Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 13 kwietnia 2025 19:34
  • Data zakończenia: 13 kwietnia 2025 19:46

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,01) V
B. U = (5,00 ± 0,07) V
C. U = (5,00 ± 0,05) V
D. U = (5,00 ± 0,02) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 2

Co oznacza funkcja ARW w radiowych odbiornikach?

A. automatyczną regulację wzmocnienia
B. wybieranie oraz wyszukiwanie rodzaju programu
C. odbiór tekstowych komunikatów
D. odbiór komunikatów drogowych
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 3

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. niesymetryczne (unbalanced)
B. sygnalizacyjne YKSY
C. sygnalizacyjne YKSwXs
D. symetryczne (balanced)
Kable niesymetryczne (unbalanced) nie są odpowiednie dla połączeń na dużych odległościach, ponieważ charakteryzują się większą podatnością na zakłócenia zewnętrzne. W sytuacji, gdy sygnał jest przesyłany jednym przewodem z dodatkowym przewodem masy, każdy wpływ elektromagnetyczny może zniekształcić jakość dźwięku, co może prowadzić do szumów oraz innych problemów. Kable sygnalizacyjne YKSwXs oraz YKSY są specyficznymi typami kabli, które również mogą być stosowane w różnych aplikacjach, ale nie zapewniają tej samej ochrony przed zakłóceniami jak kable symetryczne. W przypadku YKSY, jest to kabel stosowany w instalacjach, ale nie jest on zoptymalizowany do długodystansowego przesyłania sygnału audio. Warto zauważyć, że wiele pomyłek w wyborze odpowiednich kabli wynika z niepełnej wiedzy na temat ich właściwości oraz zastosowań. Często myli się zjawisko tłumienia sygnału i zakłóceń, co prowadzi do błędnych decyzji w zakresie doboru sprzętu. Dobre praktyki branżowe podkreślają konieczność stosowania kabli symetrycznych w profesjonalnych aplikacjach audio, zwłaszcza w miejscach, gdzie wymagana jest wysoka jakość dźwięku i minimalizacja zakłóceń.

Pytanie 4

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Wysoka temperatura powietrza
B. Intensywny opad atmosferyczny
C. Duża wilgotność powietrza
D. Porywisty podmuch wiatru
Czynniki atmosferyczne, takie jak wysoka temperatura powietrza, duża wilgotność oraz porywisty podmuch wiatru, mogą wpływać na wrażenia odbiorcze, lecz w inny sposób niż intensywne opady deszczu. Wysoka temperatura powietrza nie ma bezpośredniego wpływu na sygnał DVB-T, chociaż może wpływać na działanie sprzętu, takiego jak anteny i dekodery. Z kolei duża wilgotność powietrza, mimo że może prowadzić do pewnego stopnia tłumienia sygnału, nie jest tak znaczącym czynnikiem jak opady deszczu, które intensywnie absorbują i rozpraszają fale radiowe. Porywisty wiatr również nie jest czynnikiem determinującym jakość sygnału, aczkolwiek może wpływać na stabilność anteny, zwłaszcza jeśli nie jest odpowiednio zamocowana. Typowy błąd myślowy polega na utożsamianiu ogólnych warunków atmosferycznych z ich wpływem na sygnał telewizyjny, co prowadzi do nieprawidłowych wniosków. Dlatego kluczowe jest zrozumienie, że różne zjawiska atmosferyczne oddziałują na jakość sygnału w odmienny sposób, a w przypadku DVB-T intensywne opady deszczu są najważniejszym czynnikiem wpływającym na jego odbiór.

Pytanie 5

Przed przystąpieniem do konserwacji jednostki centralnej komputera stacjonarnego należy

A. uziemić metalowe części obudowy.
B. odłączyć przewód zasilający.
C. wymontować dysk twardy.
D. wymontować pamięci RAM.
Odłączenie przewodu zasilającego przed rozpoczęciem konserwacji jednostki centralnej komputera stacjonarnego to naprawdę ważna sprawa. Dzięki temu zarówno sprzęt, jak i osoba, która to robi, są w większym bezpieczeństwie. Przewód zasilający daje prąd do jednostki, więc jego odpięcie zmniejsza ryzyko porażenia prądem i oszczędza podzespoły przed uszkodzeniami, których można uniknąć. W sumie, wielu pasjonatów napraw komputerów stosuje tę zasadę jak mantra. W moim doświadczeniu zawsze lepiej jest być ostrożnym. Przydaje się też położenie maty antystatycznej, żeby nie narobić bałaganu z ładunkami elektrostatycznymi. A w sytuacjach, kiedy pracujemy na serwerach czy innych bardziej skomplikowanych komputerach, pamiętajmy, że czasem trzeba użyć wyłącznika zasilania. Lepiej dmuchać na zimne, szczególnie kiedy chodzi o drogie komponenty.

Pytanie 6

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Imbusowy
B. Płaski
C. Nasadowy
D. Oczkowy
Użycie niewłaściwego narzędzia przy odkręcaniu śrub z łbem walcowym z gniazdem sześciokątnym może prowadzić do różnych problemów. Klucz oczkowy, będący narzędziem przeznaczonym do odkręcania śrub o prostokątnym, sześciokątnym lub innym kształcie łba, nie jest odpowiedni w tym przypadku, ponieważ jego konstrukcja nie pasuje do gniazda sześciokątnego. Użycie klucza oczkowego może spowodować uszkodzenie elementów mocujących, a także utrudnić ich dalsze odkręcanie. Podobnie, klucz nasadowy, który został zaprojektowany do współpracy z nasadkami, nie działa w przypadku śrub z gniazdem imbusowym, ponieważ nie zapewnia odpowiedniego kontaktu z łbem śruby. Klucz płaski także nie spełnia wymogów, ponieważ nie jest w stanie dostosować się do kształtu gniazda sześciokątnego, co prowadzi do poślizgu i potencjalnego uszkodzenia. Użycie niewłaściwego klucza często wynika z braku znajomości typowych rozwiązań stosowanych w inżynierii, co może prowadzić do błędnych wniosków w doborze narzędzi. Ważne jest, aby przy każdej pracy stosować odpowiednie narzędzia, które są zgodne ze standardami branżowymi, aby uniknąć uszkodzeń, a także niepotrzebnych problemów podczas montażu i demontażu elementów.

