Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 maja 2025 08:20
  • Data zakończenia: 12 maja 2025 08:38

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. trzeciej o długości 48 bitów
B. trzeciej o długości 32 bitów
C. drugiej o długości 32 bitów
D. drugiej o długości 48 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przydzielanym każdemu interfejsowi sieciowemu, który korzysta z technologii Ethernet. Jego długość wynosi 48 bitów, co odpowiada 6 bajtom. Adres MAC jest używany w warstwie drugiej modelu OSI, czyli warstwie łącza danych, do identyfikacji urządzeń w sieci lokalnej. Dzięki standardowi IEEE 802.3, każda karta sieciowa produkowana przez różnych producentów otrzymuje unikalny adres MAC, co jest kluczowe dla prawidłowego działania sieci Ethernet. Przykładowo, w zastosowaniach takich jak DHCP (Dynamic Host Configuration Protocol), adres MAC jest niezbędny do przypisania odpowiednich adresów IP urządzeniom w sieci. Ponadto, w praktyce adresy MAC mogą być używane w różnych technologiach zabezpieczeń, takich jak filtracja adresów MAC, co pozwala na kontrolowanie dostępu do sieci. Zrozumienie roli adresu MAC w architekturze sieciowej jest fundamentalne dla każdego specjalisty w dziedzinie IT, a jego poprawne wykorzystanie jest zgodne z najlepszymi praktykami zarządzania siecią.

Pytanie 2

Elementem aktywnym w elektronice jest

A. tranzystor
B. cewka
C. kondensator
D. rezystor
Tranzystor to taki ważny element w elektronice, bo działa jak przełącznik albo wzmacniacz sygnału. Dzięki temu może kontrolować, jak prąd płynie w obwodach, co jest po prostu niezbędne w dzisiejszej elektronice. Używa się ich w układach analogowych i cyfrowych, jak na przykład w procesorach czy wzmacniaczach audio. We wzmacniaczach audio tranzystory potrafią wzmocnić sygnał dźwiękowy, co pozwala na czystszy dźwięk z głośników. W układach logicznych są podstawą działania bramek logicznych, które są kluczowe w komputerach. Tranzystory są też projektowane z myślą o ich parametrach pracy, co sprawia, że są niezawodne i wydajne. No i nie zapomnijmy, że to są fundamenty technologii półprzewodnikowej, więc są mega istotne w elektronice.

Pytanie 3

Podczas instalacji systemu operacyjnego Linux należy wybrać odpowiedni typ systemu plików

A. ReiserFS
B. NTFS 5
C. FAT32
D. NTFS 4
Wybór systemu plików jest kluczowy przy instalacji systemu operacyjnego Linux, a odpowiedzi takie jak FAT32, NTFS 4 oraz NTFS 5 są nieodpowiednie w kontekście używania tego systemu operacyjnego. FAT32, choć szeroko stosowany w systemach Windows oraz urządzeniach przenośnych, nie obsługuje plików większych niż 4 GB, co stawia go w niekorzystnej pozycji, gdy w dzisiejszych czasach potrzeba przechowywania dużych plików jest powszechna. NTFS, będący systemem plików opracowanym przez Microsoft, jest zoptymalizowany dla systemów Windows i nie zapewnia pełnej kompatybilności oraz wsparcia dla funkcji specyficznych dla Linuxa. Choć NTFS 4 i NTFS 5 mogą być technicznie dostępne na platformie Linux, ich użycie jest ograniczone i często wiąże się z problemami z danymi oraz wydajnością. W praktyce, użytkownicy mogą napotkać trudności związane z dostępem do plików lub ich integracją z aplikacjami w Linuxie. Takie podejście może prowadzić do nieefektywnego zarządzania danymi oraz zwiększonego ryzyka utraty informacji, co w dłuższej perspektywie jest niekorzystne. Dobry wybór systemu plików na Linuxa, takiego jak ReiserFS, wpływa na stabilność, szybkość i niezawodność systemu operacyjnego, co jest niezbędne dla wydajnego działania aplikacji i serwerów.

Pytanie 4

Jaką wartość ma transfer danych napędu DVD przy prędkości przesyłu x48?

A. 54000 KiB/s
B. 32400 KiB/s
C. 10800 KiB/s
D. 64800 KiB/s
Odpowiedzi 10800 KiB/s, 32400 KiB/s oraz 54000 KiB/s są niepoprawne, ponieważ wynikają z błędnych obliczeń i nieprawidłowego zrozumienia koncepcji prędkości odczytu napędów DVD. Odpowiedź 10800 KiB/s sugeruje, że prędkość x8 byłaby wystarczająca do osiągnięcia tak niskiej wartości transferu. Oczywiście, prędkość x8 wynosiłaby 10800 KiB/s, ale zapytanie dotyczy prędkości x48, co znacznie zwiększa tę wartość. Ponadto, odpowiedź 32400 KiB/s odpowiadałaby prędkości x24, a 54000 KiB/s prędkości x40. Jest to typowy błąd myślowy, który wynika z nieprawidłowego mnożenia standardowej prędkości odczytu. W rzeczywistości, aby uzyskać prawidłową odpowiedź, trzeba zrozumieć, że każda wartość x n oznacza pomnożenie standardowego transferu przez n, co w przypadku DVD przekłada się na znacznie wyższe wyniki niż te wskazane w błędnych odpowiedziach. Rozumienie standardów prędkości transferu jest kluczowe, zwłaszcza w kontekście pracy z danymi cyfrowymi, gdzie każda sekunda opóźnienia może wpływać na wydajność i jakość obsługi. Warto zatem zapoznać się z zasadami obliczeń związanych z prędkością transferu, aby uniknąć podobnych błędów w przyszłości.

Pytanie 5

Jak określić długość prefiksu adresu sieci w adresie IPv4?

A. liczbę bitów o wartości 0 w dwóch pierwszych oktetach adresu IPv4
B. liczbę początkowych bitów mających wartość 1 w masce adresu IPv4
C. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
D. liczbę bitów o wartości 1 w części hosta adresu IPv4
Wybierając odpowiedzi, które wskazują na liczbę bitów mających wartość 0 w oktetach adresu IPv4 lub na bity w części hosta, można wpaść w pułapki błędnego myślenia. Istotne jest, aby zrozumieć, że adres IPv4 składa się z czterech oktetów, z których każdy ma 8 bitów, co daje łącznie 32 bity. Próbując określić długość prefiksu poprzez liczenie bitów o wartości 0, można dojść do błędnych wniosków, ponieważ to właśnie bity o wartości 1 w masce podsieci definiują, jaka część adresu dotyczy sieci. Zrozumienie znaczenia maski sieciowej jest kluczowe; maska ta dzieli adres IP na część sieciową i hostową. Nieprawidłowe podejście do analizy bitów w częściach hosta prowadzi do pomyłek w ocenie, jakie adresy IP mogą być przydzielane w danej podsieci oraz jakie są możliwości jej rozbudowy. Kluczowym błędem jest zatem pomieszanie pojęcia adresu sieci i hosta, co może prowadzić do nieefektywnego zarządzania zasobami adresowymi. Podstawowe zasady projektowania sieci oraz najlepsze praktyki, takie jak te zawarte w standardach IETF, jednoznacznie wskazują na konieczność właściwego zrozumienia maski podsieci i operacji na bitach, aby uniknąć poważnych problemów w zarządzaniu i konfiguracji sieci.

Pytanie 6

Ile bitów zawiera adres MAC karty sieciowej?

A. 16
B. 48
C. 64
D. 32
Adres fizyczny MAC (Media Access Control) karty sieciowej składa się z 48 bitów, co odpowiada 6 bajtom. Adres ten jest unikalnym identyfikatorem przypisanym do każdej karty sieciowej, co pozwala na jednoznaczną identyfikację urządzenia w sieci lokalnej. MAC jest kluczowym elementem komunikacji w warstwie łącza danych modelu OSI, gdzie odpowiada za adresowanie i przesyłanie ramki danych w sieciach Ethernet oraz Wi-Fi. Dzięki standardowi IEEE 802.3, adresy MAC są formatowane w postaci szesnastkowej, co oznacza, że każdy bajt jest reprezentowany przez dwie cyfry szesnastkowe, co w sumie daje 12 znaków w zapisie heksadecymalnym. Przykładowy adres MAC to 00:1A:2B:3C:4D:5E. Zrozumienie struktury adresu MAC oraz jego funkcji jest istotne dla administratorów sieci, którzy muszą zarządzać dostępem do sieci oraz diagnozować problemy z połączeniami. Ponadto, znajomość adresów MAC jest niezbędna w kontekście zabezpieczeń sieciowych, w tym filtracji adresów MAC oraz monitoringu ruchu sieciowego.

Pytanie 7

Aby zredukować kluczowe zagrożenia związane z bezpieczeństwem podczas pracy na komputerze podłączonym do sieci Internet, należy przede wszystkim

A. wyczyścić wnętrze jednostki centralnej, unikać jedzenia i picia przy komputerze oraz nie udostępniać swojego hasła innym osobom
B. odsunąć komputer od źródła ciepła, nie przygniatać przewodów zasilających zarówno komputera, jak i urządzeń peryferyjnych
C. zainstalować oprogramowanie antywirusowe, zaktualizować bazy wirusów, aktywować zaporę sieciową oraz przeprowadzić aktualizację systemu
D. sprawdzić temperaturę komponentów, podłączyć komputer do zasilacza UPS oraz unikać odwiedzania podejrzanych stron internetowych
Instalacja programu antywirusowego oraz aktualizacja baz wirusów to fundamentalne kroki w zapewnieniu bezpieczeństwa komputerów podłączonych do Internetu. Program antywirusowy chroni system przed złośliwym oprogramowaniem, które może nie tylko uszkodzić dane, ale także przejąć kontrolę nad urządzeniem. Regularne aktualizacje baz wirusów są kluczowe, ponieważ nowe zagrożenia pojawiają się każdego dnia, a skuteczność oprogramowania zabezpieczającego polega na jego zdolności do rozpoznawania najnowszych wirusów. Włączenie firewalla dodaje warstwę ochrony, monitorując ruch sieciowy i blokując potencjalnie niebezpieczne połączenia. Dodatkowo, regularne aktualizacje systemu operacyjnego są niezbędne, ponieważ producent wydaje poprawki bezpieczeństwa, które eliminują znane luki mogące być wykorzystane przez cyberprzestępców. Stosowanie tych praktyk jest zgodne z rekomendacjami organizacji zajmujących się bezpieczeństwem informacji, takich jak NIST i ISO, które podkreślają znaczenie wielowarstwowej ochrony w ochronie systemów informatycznych.

Pytanie 8

Aby zamontować katalog udostępniony w sieci komputerowej w systemie Linux, należy wykorzystać komendę

A. join
B. view
C. connect
D. mount
Polecenie 'mount' jest kluczowym narzędziem w systemie Linux, które służy do montowania systemów plików, w tym również katalogów udostępnionych w sieci. Umożliwia to użytkownikom dostęp do danych znajdujących się na zewnętrznych serwerach czy urządzeniach w sposób, który sprawia, że wyglądają one jak lokalne foldery. Przykładowo, aby zmapować katalog NFS (Network File System), można użyć polecenia 'mount -t nfs serwer:/ścieżka/do/katalogu /mnt/punkt_montowania'. Dobrą praktyką jest utworzenie odpowiednich punktów montowania w katalogu '/mnt' lub '/media', co ułatwia organizację i zarządzanie systemem plików. Ponadto, w przypadku użycia systemów plików SMB, komenda wyglądałaby 'mount -t cifs //serwer/udział /mnt/punkt_montowania', co pokazuje elastyczność tego narzędzia. Warto również wspomnieć, że montowanie systemów plików powinno być przeprowadzane z odpowiednimi uprawnieniami, a w przypadku montowania przy starcie systemu można edytować plik '/etc/fstab', aby zautomatyzować ten proces.

Pytanie 9

Posiadacz notebooka pragnie zainstalować w nim dodatkowy dysk twardy. Urządzenie ma jedynie jedną zatokę na HDD. Możliwością rozwiązania tego wyzwania może być użycie dysku z interfejsem

A. ATAPI
B. USB
C. mSATA
D. SCSI
mSATA to standard interfejsu, który umożliwia podłączenie dysków SSD w formacie mSATA bezpośrednio do płyty głównej. Jest to idealne rozwiązanie dla notebooków, które mają ograniczone miejsce, a także jedną zatokę na dysk HDD. Dzięki mSATA użytkownik może zainstalować dodatkowy dysk SSD, co znacznie zwiększa pojemność i wydajność przechowywania danych. Dyski mSATA charakteryzują się małymi wymiarami oraz wysoką szybkością transferu danych, co czyni je doskonałym wyborem do nowoczesnych komputerów przenośnych. Na przykład, w przypadku notebooków gamingowych lub przeznaczonych do obróbki multimediów, możliwość zamontowania dodatkowego dysku SSD w formacie mSATA może znacząco przyspieszyć ładowanie gier i aplikacji. Warto zwrócić uwagę, że korzystanie z mSATA jest zgodne z aktualnymi standardami branżowymi, co zapewnia wysoką kompatybilność i niezawodność. W przypadku chęci modernizacji notebooka, warto zasięgnąć informacji o dostępności złącza mSATA na płycie głównej, co umożliwi sprawną instalację.

Pytanie 10

Który z adresów protokołu IP w wersji 4 jest poprawny pod względem struktury?

A. 192.10.255.3A
B. 192.0.FF.FF
C. 192.309.1.255
D. 192.21.140.16
Adres IP w wersji 4 (IPv4) składa się z czterech oktetów oddzielonych kropkami, a każdy oktet jest liczbą całkowitą w zakresie od 0 do 255. Odpowiedź 192.21.140.16 spełnia te kryteria, gdyż wszystkie cztery oktety są w odpowiednich granicach. Przykład ten jest typowym adresem przypisanym do urządzeń w sieci i jest używany w wielu lokalnych oraz globalnych konfiguracjach sieciowych. W praktyce adresy IPv4 są wykorzystywane do routingu pakietów danych w Internecie oraz w sieciach lokalnych. Zgodnie z protokołem Internetowym (RFC 791), ważne jest, aby adresy IP były poprawnie skonstruowane, aby zapewnić ich poprawne przesyłanie i odbieranie w sieci. Dodatkowo, w kontekście bezpieczeństwa i zarządzania siecią, administrowanie adresami IP wymaga ich prawidłowej struktury, co pozwala na skuteczne zarządzanie ruchem sieciowym oraz unikanie konfliktów adresowych.

Pytanie 11

Osoba korzystająca z komputera, która testuje łączność sieciową używając polecenia ping, uzyskała wynik przedstawiony na rysunku. Jakie może być źródło braku reakcji serwera przy pierwszej próbie, zakładając, że adres domeny wp.pl to 212.77.100.101?

C:\Users\Komputer 2>ping wp.pl
Żądanie polecenia ping nie może znaleźć hosta wp.pl. Sprawdź nazwę i ponów próbę.
C:\Users\Komputer 2>ping 212.77.100.101

Badanie 212.77.100.101 z 32 bajtami danych:
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248
Odpowiedź z 212.77.100.101: bajtów=32 czas=28ms TTL=248

Statystyka badania ping dla 212.77.100.101:
    Pakiety: Wysłane = 4, Odebrane = 4, Utracone = 0 (0% straty).
Szacunkowy czas błądzenia pakietów w milisekundach:
    Minimum = 28 ms, Maksimum = 28 ms, Czas średni = 28 ms

A. Brak przypisanego serwerowi DHCP adresu karty sieciowej.
B. Nieustawiony adres domyślnej bramy w konfiguracji karty sieciowej.
C. Nieobecność adresów serwera DNS w ustawieniach karty sieciowej
D. Nieprawidłowy adres IP przypisany do karty sieciowej.
Jak widać, brak serwera DNS w ustawieniach karty sieciowej sprawił, że komputer nie mógł pingować domeny. DNS, czyli Domain Name System, to coś w stylu tłumacza dla internetu - zamienia nazwy domen na adresy IP. Jak go nie skonfigurujesz, to komputer nie wie, gdzie ma szukać, co kończy się błędem. W drugim przypadku, gdy podałeś adres IP bezpośrednio, komunikacja poszła gładko, bo ominąłeś ten cały proces rozpoznawania. Prawidłowe ustawienie DNS to klucz do sprawnego korzystania z internetu. Lepiej korzystać z zaufanych serwerów DNS od operatorów albo publicznych, jak Google DNS (8.8.8.8), bo zapewniają one lepszą szybkość i stabilność. Pamiętaj, że dobra konfiguracja DNS to nie tylko kwestia wydajności, ale też bezpieczeństwa sieci, żeby uniknąć opóźnień i problemów z dostępem do stron, co jest całkiem ważne, szczególnie w biznesie.

Pytanie 12

Czym jest klaster komputerowy?

A. komputer z systemem macierzy dyskowej
B. komputer rezerwowy, na którym regularnie tworzy się kopię systemu głównego
C. komputer z wieloma rdzeniami procesora
D. zespół komputerów działających równocześnie, tak jakby stanowiły jeden komputer
Klaster komputerowy to grupa komputerów, które współpracują ze sobą w celu realizacji zadań, jakby były jednym, potężnym systemem. Taka konfiguracja pozwala na równoległe przetwarzanie danych, co znacząco zwiększa wydajność i niezawodność systemu. Przykłady zastosowania klastrów obejmują obliczenia naukowe, analizy danych big data oraz usługi w chmurze, gdzie wiele maszyn wspólnie wykonuje zadania, dzieląc obciążenie i zwiększając dostępność. W praktyce klastry mogą być implementowane w różnych architekturach, na przykład klaster obliczeniowy, klaster serwerów czy klaster do przechowywania danych. Standardy takie jak OpenStack dla chmur obliczeniowych czy Apache Hadoop dla przetwarzania danych również korzystają z koncepcji klastrów. Kluczowe korzyści to poprawa wydajności, elastyczność oraz wysoka dostępność, co czyni klastry istotnym elementem nowoczesnych rozwiązań IT.

Pytanie 13

W systemie Linux wykonanie polecenia chmod 321 start spowoduje przyznanie następujących uprawnień plikowi start:

A. wykonanie i zapis dla właściciela pliku, zapis dla grupy, wykonanie dla pozostałych
B. pełna kontrola dla użytkownika root, zapis i odczyt dla użytkownika standardowego, odczyt dla pozostałych
C. czytanie, zapis i wykonanie dla właściciela pliku, zapis i wykonanie dla grupy i czytanie dla pozostałych
D. zapis, odczyt i wykonanie dla użytkownika root, odczyt i wykonanie dla użytkownika standardowego, odczyt dla pozostałych
Odpowiedź, która wskazuje na nadanie uprawnień wykonania i zapisu dla właściciela pliku, zapisu dla grupy oraz wykonania dla pozostałych użytkowników jest poprawna. W systemie Linux uprawnienia są reprezentowane przez trzy grupy: właściciel pliku, grupa i inni użytkownicy. Wartości w systemie chmod są określane w formacie oktalnym, gdzie każda cyfra reprezentuje poziom dostępu dla odpowiedniej grupy. W przypadku chmod 321 pierwsza cyfra '3' oznacza, że właściciel pliku ma uprawnienia do zapisu (2) i wykonania (1), co w sumie daje 3. Druga cyfra '2' wskazuje, że grupa ma jedynie prawo do zapisu, a ostatnia cyfra '1' oznacza, że pozostali użytkownicy mają uprawnienie do wykonania pliku. Takie ustawienia są często stosowane w sytuacjach, gdzie pliki muszą być edytowane przez określoną grupę użytkowników, podczas gdy inni mogą je jedynie uruchamiać. Przykładem może być skrypt wykonywalny, który użytkownicy mogą uruchamiać, ale tylko wybrana grupa ma możliwość jego edytowania.

Pytanie 14

Jakie urządzenie należy zastosować do pomiaru mocy zużywanej przez komputer?

A. watomierz
B. woltomierz
C. amperomierz
D. tester zasilaczy
Zdecydowanie dobry wybór z tym watomierzem. To urządzenie jest super do sprawdzania, ile mocy komputer tak naprawdę bierze, bo mierzy to w watach, co jest mega ważne, gdy chcemy wiedzieć, jak nasz sprzęt zużywa energię. Watomierz łączy pomiar napięcia i natężenia prądu, co pozwala dokładnie obliczyć moc czynną. Na przykład, możesz zobaczyć, ile energii komputer potrzebuje w różnych sytuacjach, co może pomóc w optymalizacji jego działania i wyborze odpowiedniego zasilacza. Fajnie też, jak przy zakupie watomierza zwrócisz uwagę na normy, takie jak IEC 62053, bo to zapewnia, że pomiar będzie dokładny i bezpieczny. Z mojego doświadczenia, takie pomiary są super przydatne, zwłaszcza jeśli chcesz mieć kontrolę nad wydatkami na prąd, co jest istotne zarówno dla domów, jak i dla firm.

Pytanie 15

Który z protokołów powinien być zastosowany do pobierania wiadomości e-mail z własnego serwera?

A. SMTP
B. POP3
C. SNMP
D. FTP
POP3, czyli Post Office Protocol 3, to jeden z najpopularniejszych protokołów używanych do odbierania poczty elektronicznej. Działa on na zasadzie pobierania wiadomości z serwera pocztowego na lokalne urządzenie użytkownika. Umożliwia to dostęp do e-maili z różnych lokalizacji, co jest istotne w dzisiejszym mobilnym świecie. POP3 pobiera wiadomości na stałe, co oznacza, że po ich pobraniu z serwera, nie pozostają one na nim, co różni go od innych protokołów, takich jak IMAP. Z perspektywy praktycznej, POP3 jest idealny dla użytkowników, którzy korzystają z jednego urządzenia do zarządzania swoją pocztą i preferują, aby wiadomości były dostępne lokalnie. Warto zauważyć, że POP3 wspiera również szyfrowane połączenia, co zwiększa bezpieczeństwo przesyłanych danych. Dodatkowo, ważne jest, aby przy konfigurowaniu klienta pocztowego zwrócić uwagę na ustawienia dotyczące przechowywania wiadomości, co jest kluczowe dla efektywnego zarządzania pocztą elektroniczną.

Pytanie 16

Narzędzie używane do przechwytywania oraz analizy danych przesyłanych w sieci, to

A. sniffer
B. viewer
C. spywer
D. keylogger
Wybory takie jak spywer, viewer i keylogger wskazują na nieporozumienia dotyczące funkcji i zastosowań narzędzi w obszarze analizy sieci. Spywer, często mylony z narzędziami monitorującymi, jest typem złośliwego oprogramowania, które szpieguje użytkowników, zbierając ich dane bez ich zgody. Jego celem jest zwykle kradzież informacji osobistych, co jest sprzeczne z zasadami etycznymi związanymi z monitorowaniem ruchu sieciowego. Viewer to z kolei ogólny termin odnoszący się do narzędzi wizualizacyjnych, które służą do wyświetlania danych, ale nie mają one zdolności do przechwytywania ruchu sieciowego, co czyni je nieodpowiednimi w kontekście tego pytania. Keylogger to inny rodzaj złośliwego oprogramowania, które rejestruje naciśnięcia klawiszy, co również nie ma związku z analizy ruchu sieciowego. Kluczowym błędem myślowym w tym przypadku jest mylenie narzędzi do analizy z narzędziami złośliwymi, co prowadzi do niewłaściwych wniosków na temat ich funkcji i potencjalnych zastosowań w sieci. Przy wyborze narzędzi do monitorowania ruchu sieciowego istotne jest rozróżnienie pomiędzy legalnymi narzędziami do analizy oraz złośliwym oprogramowaniem, które może stanowić zagrożenie dla bezpieczeństwa.

Pytanie 17

Jakie zabezpieczenie w dokumentacji technicznej określa mechanizm zasilacza komputerowego zapobiegający przegrzaniu urządzenia?

A. SCP
B. UVP
C. OTP
D. OPP
Wybór UVP, SCP albo OPP jako mechanizmów ochrony przed przegrzaniem zasilacza to błąd z paru powodów. UVP to Under Voltage Protection, czyli zabezpieczenie przed za niskim napięciem, nie wysoką temperaturą. Jego rolą jest ochrona urządzeń, gdy napięcie spadnie za nisko, a to nie ma nic wspólnego z temperaturą. SCP, czyli Short Circuit Protection, dotyczy ochrony przed zwarciami, co też nie ma nic do przegrzewania. To zabezpieczenie wyłącza zasilacz, gdy wystąpi zwarcie, żeby chronić zarówno zasilacz, jak i inne komputery. OPP, czyli Over Power Protection, chroni zasilacz przed zbyt dużym poborem mocy. To ważne zabezpieczenie, ale nie ma związku z temperaturą. Często osoby, które podejmują złe decyzje w tym temacie, nie rozumieją, że każdy z tych mechanizmów pełni inną rolę w zasilaniu. Znajomość tych zabezpieczeń jest kluczowa, żeby zapewnić bezpieczeństwo i stabilność systemu komputerowego. Dobrze jest wiedzieć, jakie zabezpieczenie jest potrzebne, żeby zminimalizować ryzyko przegrzewania, przeciążenia czy zwarcia.

Pytanie 18

Która z usług na serwerze Windows umożliwi użytkownikom końcowym sieci zaprezentowanej na ilustracji dostęp do Internetu?

Ilustracja do pytania
A. Usługa udostępniania
B. Usługa LDS
C. Usługa rutingu
D. Usługa drukowania
Usługa rutingu jest kluczowym elementem umożliwiającym urządzeniom w sieci lokalnej dostęp do Internetu poprzez przekierowywanie pakietów sieciowych pomiędzy różnymi segmentami sieci. Na serwerach Windows funkcja rutingu jest realizowana poprzez rolę Routing and Remote Access Services (RRAS). Umożliwia ona nie tylko tradycyjny routing, ale także implementację funkcji takich jak NAT (Network Address Translation), co jest niezbędne w przypadku, gdy sieć lokalna korzysta z adresów IP prywatnych. Dzięki NAT, adresy IP prywatne mogą być translokowane na publiczne, co umożliwia komunikację z Internetem. W praktyce, aby skonfigurować serwer do pełnienia roli routera, należy zainstalować usługę RRAS i odpowiednio skonfigurować tablice routingu oraz reguły NAT. Dobrym przykładem zastosowania jest mała firma, gdzie serwer z zainstalowanym RRAS pozwala wszystkim komputerom w sieci lokalnej na dostęp do Internetu, jednocześnie zabezpieczając sieć poprzez kontrolowanie przepływu pakietów i filtrowanie ruchu, zgodnie z najlepszymi praktykami bezpieczeństwa sieciowego.

Pytanie 19

W którym systemie operacyjnym może pojawić się komunikat podczas instalacji sterowników dla nowego urządzenia?

System.......nie może zweryfikować wydawcy tego sterownika. Ten sterownik nie ma podpisu cyfrowego albo podpis nie został zweryfikowany przez urząd certyfikacji. Nie należy instalować tego sterownika, jeżeli nie pochodzi z oryginalnego dysku producenta lub od administratora systemu.

A. Windows XP
B. Unix
C. Windows 98
D. Linux
Windows XP to system operacyjny, który wprowadził istotne zmiany w zarządzaniu bezpieczeństwem sterowników urządzeń. Jednym z kluczowych elementów było wprowadzenie wymagania podpisów cyfrowych dla sterowników jako środka zapewnienia ich autentyczności i integralności. Gdy instalowany sterownik nie posiadał poprawnego podpisu, system wyświetlał ostrzeżenie, co miało na celu ochronę użytkownika przed potencjalnie szkodliwym oprogramowaniem. Dzięki temu użytkownicy byli zachęcani do korzystania z certyfikowanych sterowników, co minimalizowało ryzyko problemów z kompatybilnością i stabilnością systemu. System Windows XP korzystał z infrastruktury klucza publicznego (PKI) do weryfikacji podpisów cyfrowych, co było zgodne z najlepszymi praktykami w branży IT. Instalacja niepodpisanych sterowników była możliwa, lecz wymagała świadomego działania użytkownika, który musiał zaakceptować ryzyko. W praktyce, oznaczało to, że administratorzy systemów byli bardziej świadomi źródeł pochodzenia sterowników i ich potencjalnych zagrożeń. Takie podejście do zarządzania sterownikami pozwoliło na zwiększenie bezpieczeństwa systemu i jego użytkowników, co było istotnym krokiem w kierunku implementacji bardziej rygorystycznych standardów bezpieczeństwa w przyszłych wersjach Windows.

Pytanie 20

W dokumentacji dotyczącej karty dźwiękowej można znaleźć informację: częstotliwość próbkowania 22 kHz oraz rozdzielczość próbkowania 16 bitów. Jaka będzie przybliżona objętość pliku audio z 10-sekundowym nagraniem mono (jednokanałowym)?

A. 440000 B
B. 160000 B
C. 80000 B
D. 220000 B
Wielkość pliku dźwiękowego jest determinowana przez parametry takie jak częstotliwość próbkowania i rozdzielczość próbkowania, a nie przez proste przybliżenia. Często, przy obliczaniu rozmiaru pliku, błędnie pomijane są kluczowe elementy, takie jak liczba kanałów. Dobre praktyki w obliczaniu rozmiaru pliku audio zaczynają się od zrozumienia, że częstotliwość próbkowania wskazuje, jak często próbki są przechwytywane, a rozdzielczość próbkowania informuje o jakości tych próbek. Przykładowo, rozważając odpowiedzi, które podały błędne wartości, można zauważyć, że niektóre z nich mogły przyjąć niewłaściwe założenia o czasie trwania nagrania lub liczbie kanałów. Gdyby ktoś błędnie założył, że nagranie jest w formacie stereo (co podwajałoby ilość danych), mogłoby to prowadzić do znacznego przeszacowania wielkości pliku. Również błędy obliczeniowe, takie jak pominięcie konwersji bitów na bajty, mogą prowadzić do takich nieporozumień. Dlatego kluczowe jest, aby przy obliczeniach poświęcić uwagę każdemu parametrowi, aby uzyskać dokładny wynik. Używając wzoru na obliczenie wielkości pliku, można uniknąć błędnych konkluzji i lepiej dostosować się do standardów branżowych dotyczących analizy danych dźwiękowych.

Pytanie 21

Główną rolą serwera FTP jest

A. udostępnianie plików
B. zarządzanie kontami poczty
C. monitoring sieci
D. synchronizacja czasu
Serwer FTP (File Transfer Protocol) jest protokołem sieciowym, którego podstawową funkcją jest umożliwienie przesyłania plików pomiędzy komputerami w sieci, najczęściej w internecie. FTP jest używany do przesyłania danych w obie strony — zarówno do pobierania plików z serwera na lokalny komputer, jak i do wysyłania plików z komputera na serwer. W praktyce serwery FTP są często wykorzystywane przez firmy do udostępniania zasobów, takich jak dokumenty, zdjęcia czy oprogramowanie, zarówno dla pracowników, jak i klientów. Użycie protokołu FTP w kontekście tworzenia stron internetowych pozwala programistom na łatwe przesyłanie plików stron na serwery hostingowe. Warto również zauważyć, że w kontekście bezpieczeństwa, nowoczesne implementacje FTP, takie jak FTPS (FTP Secure) lub SFTP (SSH File Transfer Protocol), zapewniają dodatkowe warstwy zabezpieczeń, szyfrując przesyłane dane, co jest zgodne z najlepszymi praktykami w zakresie ochrony informacji. Z tego względu, zrozumienie roli serwera FTP jest kluczowe w zarządzaniu zasobami w sieci.

Pytanie 22

Co umożliwia zachowanie jednolitego rozkładu temperatury pomiędzy procesorem a radiatorem?

A. Mieszanka termiczna
B. Pasta grafitowa
C. Silikonowy spray
D. Klej
Klej oraz silikonowy spray nie są odpowiednimi materiałami do utrzymywania równomiernego rozkładu ciepła między procesorem a radiatorem. Klej ma właściwości, które mogą negatywnie wpływać na przewodnictwo cieplne, a jego gęsta struktura nie wypełnia mikroskopijnych szczelin, co prowadzi do utraty efektywności w odprowadzaniu ciepła. Ponadto, zastosowanie kleju może utrudnić ewentualną wymianę procesora czy systemu chłodzenia. Silikonowy spray, z drugiej strony, jest często stosowany jako uszczelniacz, a nie jako materiał przewodzący ciepło. Jego działanie polega na tworzeniu warstwy ochronnej, co w kontekście przewodnictwa cieplnego jest niewystarczające. W momencie, gdy silikonowy spray jest używany w takim zastosowaniu, może to prowadzić do wzrostu temperatury procesora, co z kolei może skutkować jego uszkodzeniem. Pasta grafitowa, mimo że przewodzi ciepło, nie jest idealnym rozwiązaniem do tego zastosowania, ponieważ jej właściwości mogą się różnić w zależności od producenta, a także trudno ją równomiernie rozprowadzić. Dlatego kluczowym jest stosowanie odpowiednich materiałów, które zostały zaprojektowane z myślą o maksymalizacji przewodności cieplnej oraz optymalizacji warunków pracy podzespołów elektronicznych.

Pytanie 23

Zaprezentowany schemat ilustruje funkcjonowanie

Ilustracja do pytania
A. skanera płaskiego
B. drukarek 3D
C. drukarki laserowej
D. plotera grawerującego
Skaner płaski to urządzenie, które służy do digitalizacji obrazów poprzez przekształcenie ich na dane cyfrowe. Schemat przedstawiony na obrazku ilustruje typowy proces skanowania płaskiego. Główne elementy to źródło światła, zazwyczaj lampa fluorescencyjna, która oświetla dokument umieszczony na szklanej płycie roboczej. Następnie odbite światło przemieszcza się przez system luster i soczewek, skupiając się na matrycy CCD (Charge-Coupled Device). CCD przekształca światło na sygnały elektryczne, które są przetwarzane przez przetwornik analogowo-cyfrowy (ADC) na cyfrowy obraz. Skanery płaskie są szeroko stosowane w biurach i domach, gdzie umożliwiają łatwe przekształcanie dokumentów i obrazów na formę cyfrową. Standardy branżowe, takie jak rozdzielczość optyczna czy głębia kolorów, określają jakość skanera. Praktyczne zastosowania skanerów obejmują archiwizowanie dokumentów, digitalizację materiałów graficznych i przenoszenie treści do programów do edycji obrazów. Dzięki możliwości uzyskania wysokiej jakości cyfrowych kopii, skanery płaskie pozostają niezastąpionym narzędziem w wielu dziedzinach.

Pytanie 24

Najczęstszą przyczyną niskiej jakości wydruku z drukarki laserowej, która objawia się widocznym rozmazywaniem tonera, jest

Ilustracja do pytania
A. uszkodzenie rolek
B. zbyt niska temperatura utrwalacza
C. zacięcie papieru
D. zanieczyszczenie wnętrza drukarki
Zbyt niska temperatura utrwalacza w drukarce laserowej może prowadzić do sytuacji gdzie toner nie jest prawidłowo wtopiony w papier co skutkuje rozmazywaniem wydruków. Drukarki laserowe działają poprzez elektrostatyczne nanoszenie tonera na papier który następnie przechodzi przez utrwalacz czyli grzałkę. Utrwalacz musi osiągnąć odpowiednią temperaturę aby toner mógł trwale połączyć się z papierem. Jeśli temperatura jest zbyt niska toner nie utrwala się poprawnie i może być łatwo rozmazany. Standardowe temperatury dla urządzeń biurowych wynoszą zazwyczaj od 180 do 210 stopni Celsjusza. Z tego powodu utrzymanie prawidłowego poziomu ciepła w utrwalaczu jest kluczowe dla jakości wydruku i trwałości dokumentów. Częstym objawem problemów z utrwalaniem jest właśnie rozmazywanie się wydrukowanego tekstu lub grafiki. Regularna konserwacja drukarki oraz monitorowanie jej ustawień może zapobiec takim problemom. Praktyczne podejście do diagnostyki problemów z drukarką może obejmować testowanie i kalibrację elementów grzewczych oraz sprawdzanie jakości komponentów takich jak folie teflonowe w module utrwalacza.

Pytanie 25

Pamięć oznaczona jako PC3200 nie jest kompatybilna z magistralą

A. 400 MHz
B. 300 MHz
C. 533 MHz
D. 333 MHz
Odpowiedzi 400 MHz, 333 MHz i 300 MHz mogą wydawać się logicznymi wyborami w kontekście współpracy pamięci PC3200 z magistralą, jednak każda z nich zawiera istotne nieścisłości. Pamięć PC3200 rzeczywiście działa na częstotliwości 400 MHz, co oznacza, że jest w stanie współpracować z magistralą o tej samej prędkości. Jednakże, w przypadku magistrali 333 MHz, co odpowiada pamięci PC2700, pamięć PC3200 będzie działać na obniżonym poziomie wydajności, a jej pełny potencjał nie zostanie wykorzystany. Z kolei magistrala 300 MHz w ogóle nie jest zgodna z parametrami pracy pamięci PC3200, co może prowadzić do jeszcze większych problemów, takich jak błędy w transferze danych czy problemy z synchronizacją. Analogicznie, odpowiedź sugerująca magistralę 533 MHz jest niepoprawna, ponieważ PC3200 nie jest w stanie efektywnie funkcjonować w tym środowisku. W praktyce, najczęstszym błędem przy doborze pamięci RAM jest ignorowanie specyfikacji zarówno pamięci, jak i płyty głównej. Właściwy dobór komponentów jest kluczowy dla zapewnienia stabilności systemu oraz optymalnej wydajności, co jest fundamentem w projektowaniu nowoczesnych komputerów oraz ich usprawnianiu.

Pytanie 26

Jak zapisuje się liczbę siedem w systemie ósemkowym?

A. 7(B)
B. 7(H)
C. 7(D)
D. 7(o)
Wybór odpowiedzi 7(B), 7(D) lub 7(H) wynika z nieporozumienia dotyczącego oznaczeń systemów liczbowych. Odpowiedź 7(B) sugeruje, że liczba ta jest zapisana w systemie binarnym, gdzie liczby są reprezentowane jedynie za pomocą cyfr 0 i 1. W systemie binarnym liczba siedem reprezentowana jest jako 111, co wynika z faktu, że 1*2^2 + 1*2^1 + 1*2^0 = 4 + 2 + 1 = 7. Odpowiedź 7(D) wskazuje na system dziesiętny, który jest najpowszechniej używanym systemem w codziennym życiu, z podstawą 10, gdzie liczba siedem jest po prostu zapisana jako 7. Z kolei 7(H) odnosi się do systemu szesnastkowego (hexadecymalnego), który używa cyfr od 0 do 9 oraz liter A do F, gdzie liczba siedem jest również zapisywana jako 7. To wskazuje na fakt, że wybór błędnych oznaczeń może wynikać z braku zrozumienia różnic między podstawami różnych systemów liczbowych. Kluczowym błędem myślowym jest pomylenie podstawy systemu liczbowego z jego zapisem, co prowadzi do nieprawidłowych konkluzji. Zrozumienie podstaw systemów liczbowych jest fundamentalne w programowaniu i informatyce, gdyż pozwala na właściwe operowanie na liczbach w różnych kontekstach.

Pytanie 27

W której warstwie modelu ISO/OSI odbywa się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem UDP?

A. Fizycznej
B. Łącza danych
C. Sieciowej
D. Transportowej
Zrozumienie warstw modelu ISO/OSI jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Warstwa fizyczna jest odpowiedzialna za przesył sygnałów przez medium fizyczne, takie jak kable czy fale radiowe, i nie ma ona nic wspólnego z segmentowaniem danych. Jej zadaniem jest przesyłanie bitów, a nie zarządzanie pakietami danych czy ich kolejnością. Z kolei warstwa łącza danych zajmuje się komunikacją pomiędzy sąsiednimi urządzeniami w sieci lokalnej, zapewniając funkcje takie jak detekcja błędów czy kontrola dostępu do medium, ale również nie jest związana z segmentowaniem danych w sensie transportu. Warstwa sieciowa koncentruje się na routing danych pomiędzy różnymi sieciami oraz na ich adresowaniu, co również nie obejmuje segmentacji czy zarządzania połączeniem. Często błędne odpowiedzi wynikają z mylenia funkcji poszczególnych warstw, co może prowadzić do nieporozumień na temat tego, jak organizowane są dane w sieci. Kluczowe jest, aby zrozumieć, że segmentacja danych i zarządzanie połączeniami są wyłącznie domeną warstwy transportowej, ponieważ to ona zajmuje się komunikacją między aplikacjami oraz zapewnia różne poziomy niezawodności w transmisji danych.

Pytanie 28

Jakie polecenie pozwala na uzyskanie adresów fizycznych dla kart sieciowych w systemie?

A. getmac
B. ping
C. pathping
D. arp -a
Odpowiedź 'getmac' jest poprawna, ponieważ polecenie to umożliwia wyświetlenie adresów MAC (Media Access Control) wszystkich kart sieciowych zainstalowanych w systemie. Adres MAC jest unikalnym identyfikatorem przypisanym do urządzeń sieciowych, co jest kluczowe w kontekście komunikacji w sieci lokalnej. Dzięki użyciu polecenia 'getmac', administratorzy i użytkownicy mogą łatwo uzyskać dostęp do tych informacji, co jest przydatne w diagnostyce problemów z połączeniem sieciowym lub w konfiguracji urządzeń. Przykładem praktycznego zastosowania tego polecenia jest sytuacja, gdy użytkownik chce skonfigurować filtrację adresów MAC na routerze, aby ograniczyć dostęp do sieci tylko do zaufanych urządzeń. Oprócz tego, polecenie to może być również użyteczne w analizie bezpieczeństwa sieci, pozwalając na identyfikację i weryfikację urządzeń podłączonych do sieci. Warto zauważyć, że adresy MAC są często stosowane w protokołach warstwy 2 modelu OSI, co podkreśla ich znaczenie w architekturze sieciowej.

Pytanie 29

Zilustrowany schemat przedstawia zasadę funkcjonowania

Ilustracja do pytania
A. drukarki termosublimacyjnej
B. skanera płaskiego
C. myszy optycznej
D. cyfrowego aparatu fotograficznego
Skaner płaski działa poprzez oświetlanie dokumentu źródłem światła i przesyłanie odbitego obrazu do czujnika, zwykle CCD, co różni się od działania myszy optycznej. Jego celem jest digitalizacja obrazów w wysokiej rozdzielczości, co wymaga równomiernego oświetlania i dokładnego przetwarzania obrazu na płaskiej powierzchni, gdzie ruchome elementy skanera przesuwają się wzdłuż skanowanego dokumentu. Z kolei drukarka termosublimacyjna wykorzystuje proces sublimacji barwnika do tworzenia obrazu na papierze. Jest to proces, w którym ciepło powoduje przejście barwnika ze stanu stałego bezpośrednio do stanu gazowego, co umożliwia uzyskanie wysokiej jakości kolorowych wydruków fotograficznych. Drukarki te są popularne w laboratoriach fotograficznych, ale nie mają związku z rejestrowaniem ruchu czy analizą odbitego światła. Aparat cyfrowy natomiast rejestruje obraz poprzez układ optyczny, soczewki i matrycę światłoczułą CCD lub CMOS, by zapisywać zdjęcia na urządzeniach pamięci. Jego funkcjonalność nie jest związana z nawigacją komputerową. Każde z tych urządzeń używa optyki i sensorów do różnych celów i pomimo pewnych podobieństw technologicznych w zastosowaniu sensorów, każde z nich ma odmienną funkcję i schemat działania, który nie współgra z zasadą działania myszy optycznej. Typowy błąd przy analizie takich schematów polega na niewłaściwym przypisaniu funkcji urządzenia na podstawie używanej technologii światła i czujników, które jednak różnią się w praktycznych zastosowaniach i wynikowych działaniach każdego z tych urządzeń.

Pytanie 30

Aby określić rozmiar wolnej oraz zajętej pamięci RAM w systemie Linux, można skorzystać z polecenia

A. dmidecode -t baseboard
B. cat /proc/meminfo
C. tail -n 10 /var/log/messages
D. lspci | grep -i raid
Polecenie 'cat /proc/meminfo' jest jedną z podstawowych metod monitorowania pamięci w systemie Linux. Plik '/proc/meminfo' zawiera szczegółowe informacje na temat wykorzystania pamięci, w tym ilość wolnej pamięci, pamięci zajętej, pamięci wymiany (swap) oraz buforów i pamięci podręcznej. Używanie tego polecenia jest zgodne z dobrymi praktykami administracyjnymi, ponieważ pozwala na szybkie uzyskanie informacji o stanie pamięci, co jest kluczowe dla diagnozowania problemów z wydajnością systemu. Na przykład, jeśli podczas monitorowania zauważysz, że wykorzystanie pamięci operacyjnej zbliża się do 100%, może to wskazywać na konieczność optymalizacji aplikacji działających na serwerze, zwiększenia pamięci RAM lub przeprowadzenia analizy procesów consuming memory. Rekomenduje się również regularne sprawdzanie tych danych w celu utrzymania stabilności systemu oraz planowania przyszłych zasobów. W kontekście standardów branżowych, monitorowanie pamięci powinno być częścią rutynowych audytów systemu operacyjnego.

Pytanie 31

Którą opcję w menu przełącznika należy wybrać, aby przywrócić ustawienia do wartości fabrycznych?

Ilustracja do pytania
A. Save Configuration
B. Reboot Device
C. Reset System
D. Firmware Upgrade
Pozostałe opcje, takie jak Reboot Device, Firmware Upgrade i Save Configuration, nie przywracają ustawień fabrycznych. Reboot Device jedynie restartuje urządzenie, co jest użyteczne w przypadku tymczasowych problemów lub niektórych aktualizacji, ale nie resetuje konfiguracji. Firmware Upgrade pozwala na aktualizację oprogramowania sprzętowego, co może być konieczne dla zwiększenia funkcjonalności lub bezpieczeństwa, jednak nie modyfikuje bieżących ustawień użytkownika, a jedynie sam system operacyjny urządzenia. Save Configuration, z kolei, jest używany do zapisywania bieżącej konfiguracji, co jest kluczowe dla utrzymania aktualnych ustawień po restarcie bądź aktualizacji. Typowym błędem jest myślenie, że restart lub aktualizacja firmware'u przywróci domyślne ustawienia, jednakże te działania nie zmieniają zapisanych parametrów konfiguracyjnych. Dobrym nawykiem jest regularne wykonywanie kopii zapasowych aktualnych ustawień, co ułatwi ich odtworzenie w razie potrzeby, ale nie zastępuje to procesu przywracania ustawień fabrycznych w sytuacjach, gdzie jest to wymagane. Wszystkie te funkcje są istotne w zarządzaniu siecią, lecz mają różne zastosowania i nie wpływają jednocześnie na resetowanie konfiguracji do stanu fabrycznego, co jest kluczowe dla eliminacji problemów wynikających z istniejących ustawień użytkownika.

Pytanie 32

Aby kontrolować ilość transferu w sieci, administrator powinien zastosować program rodzaju

A. package manager
B. bandwidth manager
C. task manager
D. quality manager
Odpowiedź "bandwidth manager" jest jak najbardziej trafna. To narzędzie służy do zarządzania szerokością pasma w sieciach komputerowych. Dzięki niemu, administratorzy mogą na bieżąco śledzić i kontrolować, jak wykorzystujemy przepustowość. Ogólnie rzecz biorąc, to bardzo ważne, bo pomaga utrzymać sieć w dobrej kondycji i zarządzać ruchem danych. Można to na przykład wykorzystać do ograniczenia przepustowości dla mniej istotnych aplikacji podczas godzin szczytu, żeby krytyczne usługi działały lepiej. W praktyce, to oprogramowanie często korzysta z zasad QoS (Quality of Service), które pomagają w organizacji ruchu w sieci, w zależności od potrzeb firmy. Wiesz, w biurze, gdzie sporo osób korzysta z takich aplikacji jak strumieniowanie, bandwidth manager może ograniczyć ich przepustowość, żeby usługi jak wideokonferencje działały płynnie.

Pytanie 33

Adres MAC (Medium Access Control Address) to sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. drugiej o długości 32 bitów
B. trzeciej o długości 32 bitów
C. trzeciej o długości 48 bitów
D. drugiej o długości 48 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przypisywanym do interfejsu sieciowego, który działa na drugiej warstwie modelu OSI, czyli na warstwie łącza danych. Ma długość 48 bitów, co pozwala na stworzenie ogromnej liczby unikalnych adresów, zatem w praktyce każdy sprzęt, który łączy się z siecią, ma przypisany własny adres MAC. Adresy MAC są używane w sieciach Ethernet oraz Wi-Fi do identyfikacji urządzeń w sieci lokalnej. Przykładowo, gdy komputer próbuje wysłać dane do innego urządzenia w tym samym lokalnym segmencie sieci, wykorzystuje adres MAC odbiorcy do skierowania pakietów danych. Warto również zauważyć, że adresy MAC są podstawą dla protokołów takich jak ARP (Address Resolution Protocol), który służy do mapowania adresów IP na adresy MAC. Dlatego też zrozumienie adresów MAC jest kluczowe dla projektowania i zarządzania sieciami komputerowymi zgodnie z najlepszymi praktykami branżowymi.

Pytanie 34

W jednostce ALU do akumulatora została zapisana liczba dziesiętna 240. Jak wygląda jej reprezentacja w systemie binarnym?

A. 11110000
B. 11111110
C. 11111000
D. 11111100
Reprezentacja binarna liczby dziesiętnej 240 to 11110000. Aby ją obliczyć, należy najpierw zrozumieć, jak działa konwersja z systemu dziesiętnego na binarny. Proces ten polega na ciągłym dzieleniu liczby przez 2 i zapisaniu reszt z tych dzielników. Dla liczby 240, dzieląc przez 2, otrzymujemy następujące wyniki: 240/2=120 (reszta 0), 120/2=60 (reszta 0), 60/2=30 (reszta 0), 30/2=15 (reszta 0), 15/2=7 (reszta 1), 7/2=3 (reszta 1), 3/2=1 (reszta 1), 1/2=0 (reszta 1). Zbierając reszty od ostatniego dzielenia do pierwszego, otrzymujemy 11110000. To przykład konwersji, która jest powszechnie stosowana w programowaniu komputerowym oraz w elektronice cyfrowej, gdzie liczby binarne są kluczowe dla działania procesorów i systemów operacyjnych. Dobra praktyka to zrozumienie nie tylko samego procesu konwersji, ale również tego, jak liczby binarne są używane do reprezentowania różnych typów danych w pamięci komputerowej.

Pytanie 35

Postcardware to typ

A. licencji oprogramowania
B. wirusa komputerowego
C. karty sieciowej
D. usługi poczty elektronicznej
Postcardware to specyficzny rodzaj licencji oprogramowania, który wprowadza unikalny model dystrybucji. W przeciwieństwie do tradycyjnych licencji, które często wymagają zakupu, postcardware umożliwia użytkownikom korzystanie z oprogramowania za darmo, pod warunkiem, że w zamian wyślą autorowi pocztówkę lub inny rodzaj wiadomości. Taki model promuje interakcję między twórcami a użytkownikami, a także zwiększa świadomość na temat oprogramowania. Przykłady zastosowania postcardware można znaleźć w przypadku projektów open source, gdzie autorzy zachęcają do kontaktu z nimi w celu wyrażenia uznania za ich pracę. Dzięki temu, postcardware przyczynia się do budowania społeczności wokół oprogramowania oraz wzmacnia więź między twórcą a użytkownikiem. Jest to również forma marketingu, która podkreśla wartość osobistego kontaktu, co może prowadzić do większej lojalności użytkowników. Taki model dystrybucji jest zgodny z duchem współpracy i otwartości, które są fundamentem wielu inicjatyw technologicznych i wspiera rozwój innowacyjnych rozwiązań.

Pytanie 36

Jakie napięcie zasilające mają moduły pamięci DDR3 SDRAM?

Ilustracja do pytania
A. 2,5 V
B. 1,8 V
C. 1,5 V
D. 3 V
Kości pamięci DDR3 SDRAM zasila się napięciem 1,5 V co jest istotnym parametrem odróżniającym je od starszych generacji pamięci takich jak DDR2 czy DDR. Zmniejszenie napięcia zasilania w DDR3 w porównaniu do DDR2 (które wymagało 1,8 V) było kluczowym krokiem w rozwoju technologii RAM ponieważ pozwalało na zmniejszenie zużycia energii oraz generowanego ciepła co jest szczególnie ważne w przypadku urządzeń mobilnych i centrów danych. Niższe napięcie przyczynia się do wydłużenia żywotności baterii w laptopach oraz mniejszego obciążenia systemów chłodzenia. Warto również zauważyć że niższe napięcie poprawia stabilność pracy i redukuje ryzyko uszkodzeń związanych z przepięciami. Zgodnie ze standardem JEDEC dla pamięci DDR3 ustalono napięcie 1,5 V jako optymalne co stało się powszechnie przyjętym standardem w branży. Dzięki temu użytkownicy mogą być pewni że moduły DDR3 są kompatybilne z większością płyt głównych co ułatwia modernizację i serwisowanie komputerów. To napięcie pozwala także na osiągnięcie wyższych częstotliwości pracy bez znacznego wzrostu poboru mocy co czyni pamięci DDR3 atrakcyjnym wyborem dla wielu zastosowań.

Pytanie 37

Które medium transmisyjne charakteryzuje się najmniejszym ryzykiem narażenia na zakłócenia elektromagnetyczne przesyłanego sygnału?

A. Czteroparowy kabel FTP
B. Kabel światłowodowy
C. Gruby kabel koncentryczny
D. Cienki kabel koncentryczny
Kabel światłowodowy to medium transmisyjne, które wykorzystuje światło do przesyłania danych, co eliminuje wpływ zakłóceń elektromagnetycznych, które mogą występować w tradycyjnych kablach miedzianych. Dzięki temu jest on idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takich jak w biurach, centrach danych czy w pobliżu urządzeń elektrycznych. Światłowody mają również znacznie większą przepustowość niż kable miedziane, co pozwala na przesyłanie większej ilości danych na dłuższe odległości bez straty jakości sygnału. Zgodnie z normami ISO/IEC 11801, światłowody są rekomendowane do zastosowania w nowoczesnych instalacjach telekomunikacyjnych. W praktyce, firmy na całym świecie coraz częściej wybierają kable światłowodowe do budowy sieci, co pozwala na rozwój infrastruktury telekomunikacyjnej oraz zapewnienie wysokiej jakości usług internetowych. W obliczu rosnących wymagań dotyczących szybkości i niezawodności transmisji danych, inwestycja w technologię światłowodową staje się zatem coraz bardziej opłacalna.

Pytanie 38

Przypisanie licencji oprogramowania do pojedynczego komputera lub jego komponentów stanowi charakterystykę licencji

A. OEM
B. BOX
C. TRIAL
D. AGPL
Licencja OEM (Original Equipment Manufacturer) jest specyficznym rodzajem licencji, która jest przypisana do konkretnego komputera lub jego podzespołów, co oznacza, że oprogramowanie może być używane tylko na tym urządzeniu. W praktyce, licencje OEM są często stosowane w przypadku preinstalowanego oprogramowania, takiego jak systemy operacyjne czy aplikacje biurowe, które są dostarczane przez producentów sprzętu. Warto zauważyć, że licencje OEM są zazwyczaj tańsze niż licencje BOX, które można przenosić między urządzeniami. Licencje te mają również ograniczenia w zakresie wsparcia technicznego, które najczęściej zapewnia producent sprzętu, a nie twórca oprogramowania. W przypadku wymiany kluczowych podzespołów, takich jak płyta główna, może być konieczne nabycie nowej licencji. Standardy branżowe, takie jak Microsoft Software License Terms, szczegółowo określają zasady stosowania licencji OEM, co jest kluczowe dla zrozumienia ich zastosowania w praktyce.

Pytanie 39

W systemie Linux, jak można znaleźć wszystkie pliki z rozszerzeniem txt, które znajdują się w katalogu /home/user i rozpoczynają się na literę a, b lub c?

A. ls /home/user/[a-c]*.txt
B. ls /home/user/[!abc]*.txt
C. ls /home/user/abc*.txt
D. ls /home/user/a?b?c?.txt
Odpowiedź 'ls /home/user/[a-c]*.txt' jest poprawna, ponieważ wykorzystuje wyrażenie regularne do określenia, że chcemy wyszukiwać pliki w katalogu /home/user, które zaczynają się na literę a, b lub c i mają rozszerzenie .txt. W systemach Unix/Linux, użycie nawiasów kwadratowych pozwala na definiowanie zbioru znaków, co w tym przypadku oznacza, że interesują nas pliki, których nazwy rozpoczynają się od wskazanych liter. Użycie znaku '*' na końcu oznacza, że wszystkie znaki po literze a, b lub c są akceptowane, co pozwala na wyszukiwanie dowolnych plików. Jest to przykład dobrych praktyk w posługiwaniu się powłoką Linux, gdzie umiejętność efektywnego wyszukiwania plików i folderów jest kluczowa dla zarządzania systemem. Przykładowe zastosowanie tego polecenia w codziennej pracy może obejmować wyszukiwanie dokumentów tekstowych, skryptów czy plików konfiguracyjnych, co znacznie przyspiesza proces organizacji i przetwarzania danych w systemie. Dodatkowo, znajomość wyrażeń regularnych jest niezbędna do automatyzacji zadań i pisania skryptów powłoki.

Pytanie 40

Na którym z zewnętrznych nośników danych nie dojdzie do przeniknięcia wirusa podczas przeglądania jego zawartości?

A. na płytę DVD-ROM
B. na kartę SD
C. na dysk zewnętrzny
D. na pamięć Flash
W przypadku pamięci Flash, dysków zewnętrznych i kart SD istnieje znaczne ryzyko, że wirusy mogą przenikać na te nośniki podczas odczytu danych. Pamięci Flash, wykorzystywane powszechnie w pendrive'ach, działają na zasadzie zapisu i odczytu danych, co umożliwia wirusom osadzenie się w systemie plików. Podobnie, dyski zewnętrzne, które często są podłączane do różnych komputerów, mogą łatwo ulegać infekcjom wirusami poprzez złośliwe oprogramowanie obecne na innych urządzeniach. Karty SD, używane w aparatach i telefonach, również są narażone na podobne zagrożenia. Często użytkownicy nie są świadomi, że wirusy mogą podróżować między urządzeniami, a zainfekowane pliki mogą być przenoszone do pamięci Flash czy kart SD, co prowadzi do niebezpieczeństwa infekcji. Z tego względu, ważne jest stosowanie zgodnych z najlepszymi praktykami metod ochrony, takich jak regularne skanowanie nośników przy użyciu aktualnego oprogramowania antywirusowego oraz unikanie podłączania urządzeń do obcych komputerów, które mogą być zainfekowane. Warto także pamiętać o regularnym tworzeniu kopii zapasowych danych, aby w razie infekcji móc je przywrócić bez utraty informacji. W kontekście bezpieczeństwa, zrozumienie różnicy w działaniu tych nośników jest kluczowe dla ochrony danych przed złośliwym oprogramowaniem.