciowe, które umożliwia połączenie pięciu komputerów w tej samej sieci, eliminując kolizje pakietów, to

A. ruter.
B. przełącznik.
C. most.
D. koncentrator.
Przełącznik, znany również jako switch, jest urządzeniem sieciowym, które efektywnie zarządza ruchem danych w sieci lokalnej (LAN). Jego główną funkcją jest przekazywanie pakietów danych między komputerami w sposób, który minimalizuje kolizje. Działa na warstwie drugiej modelu OSI (łącza danych), co pozwala mu na analizowanie adresów MAC w nagłówkach ramki. Dzięki temu przełącznik może stworzyć tablicę adresów, co umożliwia mu wysyłanie danych tylko do określonego odbiorcy, a nie do wszystkich urządzeń w sieci, jak to ma miejsce w przypadku koncentratora. Przykładowo, w małej firmie z pięcioma komputerami, użycie przełącznika pozwoli na płynne przesyłanie plików i komunikację bez zbędnych opóźnień. Warto również zaznaczyć, że przełączniki wspierają takie technologie jak VLAN, co umożliwia segmentację sieci oraz poprawia bezpieczeństwo i wydajność. Zastosowanie przełączników jest zgodne z najlepszymi praktykami w projektowaniu sieci, gdzie priorytetem jest wydajność oraz minimalizacja kolizji danych.

Pytanie 32

Ile adresów można przypisać urządzeniom działającym w sieci o adresie IP 192.168.20.0/26?

A. 30
B. 4
C. 126
D. 62
Odpowiedź 62 jest poprawna, ponieważ w sieci o adresie IP 192.168.20.0/26 stosujemy maskę podsieci, która pozwala na przydzielenie 64 adresów, co wynika z obliczeń 2^(32-26) = 2^6 = 64. Z tego 64 adresy musimy odjąć 2: jeden dla adresu sieci (192.168.20.0) oraz jeden dla adresu rozgłoszeniowego (192.168.20.63). Zatem liczba dostępnych adresów do przydzielenia urządzeniom wynosi 64 - 2 = 62. Przykładowo, w typowych zastosowaniach domowych lub małych biur, taka liczba dostępnych adresów IP może być wystarczająca do obsługi wszystkich urządzeń, takich jak komputery, smartfony, drukarki czy inne urządzenia IoT. W praktyce, przydzielanie adresów IP w taki sposób jest zgodne z zaleceniami standardów takich jak RFC 1918, które definiują prywatne adresy IP. To podejście zapewnia efektywne zarządzanie przestrzenią adresową w lokalnych sieciach.

Pytanie 33

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach transmisyjnych 1310nm oraz 1550nm, powinno się zastosować

A. rejestratora cyfrowego
B. reflektometru TDR
C. miernika mocy optycznej
D. testera UTP
Miernik mocy optycznej jest kluczowym narzędziem do pomiaru tłumienia łącza światłowodowego w określonych długościach fal, takich jak 1310 nm i 1550 nm. Oferuje on możliwość dokładnego określenia ilości energii optycznej przechodzącej przez włókno, co pozwala na ocenę jego wydajności oraz jakości transmisji. Tłumienie w systemach światłowodowych jest mierzona w decybelach na kilometr (dB/km) i jest istotnym parametrem dla inżynierów zajmujących się projektowaniem oraz konserwacją sieci. Przykładem zastosowania miernika mocy optycznej jest wykonywanie pomiarów w sytuacjach, gdy wprowadzane są nowe segmenty łącza lub podczas przeprowadzania regularnych testów konserwacyjnych, aby zapewnić, że tłumienie nie przekracza dopuszczalnych norm, co zazwyczaj wynosi 0,35 dB/km dla długości fali 1550 nm i 0,5 dB/km dla 1310 nm. Praktyczne zastosowanie miernika mocy optycznej zgodnie z normami ANSI/TIA-568 i ITU-T G.652 umożliwia zachowanie wysokiej jakości sygnału oraz wykrywanie potencjalnych problemów, takich jak uszkodzenia włókna czy niewłaściwe połączenia spawane.

Pytanie 34

Na komputerze, na którym zainstalowane są dwa systemy – Windows i Linux, po przeprowadzeniu reinstalacji systemu Windows drugi system przestaje się uruchamiać. Aby ponownie umożliwić uruchamianie systemu Linux oraz aby zachować wszystkie dane i ustawienia w nim zawarte, co należy zrobić?