Pytanie 7

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NC, systemy domofonowe – NC
B. Systemy blokowania przejścia – NC, systemy domofonowe – NO
C. Systemy blokowania przejścia – NO, systemy domofonowe – NO
D. Systemy blokowania przejścia – NO, systemy domofonowe – NC
Poprawna odpowiedź to 'Systemy blokowania przejścia – NO, systemy domofonowe – NC'. W systemach blokowania przejścia, stosowanie elektrozaczepów normalnie otwartych (NO) jest powszechną praktyką, ponieważ umożliwiają one natychmiastowe otwarcie zamka w momencie podania sygnału, co jest kluczowe w sytuacjach, gdy wymagane jest szybkie zwolnienie blokady, na przykład w obiektach o dużym natężeniu ruchu. Z kolei w systemach domofonowych, elektrozaczepy normalnie zamknięte (NC) są preferowane, ponieważ zapewniają większe bezpieczeństwo poprzez stałe blokowanie drzwi, które można otworzyć jedynie po aktywacji systemu, na przykład poprzez naciśnięcie przycisku na panelu domofonowym. Takie rozwiązanie minimalizuje ryzyko nieautoryzowanego dostępu, co jest zgodne z najlepszymi praktykami w zakresie zabezpieczeń budynków. Zrozumienie funkcji obu typów zaczepów i ich zastosowań jest kluczowe dla skutecznego projektowania systemów dostępu oraz zwiększania bezpieczeństwa budynków.

Pytanie 8

Na czasowe zakłócenie w odbiorze sygnału satelitarnego poprawnie zainstalowanej anteny ma wpływ

A. mgła.
B. wiatr.
C. zawilgocenie przewodu antenowego.
D. chmura burzowa.
Chmury burzowe mają duży wpływ na sygnał satelitarny, zwłaszcza przez rozpraszanie oraz wchłanianie fal radiowych. Kiedy pojawiają się takie chmury, które są naładowane wodą i różnymi cząstkami, sygnał może być naprawdę słabszy, co prowadzi do różnych zakłóceń. Na przykład, w czasie burzy radiofale mogą być odbijane albo rozpraszane, co sprawia, że sygnał staje się niestabilny. Warto pamiętać, że projektując systemy antenowe, powinniśmy brać pod uwagę lokalne warunki atmosferyczne, w tym możliwość wystąpienia burz, bo to może mieć duży wpływ na jakość odbioru. Moim zdaniem, użytkownicy satelitów powinni być świadomi, że podczas intensywnych deszczy czy burz, jakość sygnału może znacznie spaść, więc czasem trzeba pomyśleć o dodatkowych rozwiązaniach, jak mocniejsze anteny czy jakieś systemy zapasowe, by poprawić odbiór.

Pytanie 9

Jaką rolę odgrywa router w sieci komputerowej?

A. Węzła komunikacyjnego
B. Konwertera danych cyfrowych
C. Łącznika segmentów sieci
D. Konwertera danych analogowych
Wydaje się, że odpowiedzi dotyczące łączenia segmentów sieci, konwersji danych analogowych czy cyfrowych, nie tylko nie oddają rzeczywistej funkcji routera, ale również prowadzą do typowych nieporozumień w kontekście architektury sieciowej. Router jako węzeł komunikacyjny nie jest po prostu łącznikiem segmentów sieci, ponieważ jego rola wykracza poza to, co typowo rozumiemy jako switch czy hub. Routery operują na warstwie trzeciej modelu OSI, gdzie decydują o kierunkach, w jakie pakiety danych powinny być przesyłane, bazując na adresach IP, co jest zupełnie inne od działania urządzeń, które jedynie przesyłają sygnały w obrębie lokalnej sieci. Konwertery danych, zarówno analogowych, jak i cyfrowych, dotyczą przetwarzania sygnałów, co jest zadaniem zupełnie innych urządzeń, takich jak modemy czy bramy (gateways). Tak więc, mylenie routera z konwerterami czy switchami prowadzi do zrozumienia jego funkcji w sposób uproszczony i nieprawidłowy. Aby poprawnie zrozumieć rolę routerów w sieci komputerowej, warto zapoznać się z protokołami routingu, takimi jak OSPF czy BGP, które regulują zasady wymiany informacji między routerami, co jest kluczowe w bardziej złożonych architekturach sieciowych.

Pytanie 10

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyrównać
B. zwiększyć
C. zmniejszyć
D. wyzerować
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 11

Który rodzaj linii transmisyjnej zapewnia przesył sygnału telewizyjnego, wyróżniający się najwyższą odpornością na negatywne skutki warunków atmosferycznych?

