Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 czerwca 2025 18:39
  • Data zakończenia: 3 czerwca 2025 18:48

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω

A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 2

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Zaprasowywania przewodów w połączeniach wsuwanych.
B. Montażu zacisków zakleszczających.
C. Zaciskania końcówek tulejkowych na żyłach przewodu.
D. Formowania oczek na końcach żył.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 3

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza ampulowego.
B. Wkrętaka typu torks.
C. Klucza nasadowego.
D. Wkrętaka krzyżowego.
Wybór narzędzia do wkręcania elementów w nagwintowane otwory jest kluczowy dla efektywności oraz bezpieczeństwa pracy. Użycie wkrętaka typu torks mogłoby wydawać się logiczne, jednak ostatecznie jest to niewłaściwe podejście, ponieważ wkrętak torks jest przeznaczony do obsługi wkrętów z łbami torx, które mają zupełnie inny kształt. Niepoprawne pomylenie wkrętaka torks z kluczem ampulowym może prowadzić do uszkodzenia łba śruby, co z kolei uniemożliwi dalsze wkręcanie. Klucz nasadowy to kolejne narzędzie, które w tym przypadku nie sprawdzi się, ponieważ jest on przeznaczony do pracy z śrubami i nakrętkami o łbach sześciokątnych lub kwadratowych, a nie z łbami sześciokątnymi wewnętrznymi. Użycie klucza nasadowego do śrub z gwintem wewnętrznym może skutkować zbyt luźnym dopasowaniem i poślizgiem narzędzia, co zwiększa ryzyko uszkodzenia zarówno narzędzia, jak i śruby. Ponadto, wkrętak krzyżowy również nie jest odpowiednim wyborem, gdyż jest on zaprojektowany do pracy z wkrętami o łbach krzyżowych, co uniemożliwia wkręcanie śrub z łbem sześciokątnym wewnętrznym. Klucz ampulowy to jedyne narzędzie, które zapewnia odpowiednie dopasowanie, skuteczność i bezpieczeństwo, co jest niezbędne w każdym działaniu związanym z montażem lub demontażem elementów mechanicznych.

Pytanie 4

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
B. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 5

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
B. Instrukcja obsługi urządzenia
C. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 6

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. I
C. II
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 7

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 0,5
B. 5
C. 1
D. 0,1
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 8

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gG
B. aM
C. aL
D. gR
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 9

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja sieci zasilającej jest zbyt niska
C. rezystancja izolacji miejsca pracy jest zbyt duża
D. impedancja pętli zwarcia jest zbyt wysoka
W kontekście ochrony przed porażeniem prądem elektrycznym, zrozumienie roli różnych parametrów instalacji jest niezwykle istotne. Rezystancja izolacji stanowiska nie jest bezpośrednio związana z efektywnością ochrony w układzie TN-C. Wysoka rezystancja izolacji może świadczyć o dobrym stanie izolacji, co w teorii zmniejsza ryzyko porażenia prądem, ale nie eliminuje potrzeby niskiej impedancji pętli zwarcia. Z kolei zbyt mała rezystancja uziomu nie gwarantuje właściwej ochrony, ponieważ kluczowym parametrem jest to, jak szybko prąd zwarciowy może przepłynąć przez obwód, co zależy od impedancji pętli zwarcia. Impedancja sieci zasilającej jest także mniej istotna w kontekście bezpośredniego bezpieczeństwa, ponieważ to nie ona decyduje o skuteczności wyłączenia obwodu w przypadku zwarcia. Typowym błędem myślowym jest skupianie się na pojedynczych parametrach, zamiast na całościowym zrozumieniu interakcji między różnymi elementami instalacji. Bez właściwej analizy impedancji pętli zwarcia, jakiekolwiek poprawki dotyczące uziemienia czy rezystancji izolacji mogą nie przynieść oczekiwanych rezultatów, a tym samym zagrażać bezpieczeństwu użytkowników instalacji elektrycznych. Kluczowe jest zatem podejście holistyczne, które uwzględnia wszystkie parametry, aby zapewnić pełną ochronę przed porażeniem prądem elektrycznym.

Pytanie 10

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. uszkodzenia podłączonego urządzenia elektrycznego
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 11

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
C. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 12

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. brak zabezpieczenia przed kurzem i wilgocią
B. stosowanie separacji ochronnej
C. zerową klasę ochrony przed porażeniem
D. najwyższy poziom ochronności
Wybór odpowiedzi dotyczących separacji ochronnej, zerowej klasy ochronności oraz najwyższego stopnia ochronności oparty jest na mylnym zrozumieniu klasyfikacji IP i jej zastosowania. Separacja ochronna odnosi się do metod stosowanych w budowie urządzeń w celu zapewnienia bezpieczeństwa użytkownika poprzez oddzielenie części pod napięciem od części dostępnych dla użytkownika. W przypadku oznaczenia IP00 nie ma mowy o jakiejkolwiek separacji, gdyż brak jakiejkolwiek ochrony przed pyłem i wodą oznacza, że użytkownik narażony jest na bezpośredni kontakt z potencjalnie niebezpiecznymi komponentami. Zerowa klasa ochronności przed porażeniem to również niepoprawna interpretacja – IP00 nie odnosi się bezpośrednio do porażenia prądem, ale do ochrony mechanicznej i wodnej. W rzeczywistości klasa ochronności przed porażeniem elektrycznym wyrażana jest innymi symbolami, takimi jak klasy I, II, III, które definiują różne poziomy ochrony. Wreszcie, najwyższy stopień ochronności odnosiłby się do oznaczenia IP68 lub wyższego, które wskazuje na wysoką odporność na zanurzenie w wodzie i pył. Pojmowanie oznaczeń IP jest fundamentalne w kontekście bezpieczeństwa i trwałości urządzeń, a błędne interpretacje mogą prowadzić do niewłaściwego użytkowania i poważnych zagrożeń.

Pytanie 13

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Omomierza
B. Megawoltomierza
C. Watomierza
D. Megaomomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 14

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Nasadowym.
B. Oczkowym.
C. Imbusowym.
D. Płaskim.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 15

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Odbiorczych
B. Pomocniczych
C. Przesyłowych
D. Wytwórczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 16

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. II
B. I
C. III
D. 0
Odpowiedź III jest prawidłowa, ponieważ oprawy oświetleniowe, które nie mają zacisku ochronnego i są zasilane źródłem napięcia SELV (Safety Extra Low Voltage), należą do klasy ochronności III. Klasa ta oznacza, że urządzenia są zbudowane w taki sposób, aby nie stwarzać zagrożenia dla użytkownika, nawet w przypadku awarii. Warto podkreślić, że napięcie SELV nie przekracza 50 V AC lub 120 V DC, co znacząco zwiększa bezpieczeństwo użytkowania. Przykładem zastosowania opraw oświetleniowych klasy III mogą być lampy LED w miejscach, gdzie istnieje ryzyko kontaktu z wodą, jak łazienki i baseny. Klasa III jest również zgodna z normami IEC 61140 oraz IEC 60598, które regulują aspekty bezpieczeństwa i projektowania opraw oświetleniowych. Integracja opraw tej klasy w instalacjach elektrycznych nie wymaga dodatkowych środków ochrony przed porażeniem prądem, co ułatwia ich stosowanie w obiektach publicznych oraz w budynkach mieszkalnych.

Pytanie 17

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. omomierza
C. miernika izolacji
D. mostka LC
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 18

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 12 V
B. 230 V
C. 50 V
D. 100 V
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 19

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. zwarciem
B. przepięciem
C. porażeniem
D. przeciążeniem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 20

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S194B10
B. S193B10
C. S193B16
D. S192B16
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 21

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zwarcie bezpiecznika wewnętrznego urządzenia
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Zniszczenie przewodu ochronnego PE
D. Uszkodzenie izolacji przewodu zasilającego urządzenie
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 22

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TN-C
B. TT
C. TN-S
D. IT
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 23

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Separację urządzeń
B. Izolację miejsca pracy
C. Podwójną lub wzmocnioną izolację
D. Ochronne obniżenie napięcia
Ochronne obniżenie napięcia to metoda ochrony przeciwporażeniowej, która polega na zasilaniu odbiorników z transformatora bezpieczeństwa, który ma niskie napięcie wyjściowe, najczęściej 50V AC lub 120V DC. Tego typu zasilanie jest stosowane w miejscach, gdzie istnieje ryzyko porażenia prądem, szczególnie w warunkach wilgotnych lub w obecności wody. Przykładem zastosowania może być oświetlenie w ogrodzie lub w basenach, gdzie transformator bezpieczeństwa zapewnia niskie napięcie, czyniąc system bezpieczniejszym dla użytkowników. W standardach takich jak IEC 61140 dotyczących ochrony przed porażeniem prądem elektrycznym, podkreślana jest istotność stosowania niskonapięciowych systemów w obszarach o podwyższonym ryzyku. Tego rodzaju rozwiązania są również rekomendowane przez Polskie Normy, które zalecają stosowanie transformatorów separacyjnych w instalacjach elektrycznych w miejscach o zwiększonym zagrożeniu. Ochronne obniżenie napięcia jest więc uznaną praktyką, wpływającą na bezpieczeństwo użytkowników."

Pytanie 24

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,39
B. 0,69
C. 0,49
D. 0,84
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 25

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt wysoka wartość prądu długotrwałego
B. Poluzowanie śruby mocującej w puszce
C. Wzrost napięcia zasilającego spowodowany przepięciem
D. Zbyt mały przekrój użytego przewodu
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 26

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Świecznikowy
B. Dwubiegunowy
C. Krzyżowy
D. Schodowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 27

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 28

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję przewodów ochronnych i rezystancję uziemienia
B. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
C. Impedancję pętli zwarcia oraz pomiar prądu upływu
D. Rezystancję izolacji przewodów oraz rezystancję uziemienia
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.

Pytanie 29

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt mała powierzchnia styku szczotek z komutatorem
B. Zbyt duże wzbudzenie silnika
C. Zbyt małe wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 30

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 8 lat
B. 5 lat
C. 4 lata
D. 6 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 31

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 8,3%
B. 3,0%
C. 6,8%
D. 3,4%
Aby obliczyć całkowity względny błąd pomiaru rezystancji izolacji, musimy uwzględnić zarówno błąd procentowy, jak i błąd wyrażony w cyfrach. W naszym przypadku, merkur wskazał wartość 200,0 MΩ, a jego niedokładność wynosi ± (3% w.w. + 8 cyfr). Najpierw obliczamy 3% z 200,0 MΩ, co daje 6,0 MΩ. Następnie dodajemy wartość 8 cyfr, co w tym przypadku oznacza 0,00000008 Ω. W rzeczywistości 8 cyfr nie wpływa znacząco na wynik w skali MΩ, ale dla pełności obliczeń uwzględniamy tę wartość. Tak więc całkowity błąd pomiarowy wynosi 6,0 MΩ. Aby obliczyć względny błąd, dzielimy błąd przez zmierzoną wartość i mnożymy przez 100%. Liczba ta daje nam 3,0%. Jednak aby uzyskać całkowity błąd, należy dodać błędy z różnych źródeł, co prowadzi do ostatecznego wyniku 3,4%. Taki sposób obliczania błędów pomiarowych jest zgodny z zaleceniami standardów ISO oraz dobrymi praktykami w dziedzinie metrologii, którymi powinni kierować się wszyscy inżynierowie pracujący z pomiarami elektrycznymi.

Pytanie 32

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Stal
B. Brąz
C. Aluminium
D. Miedź
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 33

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy podnapięciowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy różnicowoprądowy
D. Dwubiegunowy przepięciowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 34

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 35

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Świecznikowy
B. Dwubiegunowy
C. Schodowy
D. Krzyżowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 36

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Przekaźnik czasowy.
D. Automat zmierzchowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 37

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 38

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. podtynkowego
B. samonośnego
C. natynkowego
D. oponowego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 39

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie neutralnym
B. Zwarcie doziemne przewodu neutralnego
C. Przerwa w przewodzie ochronnym
D. Uszkodzenie izolacji przewodu ochronnego
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 40

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
B. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
C. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.