A. wykonać reinstalację systemu Linux
B. przeprowadzić skanowanie dysku programem antywirusowym
C. wykonać ponowną instalację systemu Windows
D. ponownie zainstalować bootloadera GRUB
Reinstalacja bootloadera GRUB (Grand Unified Bootloader) jest kluczowym krokiem w przywracaniu możliwości uruchamiania systemu Linux po reinstalacji Windows. Reinstalacja Windows zazwyczaj nadpisuje MBR (Master Boot Record) lub EFI (Extensible Firmware Interface), co sprawia, że bootloader Linuxa nie jest już dostępny. GRUB jest odpowiedzialny za zarządzanie wieloma systemami operacyjnymi na komputerze, umożliwiając użytkownikowi wybór, który system ma być uruchomiony. Aby ponownie zainstalować GRUB, można użyć nośnika instalacyjnego Linuxa (np. Live CD lub USB), uruchomić terminal i użyć komendy 'grub-install' w odpowiednim systemie plików. Praktycznie, po zainstalowaniu GRUB, można również zaktualizować jego konfigurację za pomocą 'update-grub', co zapewni, że wszystkie dostępne systemy operacyjne zostaną poprawnie wykryte. Dobrą praktyką jest regularne tworzenie kopii zapasowych ważnych danych, co pozwala uniknąć ich utraty w przypadku problemów z systemem operacyjnym.

Pytanie 35

Znak handlowy dla produktów certyfikowanych według standardów IEEE 802.11 to

A. LTE
B. Wi-Fi
C. DSL
D. GSM
Odpowiedź 'Wi-Fi' jest prawidłowa, ponieważ jest to oznaczenie dla technologii bezprzewodowej opartej na standardach IEEE 802.11. Standardy te definiują metody transmisji danych w sieciach lokalnych, co umożliwia urządzeniom takim jak laptopy, smartfony i tablety łączność z Internetem bez użycia kabli. Wi-Fi stało się powszechnym rozwiązaniem w domach, biurach oraz miejscach publicznych, dzięki czemu użytkownicy mogą korzystać z szerokopasmowego dostępu do sieci bez potrzeby fizycznego podłączenia do routera. Warto również zauważyć, że Wi-Fi wspiera różne pasma częstotliwości, takie jak 2.4 GHz i 5 GHz, co pozwala na zwiększenie szybkości transferu danych oraz zmniejszenie zakłóceń. Standardy IEEE 802.11 są regularnie aktualizowane, co zapewnia rozwój technologii i adaptację do rosnących potrzeb użytkowników. Przykładowo, najnowsze standardy, takie jak Wi-Fi 6 (802.11ax), oferują znacznie wyższą wydajność i lepsze zarządzanie ruchem sieciowym w porównaniu do wcześniejszych wersji.

Pytanie 36

Jaką topologię fizyczną sieci komputerowej przedstawia rysunek?

Ilustracja do pytania
A. Siatki
B. Magistrali
C. Podwójnego pierścienia
D. Gwiazdy rozszerzonej
Topologia podwójnego pierścienia jest zaawansowaną formą sieci pierścieniowej w której dwa pierścienie pozwalają na redundancję i większą niezawodność przesyłania danych. W tej topologii każde urządzenie jest połączone z dwoma sąsiadującymi, co zapewnia alternatywną ścieżkę w przypadku awarii jednego z połączeń. Stosowana jest w środowiskach krytycznych gdzie nieprzerwana komunikacja ma kluczowe znaczenie na przykład w systemach komunikacyjnych miast lub dużych przedsiębiorstwach. Jest to zgodne ze standardami takimi jak SONET i FDDI które zapewniają wysoką przepustowość i bezpieczeństwo danych. W praktyce topologia ta minimalizuje ryzyko przestojów i utraty danych dzięki czemu jest idealnym rozwiązaniem dla infrastruktury IT gdzie niezawodność jest priorytetem. Dzięki podwójnej ścieżce możliwe jest szybkie przełączenie w razie awarii co czyni ją efektywną opcją dla rozległych sieci korporacyjnych i przemysłowych.

Pytanie 37

Jak można skonfigurować sieć VLAN?

A. na przełączniku
B. na moście
C. na koncentratorze
D. na regeneratorze
Sieć VLAN (Virtual Local Area Network) można skonfigurować na przełącznikach, co jest jednym z kluczowych zastosowań tej technologii. Przełączniki umożliwiają segmentację ruchu sieciowego poprzez tworzenie różnych sieci wirtualnych, co zwiększa bezpieczeństwo oraz poprawia efektywność zarządzania ruchem. VLAN-y pozwalają na izolację ruchu pomiędzy różnymi grupami użytkowników i urządzeń w obrębie tej samej infrastruktury fizycznej. Przykładem zastosowania VLAN-ów może być przedsiębiorstwo, które chce oddzielić ruch pracowników działu sprzedaży od działu księgowości, aby zapewnić większą prywatność danych i zminimalizować ryzyko nieautoryzowanego dostępu. W praktyce, konfiguracja VLAN-ów na przełącznikach opiera się na standardzie IEEE 802.1Q, który definiuje sposób tagowania ramek Ethernet, co umożliwia odpowiednie zarządzanie ruchem w sieci. Zastosowanie VLAN-ów w dużych organizacjach jest zgodne z najlepszymi praktykami, co pozwala na lepszą kontrolę nad przepustowością i bezpieczeństwem sieci.