A. Radiowa
B. Kablowa koncentryczna
C. Światłowodowa
D. Symetryczna kablowa
Linie kablowe, takie jak kablowa symetryczna i kablowa koncentryczna, a także systemy radiowe mają swoje zalety, jednak ich odporność na warunki atmosferyczne jest znacznie ograniczona. Kablowa symetryczna jest wykorzystywana głównie w zastosowaniach lokalnych, takich jak sieci komputerowe, i może być narażona na zakłócenia spowodowane deszczem, wiatrem czy innymi czynnikami zewnętrznymi. Kablowa koncentryczna, powszechnie stosowana w telewizji kablowej, może prowadzić do problemów z jakością sygnału w trudnych warunkach atmosferycznych, zwłaszcza gdy kable są uszkodzone lub mają niską jakość. Systemy radiowe, chociaż mogą oferować mobilność, są również znacznie bardziej podatne na zakłócenia spowodowane opadami atmosferycznymi oraz przeszkodami terenu. W przypadku telewizji, zakłócenia te mogą skutkować zniekształconym obrazem lub całkowitym brakiem sygnału. W związku z tym, wykorzystanie światłowodów w transmisji sygnału telewizyjnego stanowi najlepsze rozwiązanie, które zapewnia niezawodność i jakość sygnału, nawet w trudnych warunkach, a także jest zgodne z obecnymi standardami branżowymi, które podkreślają znaczenie technologii odpornych na zakłócenia.

Pytanie 12

System RDS (Radio Data System) pozwala na

A. transmisję informacji tekstowych przez emisję UKF FM
B. odbiór cyfrowych danych poprzez emisję UKF FM
C. zdalne włączanie i wyłączanie odbiornika radiowego
D. odsłuch z zaawansowanym efektem przestrzennym stereo
Nieprawidłowe odpowiedzi sugerują mylne zrozumienie funkcji systemu RDS. Zdalne włączenie i wyłączenie odbiornika radiofonicznego, jak również odsłuch z pogłębionym przestrzennym efektem stereofonicznym, są funkcjami, które nie są częścią specyfikacji RDS. RDS nie służy ani do zdalnego sterowania odbiornikiem, ani do poprawy jakości dźwięku w sensie przestrzennym. W rzeczywistości, system RDS jest narzędziem do transmisji informacji, które jest zintegrowane z analogowym sygnałem radiowym, a jego głównym celem jest dostarczanie danych tekstowych oraz innych informacji do słuchaczy. Ponadto, odpowiedzi, które sugerują nadawanie informacji słownych, mylą funkcję RDS z innymi systemami komunikacyjnymi. RDS nie nadawcza informacji w postaci dźwiękowej; zamiast tego, przesyła metadane, które są odbierane przez radioodbiorniki. Te nieporozumienia mogą wynikać z braku znajomości podstawowych zasad działania RDS oraz jego ograniczeń. Właściwe zrozumienie tego systemu pozwala uniknąć typowych błędów myślowych i lepiej ocenić jego zastosowania w kontekście współczesnych technologii radiowych.

Pytanie 13

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. IMI-341
B. Mostek Wiena
C. Mostek Thomsona
D. UM-112B
IMI-341 to nowoczesny miernik izolacji, który jest powszechnie stosowany do pomiaru rezystancji izolacji kabli. Jego kluczową funkcją jest ocena stanu izolacji, co ma istotne znaczenie w kontekście bezpieczeństwa instalacji elektrycznych. Miernik ten może przeprowadzać pomiary przy różnych napięciach, co pozwala na dokładną diagnozę jakości izolacji. Przykładem jego zastosowania jest okresowe badanie instalacji elektrycznych w budynkach przemysłowych, gdzie nieodpowiedni stan izolacji może prowadzić do poważnych awarii i zagrożeń. IMI-341 jest zgodny z normami IEC 61010 oraz IEC 61557, co zapewnia jego niezawodność i bezpieczeństwo podczas eksploatacji. Dbanie o rezystancję izolacyjną jest kluczowe w zapobieganiu porażeniom elektrycznym oraz w redukcji ryzyka pożarów, co jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa elektrycznego.

Pytanie 14

Wkręty z łbem oznaczonym symbolem PH odkręca się wkrętakiem

A. płaskim.
B. czworokątnym.
C. gwiazdkowym.
D. krzyżowym.
Wkręty z łbem oznaczonym symbolem PH, czyli Phillips, charakteryzują się krzyżowym rowkiem, który pozwala na lepsze dopasowanie wkrętaka. Użycie wkrętaka krzyżowego pozwala na przekazywanie większego momentu obrotowego, co ułatwia wkręcanie i odkręcanie. Dzięki specyficznej konstrukcji łba, wkrętak krzyżowy minimalizuje ryzyko poślizgu, co jest szczególnie ważne w zastosowaniach wymagających precyzyjnego dokręcenia. W praktyce, wkręty Phillips są powszechnie stosowane w konstrukcji mebli, elektroniki oraz w różnych projektach DIY. Warto również zaznaczyć, że wkrętaki krzyżowe są dostępne w różnych rozmiarach, co pozwala na ich użycie w szerokim zakresie zastosowań. W kontekście standardów przemysłowych, wkręty z łbem Phillips są jednymi z najczęściej stosowanych, co sprawia, że znajomość odpowiedniego narzędzia jest niezbędna w pracy każdego fachowca.

Pytanie 15

Wskaźniki natężenia pola służą do określania dla anten

A. współczynnika odbicia
B. rezystancji promieniowania
C. charakterystyki promieniowania
D. zysku energetycznego
Wybór niewłaściwych odpowiedzi często wiąże się z nieporozumieniami dotyczącymi podstawowych pojęć związanych z antenami i ich właściwościami. Rezystancja promieniowania odnosi się do oporu, jaki antena stawia podczas emisji energii, lecz nie jest bezpośrednio związana z natężeniem pola. Z kolei zysk energetyczny określa poprawę sygnału w kierunku danym w porównaniu do anteny izotropowej, ale nie jest bezpośrednio wyznaczany przez wskaźniki natężenia pola, które koncentrują się na analizie rozkładu promieniowania. Współczynnik odbicia z kolei dotyczy strat energii na granicy między materiałami, co jest ważne w kontekście dopasowania impedancji, ale również nie przekłada się na wyznaczanie charakterystyki promieniowania. W praktyce inżynieryjnej, aby właściwie ocenić funkcjonowanie anteny, niezbędne jest zrozumienie, że wskaźniki natężenia pola są instrumentami do badania efektów promieniowania, a nie jednoznacznymi miarami innych parametrów, jak rezystancja czy współczynnik odbicia. Dlatego kluczowe jest, aby przy analizie anten koncentrować się na ich charakterystyce promieniowania, co umożliwia zrozumienie, jak anteny oddziałują z otoczeniem oraz jakie mają zastosowania w systemach komunikacji.

Pytanie 16

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Tranzystor bipolarny
B. Dioda prostownicza
C. Rezystor mocy
D. Tranzystor z izolowaną bramką
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 17

Jakie urządzenie sieciowe działa w trzeciej warstwie modelu OSI, pełni rolę węzła w sieci komunikacyjnej i odpowiada za proces zarządzania ruchem?

A. ruter.
B. hub.
C. repeater.
D. gniazdo RJ-45.
Wybór hubu, repeatera lub gniazda RJ-45 jako urządzenia pełniącego funkcję kierowania ruchem w sieci prowadzi do nieporozumień dotyczących rol i funkcji, jakie pełnią te urządzenia. Hub, będący urządzeniem pracującym na pierwszej warstwie modelu OSI, działa jako prosty rozdzielacz sygnału, który nie podejmuje żadnych decyzji dotyczących trasowania danych. Hub przesyła pakiety do wszystkich portów, co może prowadzić do zwiększenia ruchu w sieci i kolizji danych, a tym samym do obniżenia wydajności. Z kolei repeater, również funkcjonujący na pierwszej warstwie, ma za zadanie jedynie wzmacnianie sygnału, umożliwiając transmisję na większe odległości bez analizy czy kierowania ruchem. Gniazdo RJ-45 to złącze, które służy do fizycznego połączenia urządzeń w sieci, a nie do ich kierowania. Zrozumienie różnic między tymi urządzeniami jest kluczowe dla projektowania i zarządzania sieciami komputerowymi. W kontekście branżowych standardów, warto pamiętać, że stosowanie odpowiednich urządzeń do odpowiednich warstw modelu OSI jest fundamentem dobrych praktyk w inżynierii sieciowej. Zastosowanie rutera jest niezbędne do efektywnego zarządzania ruchem w sieci, w przeciwieństwie do urządzeń działających na niższych warstwach, które nie są przystosowane do tej funkcji.

Pytanie 18

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. FIREWARE
B. HDMI
C. MIFARE
D. RCP
MIFARE to bezdotykowy standard kart, który jest szeroko stosowany w systemach kontroli dostępu, a także w aplikacjach takich jak płatności zbliżeniowe, transport publiczny i programy lojalnościowe. MIFARE operuje na technologii RFID (Radio Frequency Identification), co umożliwia użytkownikom korzystanie z kart bez potrzeby fizycznego kontaktu z czytnikiem. Karty MIFARE są dostępne w różnych wersjach, takich jak MIFARE Classic, MIFARE DESFire, i MIFARE Ultralight, co pozwala na zastosowanie ich w różnych scenariuszach. Na przykład, MIFARE Classic jest często wykorzystywana w systemach biletowych, gdzie niskie koszty produkcji są kluczowe, natomiast MIFARE DESFire oferuje wyższy poziom bezpieczeństwa i możliwość programowania, co czyni ją idealnym rozwiązaniem dla zaawansowanych systemów kontroli dostępu. Standard ten jest zgodny z międzynarodowymi normami ISO/IEC 14443, co zapewnia interoperacyjność z różnymi urządzeniami i systemami. Dzięki tym właściwościom, MIFARE stał się de facto standardem w branży, zapewniając nie tylko wygodę użytkowania, ale także wysoki poziom bezpieczeństwa, co jest kluczowe w kontekście ochrony danych osobowych i zapobiegania oszustwom.

Pytanie 19

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. zmniejszenie pasma przenoszenia
B. spadek mocy wyjściowej
C. podwyższenie napięcia zasilającego
D. wzrost mocy wyjściowej
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 20

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. tłumienia impulsów napięcia
B. wyrównywania potencjałów połączeń
C. zjawiska indukcji
D. zmiany częstotliwości sygnału
Wysokie napięcia w punktach przejściowych, gniazdach abonenckich oraz w stacji głównej telewizji kablowej mogą być mylnie interpretowane przez pryzmat kilku zjawisk elektrycznych. Wyrównywanie potencjałów połączeń, chociaż istotne w kontekście bezpieczeństwa, nie jest bezpośrednią przyczyną powstawania wysokich napięć. Proces ten ma na celu zminimalizowanie różnic potencjałów, a nie wytwarzanie ich. Tłumienie impulsów napięcia odnosi się głównie do ochrony przed nagłymi wzrostami napięcia, a nie do generowania wysokich napięć. W praktyce, gdy napięcie jest tłumione, jego amplituda maleje, co jest zjawiskiem pożądanym w kontekście ochrony urządzeń. Zmiana częstotliwości sygnału dotyczy transmisji danych i nie wpływa bezpośrednio na pojawianie się wysokich napięć; częstotliwość sygnału jest istotna dla odpowiedniego przesyłania informacji, ale nie generuje ona wyższych napięć w punktach przejściowych. W związku z tym, posługiwanie się tymi pojęciami w kontekście wysokich napięć może prowadzić do błędnych wniosków. Kluczowe jest zrozumienie, że zjawisko indukcji, będące podstawą wielu technologii, jest głównym źródłem powstawania niepożądanych napięć i powinno być uwzględniane w projektowaniu systemów elektrycznych oraz telekomunikacyjnych, zgodnie z obowiązującymi normami i zasadami bezpieczeństwa.

Pytanie 21

Jakie dodatkowe środki ochrony przeciwporażeniowej nie są wymagane podczas serwisowania urządzeń elektronicznych?

A. Ekranowanie elektromagnetyczne
B. Uziemienie ochronne
C. Zerowanie ochronne
D. Wyłączniki różnicowoprądowe
Ekranowanie elektromagnetyczne jest techniką stosowaną w celu ograniczenia wpływu pola elektromagnetycznego na urządzenia elektroniczne, jednak nie jest uznawane za środek ochrony przeciwporażeniowej, co czyni tę odpowiedź poprawną. W kontekście serwisowania urządzeń elektronicznych, kluczowymi środkami ochrony są uziemienie ochronne, wyłączniki różnicowoprądowe oraz zerowanie ochronne, które mają na celu ochronę przed porażeniem prądem elektrycznym. Uziemienie ochronne zapewnia bezpieczne odprowadzenie prądu do ziemi w przypadku uszkodzenia izolacji, co jest istotne w przypadku pracy z urządzeniami pod napięciem. Wyłączniki różnicowoprądowe wykrywają różnicę w prądzie między przewodami fazowym a neutralnym, co pozwala na szybkie odcięcie zasilania w przypadku wystąpienia nieprawidłowości. Zerowanie ochronne polega na podłączeniu obudowy urządzenia do uziemienia, co zwiększa bezpieczeństwo użytkowników. Ekranowanie elektromagnetyczne, mimo że jest ważne w kontekście minimalizacji zakłóceń w sygnałach, nie jest niezbędne dla ochrony przed porażeniem.

Pytanie 22

W każdej linii kodu, oprócz mnemonika instrukcji, można dodać po średniku sekwencję znaków, która zostanie zignorowana przez asembler. Co to jest?

A. komentarz.
B. argumenty.
C. instrukcja.
D. znamie.
W przypadku odpowiedzi, które wskazują na etykiety, operandy lub rozkaz, istnieje istotne nieporozumienie dotyczące ich roli w kodzie asemblera. Etykiety są używane do oznaczania miejsc w kodzie, do których można odwoływać się w instrukcjach skoku, jednak nie są one ignorowane przez asembler – wręcz przeciwnie, stanowią istotny element struktury programu. Operandy to z kolei wartości lub adresy, na których wykonuje się operacje w ramach instrukcji. Odpowiedzi te sugerują, że komentowanie kodu mogłoby być mylone z innymi elementami kodu, co może prowadzić do nieefektywnego lub nieczytelnego kodu. Rozkaz natomiast to konkretna instrukcja, którą asembler przetwarza. Mylenie tych pojęć z komentarzami może wynikać z braku zrozumienia ich funkcji. Programowanie w asemblerze wymaga precyzyjnego podejścia oraz dobrej znajomości struktury kodu, aby uniknąć typowych pułapek, takich jak złożoność w czytaniu kodu bez odpowiednich komentarzy, co może prowadzić do błędów w dalszym etapie rozwoju oprogramowania. Właściwe użycie komentarzy jest kluczem do efektywnej współpracy oraz redukcji błędów w projektach programistycznych.

Pytanie 23

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 750 V AC
B. 500 V DC
C. 200 V AC
D. 100 V DC
Odpowiedź 200 V AC jest prawidłowa, ponieważ przy pomiarach napięcia przemiennego, zaleca się wybór zakresu, który jest co najmniej o 20% wyższy od wartości mierzonych. Wartość skuteczna 90 V oznacza, że szczytowe napięcie tego sygnału wynosi około 127 V (obliczone z wzoru Vp = Vrms * √2). Użycie zakresu 200 V AC zapewnia odpowiednią rezerwę, minimalizując ryzyko uszkodzenia woltomierza oraz zapewnia lepszą dokładność pomiaru. Przykładem zastosowania może być monitorowanie systemów zasilania w budynkach, gdzie do pomiaru używane są woltomierze przenośne. W praktyce, standardy takie jak IEC 61010 wymagają odpowiednich zakresów pomiarowych, aby zapobiegać błędom wynikającym z przekroczenia maksymalnych wartości napięcia. Ponadto, stosowanie zakresu AC jest kluczowe, ponieważ napięcie przemienne nie powinno być mierzone na zakresach przeznaczonych dla napięcia stałego, co mogłoby prowadzić do fałszywych odczytów i potencjalnych zagrożeń dla sprzętu.

Pytanie 24

Który parametr kamery określa jej zdolność widzenia przy słabym oświetleniu?

A. Kąt widzenia kamery.
B. Czułość.
C. Rozdzielczość.
D. Typ mocowania obiektywu.
Czułość kamery, nazywana również ISO, określa jej zdolność do rejestrowania obrazu w warunkach niskiego oświetlenia. Im wyższa czułość, tym kamera lepiej radzi sobie z uchwyceniem detali w ciemniejszych scenach. Przykładem jej zastosowania jest monitoring w nocy, gdzie kamery o wysokiej czułości mogą wykrywać ruch i rejestrować obraz w praktycznie całkowitej ciemności. W kontekście standardów branżowych, czułość kamery często mierzy się w jednostkach ISO, a kamery o wartościach ISO powyżej 1600 są uznawane za odpowiednie do pracy w trudnych warunkach oświetleniowych. Dobrze dobrana czułość ma kluczowe znaczenie dla jakości obrazu, ponieważ zbyt wysoka czułość może prowadzić do zjawiska szumów, co negatywnie wpływa na klarowność obrazu. Wybór kamery o odpowiedniej czułości jest zatem kluczowy dla zapewnienia skutecznego monitoringu w różnych warunkach oświetleniowych.

Pytanie 25

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. wyłącznik różnicowoprądowy
B. ochronnik przepięciowy
C. wyłącznik nadprądowy
D. ochronnik termiczny
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 26

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa C
B. Klasa B
C. Klasa AB
D. Klasa A
Klasa A, B, i AB to typy wzmacniaczy, które są powszechnie stosowane w przetwarzaniu sygnałów akustycznych, każda z nich ma swoje charakterystyczne zalety i ograniczenia. Wzmacniacze klasy A są znane ze swojej doskonałej linearności i niskiego poziomu zniekształceń, co czyni je idealnymi do aplikacji audio, gdzie jakość dźwięku jest kluczowa. Charakteryzują się tym, że w każdym cyklu pracy tranzystor zawsze przewodzi prąd, co zapewnia ich wysoką jakość dźwięku, ale jednocześnie prowadzi do niskiej efektywności energetycznej. Klasa B to rozwiązanie, które poprawia efektywność, ponieważ tylko jedna połówka sygnału jest wzmacniana, co jednak prowadzi do zniekształceń w punkcie, gdzie obie połówki sygnału się łączą. Klasa AB, z kolei, to kompromis między klasą A i B, oferujący lepszą efektywność niż klasa A, ale przy zachowaniu niskiego poziomu zniekształceń. Wzmacniacze klasy C, mimo że są efektywne w zastosowaniach RF, nie nadają się do wzmacniania sygnałów akustycznych z powodu dużych zniekształceń nieliniowych, które generują. Wybór odpowiedniej klasy wzmacniacza powinien być zawsze uzależniony od specyficznych wymagań danej aplikacji, z uwzględnieniem zarówno jakości dźwięku, jak i efektywności energetycznej.

Pytanie 27

Aby połączyć kable współosiowe o impedancji 75 Ω, należy

A. połączyć przewody poprzez ich skręcenie, a następnie zaizolować
B. zlutować przewody główne, zaizolować je, a następnie połączyć ekran
C. połączyć kable stosując kostkę zaciskową
D. użyć tzw. beczki do zestawienia dwóch wtyków typu F
Wybór tzw. beczki do połączenia dwóch wtyków typu F jest najlepszym rozwiązaniem w przypadku kabli współosiowych o impedancji 75 Ω. Beczkę stosuje się, aby zapewnić ciągłość sygnału oraz minimalizację strat, co jest kluczowe dla utrzymania jakości transmisji, zwłaszcza w zastosowaniach telewizyjnych czy w systemach transmisji danych. Wtyki typu F są powszechnie używane w instalacjach antenowych oraz w kablowych systemach telewizji. Beczkę można łatwo zainstalować, co czyni ją praktycznym rozwiązaniem, a także pozwala na łatwiejszą wymianę komponentów w razie potrzeby. Ważne jest, aby połączenie było dobrze wykonane, z uwzględnieniem odpowiednich technik montażowych, takich jak zabezpieczenie połączenia przed wilgocią i uszkodzeniami mechanicznymi. Używanie beczki do połączeń współosiowych jest zgodne z normami branżowymi, co zapewnia niezawodność i trwałość instalacji.

Pytanie 28

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. UL7805
B. SN74151
C. Z80
D. NE555
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 29

Wśród podanych parametrów sygnałów wskaż poziomy sygnałów analogowych używanych w systemach automatyki przemysłowej do przekazywania informacji.

A. 4 mA ÷ 20 mA
B. 4 V ÷ 20 V
C. 4 mV ÷ 20 mV
D. 4 A ÷ 20 A
Wybór poziomów sygnałów innych niż 4 mA ÷ 20 mA wskazuje na niepełne zrozumienie zasad funkcjonowania systemów automatyki przemysłowej. Sygnały 4 mV ÷ 20 mV są zbyt niskie, aby skutecznie przesyłać informacje na znaczące odległości w środowisku przemysłowym, gdzie zakłócenia elektryczne są powszechne. Podobnie, sygnały 4 A ÷ 20 A są rzadko stosowane, co może prowadzić do nieodpowiedniego doboru elementów systemu, a także do trudności w integracji z urządzeniami, które funkcjonują w standardzie 4 mA ÷ 20 mA. Odnośnie poziomów 4 V ÷ 20 V, ten zakres jest także mniej powszechny, a jego użycie może być niepraktyczne w kontekście pomiarów analogowych, gdzie prąd jest bardziej stabilny i odporny na zakłócenia. Domyślnym rozwiązaniem w automatyce przemysłowej jest sygnał prądowy, ponieważ prąd jest mniej podatny na wpływ oporu kabli na różne długości, co sprawia, że pomiary są bardziej wiarygodne. Użycie niewłaściwego zakresu sygnałowego może prowadzić do błędnych odczytów, co z kolei może rzutować na efektywność i bezpieczeństwo procesów przemysłowych. Zrozumienie standardów sygnałów analogowych jest kluczowe dla skutecznej pracy w dziedzinie automatyki i kontroli procesów.

Pytanie 30

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektrostatyczne
B. dyspersja chromatyczna
C. dyspersja międzymodowa
D. pole elektromagnetyczne
Dyspersja chromatyczna jest kluczowym zjawiskiem, które prowadzi do zniekształceń sygnału przesyłanego światłowodem jednomodowym. Polega ona na różnym czasie propagacji fal światła o różnych długościach, co skutkuje rozmyciem impulsów świetlnych w czasie. W praktyce, gdy sygnał świetlny przechodzi przez światłowód, różne długości fal mogą ulegać różnym opóźnieniom, co prowadzi do zniekształcenia informacji. W światłowodach jednomodowych, które używane są głównie w telekomunikacji, dyspersja chromatyczna jest szczególnie istotna, ponieważ wpływa na maksymalną odległość, na jaką można przesyłać sygnał bez regeneracji. Standardy, takie jak ITU-T G.652 dotyczące światłowodów, uwzględniają te zjawiska, co pozwala na optymalizację projektów sieciowych i zmniejszenie wpływu dyspersji na jakość sygnału. W praktyce, inżynierowie sieci często stosują techniki kompensacji dyspersji, aby zminimalizować jej wpływ, co jest kluczowe dla zapewnienia niezawodności i wydajności systemów optycznych.

Pytanie 31

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
B. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
C. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze
D. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
Właściwe sprawdzanie układów scalonych w uszkodzonym odbiorniku telewizyjnym polega na porównaniu napięć oraz oscylogramów na poszczególnych wyprowadzeniach z danymi zawartymi w instrukcji serwisowej przy załączonym odbiorniku. Taki proces diagnostyki pozwala na dokładną ocenę pracy układów scalonych w ich normalnych warunkach operacyjnych. Włączony odbiornik umożliwia obserwację działania układu w czasie rzeczywistym, co jest kluczowe dla identyfikacji potencjalnych usterek. Pomiar napięć i analiza oscylogramów dostarczają informacji o tym, czy sygnały są poprawne, a także pozwalają na identyfikację uszkodzeń, które mogą nie być widoczne gołym okiem. Dobre praktyki serwisowe wymagają posiadania instrukcji serwisowej, która zawiera wartości referencyjne, co daje technikowi możliwość szybkiej i efektywnej diagnozy. Przykładowo, w przypadku stwierdzenia nietypowych napięć na wyprowadzeniach, technik może podjąć decyzję o wymianie układu scalonego, co jest bardziej efektywne, niż bazowanie na obserwacji wizualnej.

Pytanie 32

Jakie znaczenie ma oznaczenie CE umieszczone w dokumentacji technicznej produktu?

A. To sugeruje, że wyrób został tymczasowo dopuszczony do użytku (CE - Czasowa Eksploatacja)
B. To jest deklaracją producenta, że wyrób spełnia normy opisane w odpowiednich dyrektywach Unii Europejskiej dotyczących kwestii związanych w szczególności z bezpieczeństwem użytkowania
C. To oznacza, że producent zadeklarował, iż oznakowany wyrób powstał w krajach Europy Środkowej (ang. CE - Central Europe)
D. To oznacza, że wyrób uzyskał zgodę na użytkowanie w krajach Europy Środkowej (ang. CE - Central Europe)
Symbol CE, umieszczany na produktach, jest oznaczeniem świadczącym o tym, że dany wyrób spełnia wymagania określone w dyrektywach Unii Europejskiej, dotyczących bezpieczeństwa, zdrowia oraz ochrony środowiska. Oznakowanie to jest szczególnie ważne w kontekście produktów, które mogą wpływać na bezpieczeństwo użytkowników. Przykładem mogą być urządzenia elektryczne, które muszą spełniać normy dotyczące ochrony przed porażeniem prądem. Przed wprowadzeniem produktu na rynek, producent musi przeprowadzić odpowiednie badania i oceny, aby zagwarantować, że wyrób jest zgodny z obowiązującymi regulacjami. Niezbędne jest również posiadanie dokumentacji technicznej, która potwierdza zgodność produktu z dyrektywami. Oznaczenie CE nie tylko umożliwia producentom swobodny handel w ramach jednolitego rynku europejskiego, ale również buduje zaufanie konsumentów do bezpieczeństwa i jakości produktów, których używają.

Pytanie 33

Którego środka używa się do czyszczenia płytek drukowanych po wlutowaniu elementów elektronicznych?

A. Wody.
B. Alkoholu.
C. Kwasu.
D. Benzyny.
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 34

Osoba zajmująca się trawieniem płytek drukowanych w dziedzinie elektroniki może być narażona na

A. pylicę płuc
B. zatrucie pokarmowe
C. poparzenie środkiem chemicznym
D. porażenie prądem elektrycznym
Odpowiedź 'poparzenie środkiem chemicznym' jest prawidłowa, ponieważ elektronik pracujący na stanowisku trawienia płytek drukowanych ma do czynienia z różnymi substancjami chemicznymi, które są używane do etching (trawienia) miedzi na płytkach. Proces ten często wymaga stosowania silnych kwasów, takich jak kwas solny lub nadsiarczan amonu, które mogą powodować oparzenia chemiczne w przypadku kontaktu ze skórą. Aby zminimalizować ryzyko, bardzo istotne jest przestrzeganie standardów BHP, używanie odpowiedniej odzieży ochronnej, takiej jak rękawice i gogle. Ponadto, pracownicy powinni być przeszkoleni w zakresie procedur awaryjnych i postępowania w razie kontaktu skóry z substancjami chemicznymi. Właściwe stosowanie środków ochrony osobistej oraz znajomość procedur pierwszej pomocy w sytuacjach oparzeń chemicznych są kluczowe w zminimalizowaniu ryzyka i zapewnieniu bezpiecznego środowiska pracy. Przykładem dobrej praktyki jest posiadanie w miejscu pracy stacji do płukania oczu oraz prysznica awaryjnego, co powinno być zgodne z normami OSHA.

Pytanie 35

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. odłączenia osoby od źródła prądu
B. wykonania sztucznego oddychania
C. zgłoszenia sytuacji przełożonemu
D. przeprowadzenia masażu serca
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 36

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. impulsowy
B. trójkątny
C. prostokątny
D. sinusoidalny
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 37

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. krwawienie podskórne
B. wysuszenie skóry dłoni
C. uszkodzenie wzroku
D. poparzenie dłoni
Wybór odpowiedzi dotyczącej wysuszenia skóry rąk, krwotoku podskórnego czy poparzenia ręki jako zagrożeń podczas pracy z celownikiem laserowym wskazuje na błędne rozumienie zagrożeń związanych z obsługą urządzeń laserowych. Wysuszenie skóry rąk jest problemem często związanym z długotrwałym kontaktem z substancjami chemicznymi lub niewłaściwą higieną, podczas gdy krwotok podskórny może wynikać z urazu mechanicznego, a nie bezpośrednio z użycia lasera. Ponadto, poparzenia rąk mogą wystąpić w wyniku kontaktu z gorącymi powierzchniami lub materiałami, a nie z promieniowaniem laserowym. W kontekście laserów kluczowe jest zrozumienie, że to promieniowanie może prowadzić do uszkodzeń wzroku, co stanowi największe zagrożenie. Standardowe procedury bezpieczeństwa powinny uwzględniać obowiązek stosowania okularów ochronnych oraz szkolenia w zakresie obsługi laserów. Ignorowanie zagrożeń związanych z wzrokiem może prowadzić do poważnych konsekwencji, takich jak całkowita utrata zdolności widzenia. Warto podkreślić, że w przypadku pracy z laserami nieprzestrzeganie zasad bezpieczeństwa może skutkować nie tylko uszkodzeniami osobistymi, ale również odpowiedzialnością prawną i finansową dla pracodawcy. Dlatego zaleca się systematyczne doskonalenie wiedzy na temat bezpieczeństwa pracy z laserami oraz wdrażanie procedur ochrony zdrowia i życia pracowników.

Pytanie 38

Czym jest przerwanie w procesorze?

A. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
B. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
C. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
D. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
Pojęcie przerwania w systemach komputerowych jest często mylone z innymi koncepcjami, co prowadzi do nieporozumień. Wiele osób może intuicyjnie sądzić, że przerwanie to zatrzymanie działania programu w wyniku napotkania błędu. Jednakże, takie podejście ignoruje kluczową rolę przerwań jako mechanizmów umożliwiających dynamiczne zarządzanie zasobami, co odzwierciedla ich główną funkcję. Zatrzymanie działania programu po napotkaniu błędu, choć istotne w kontekście zarządzania wyjątkiem, nie jest równoznaczne z przerwaniem. Jest to raczej reakcja na nieprawidłowe działanie, a nie strukturalna decyzja o zawieszeniu jednego programu na rzecz innego. Inny błąd myślowy polega na myleniu przerwań z przełączaniem kontekstu w systemie wielozadaniowym, co jest procesem bardziej złożonym i nie dotyczy wyłącznie priorytetów. Podobnie, niektóre odpowiedzi sugerują, że przerwania mogą powodować uśpienie procesora po wykryciu błędnych danych. To również jest błędne, ponieważ przerwania są zaprojektowane do natychmiastowego przerywania programów w celu ich obsługi, a nie do wprowadzenia procesora w stan uśpienia. Dobrą praktyką jest zrozumienie, że przerwania w świecie komputerów są niezbędne dla efektywnego działania systemów operacyjnych i ich zdolności do zarządzania wieloma zadaniami jednocześnie, co podkreśla ich kluczowe znaczenie w architekturze komputerowej.

Pytanie 39

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia sprzętu lutowniczego
B. uszkodzenia układów scalonych
C. porażenia prądem elektrycznym
D. poparzenia gorącym spoiwem
Nie da się ukryć, że pomysł, że brak opaski uziemiającej może prowadzić do porażenia prądem, poparzenia spoiwem czy uszkodzenia sprzętu lutowniczego, to nieporozumienie. Porażenie prądem jest tu mało prawdopodobne, bo te układy działają na niskim napięciu, więc nie ma ryzyka wysokiego napięcia, które mogłoby zaszkodzić pracownikowi. Co do poparzenia gorącym spoiwem, to raczej dotyczy to lutowania, a nie ESD. Uszkodzenia sprzętu lutowniczego mogą się zdarzyć przez złe użytkowanie lub błędne ustawienia temperatury, a nie przez brak opaski. Często myli się te różne zagrożenia związane z ESD i innymi problemami w procesie lutowania. Ważne jest, żeby dobrze zrozumieć zagrożenia związane z ESD i ich wpływ na elektronikę, bo to klucz do zapewnienia jakości i bezpieczeństwa w laboratoriach czy na liniach produkcyjnych. Warto wprowadzać procedury ochrony przed ESD, żeby zminimalizować ryzyko uszkodzeń, co w efekcie wpływa na wydajność i jakość finalnych produktów.

Pytanie 40

Do wykonania otworu pod kołek rozporowy w ścianie betonowej niezbędne jest zastosowanie

A. młotka.
B. młota pneumatycznego.
C. wkrętarki.
D. wiertarki udarowej.
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.