Pytanie 38

W dokumentacji płyty głównej zapisano „Wsparcie dla S/PDIF Out”. Co to oznacza w kontekście tego modelu płyty głównej?

A. cyfrowe złącze sygnału video
B. analogowe złącze sygnału wejścia video
C. analogowe złącze sygnału wyjścia video
D. cyfrowe złącze sygnału audio
Odpowiedź wskazująca na "cyfrowe złącze sygnału audio" jest poprawna, ponieważ S/PDIF (Sony/Philips Digital Interface) to standard cyfrowego przesyłania sygnału audio, który pozwala na przesyłanie dźwięku w formie nieskompresowanej lub skompresowanej. Złącze S/PDIF może mieć formę optyczną lub elektryczną, co umożliwia podłączenie różnych urządzeń audio, takich jak dekodery, amplitunery, czy zestawy głośników. Zastosowanie S/PDIF w systemach audio jest szerokie – na przykład, wiele komputerów i płyt głównych ma wyjścia S/PDIF, co pozwala na wydobycie wysokiej jakości dźwięku do zewnętrznych systemów audio. W praktyce, korzystanie z S/PDIF zapewnia lepszą jakość dźwięku w porównaniu do analogowych rozwiązań, ponieważ eliminuje potencjalne zakłócenia związane z sygnałami analogowymi i umożliwia przesyłanie sygnału stereo lub wielokanałowego bezstratnie, zgodnie z najnowszymi standardami audio.

Pytanie 39

Administrator Active Directory w domenie firma.local pragnie skonfigurować profil mobilny dla wszystkich użytkowników. Profil ma być zapisywany na serwerze serwer1, w folderze pliki, udostępnionym w sieci jako dane$. Który z parametrów w ustawieniach profilu użytkownika spełnia te wymagania?

A. serwer1dane$\%username%
B. firma.localdane\%username%
C. firma.localpliki\%username%
D. serwer1pliki\%username%
Właściwy wybór to 'serwer1dane$\%username%'. W kontekście Active Directory i profili mobilnych, istotne jest, aby ścieżka wskazywała na udostępniony folder, który jest dostępny dla użytkowników w sieci. Warto zwrócić uwagę, że znak dolara '$' na końcu 'dane$' oznacza, iż jest to folder ukryty, co jest standardową praktyką w przypadku zasobów, które nie powinny być widoczne dla wszystkich użytkowników w sieci. Folder ten, zlokalizowany na serwerze 'serwer1', jest odpowiednio skonfigurowany do przechowywania profili mobilnych, co oznacza, że każdy użytkownik będzie miał swój unikalny podfolder oparty na zmiennej środowiskowej '%username%', co umożliwia łatwe i zorganizowane zarządzanie danymi. Użycie ścieżki \serwer1\dane$\%username% jest zgodne z najlepszymi praktykami w zakresie tworzenia profili mobilnych w Active Directory, minimalizując ryzyko kolizji nazw i zapewniając prawidłowy dostęp do danych. Takie podejście wspiera efektywne zarządzanie danymi użytkowników w dużych organizacjach, gdzie wiele osób korzysta z tych samych zasobów.

Pytanie 40

Aby kontrolować ilość transferu w sieci, administrator powinien zastosować program rodzaju

A. package manager
B. quality manager
C. task manager
D. bandwidth manager
Odpowiedź "bandwidth manager" jest jak najbardziej trafna. To narzędzie służy do zarządzania szerokością pasma w sieciach komputerowych. Dzięki niemu, administratorzy mogą na bieżąco śledzić i kontrolować, jak wykorzystujemy przepustowość. Ogólnie rzecz biorąc, to bardzo ważne, bo pomaga utrzymać sieć w dobrej kondycji i zarządzać ruchem danych. Można to na przykład wykorzystać do ograniczenia przepustowości dla mniej istotnych aplikacji podczas godzin szczytu, żeby krytyczne usługi działały lepiej. W praktyce, to oprogramowanie często korzysta z zasad QoS (Quality of Service), które pomagają w organizacji ruchu w sieci, w zależności od potrzeb firmy. Wiesz, w biurze, gdzie sporo osób korzysta z takich aplikacji jak strumieniowanie, bandwidth manager może ograniczyć ich przepustowość, żeby usługi jak wideokonferencje działały płynnie.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły