Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 18:43
  • Data zakończenia: 13 maja 2025 19:08

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. kolejności faz
B. wartości skutecznej napięcia zasilania stojana
C. liczby par biegunów
D. wartości częstotliwości napięcia zasilającego
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 80 mm
B. 63 mm
C. 100 mm
D. 50 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. tłumik
B. magnes stały
C. zawór dławiący
D. membrana
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w mniejszym zakresie przy zmianach ciśnienia
B. w szerszym zakresie przy zmianach temperatury
C. w szerszym zakresie przy zmianach ciśnienia
D. w mniejszym zakresie przy zmianach temperatury
Wybór odpowiedzi wskazujących na szerszy zakres zmian lepkości przy zmianach ciśnienia czy temperatury jest związany z nieporozumieniami na temat działania olejów hydraulicznych i ich właściwości. Wysoki współczynnik lepkości oznacza, że olej jest bardziej oporny na zmiany, co w kontekście temperatury oznacza, że jego lepkość nie zmienia się znacząco, gdy temperatura wzrasta lub maleje. Z kolei przy niskim współczynniku lepkości, olej jest bardziej podatny na te zmiany. W związku z tym, sugerowanie, że olej o wysokiej lepkości może zmieniać swoje właściwości w szerszym zakresie przy zmianach temperatury, jest niezgodne z zasadami fizyki płynów. W układach hydraulicznych, oleje muszą charakteryzować się stabilnością lepkości w określonych warunkach eksploatacyjnych, co jest kluczowe dla efektywności działania. Warto zwrócić uwagę, że nieprawidłowe podejście do doboru oleju może prowadzić do nieefektywności systemu, zwiększonego zużycia energii, a nawet do uszkodzeń komponentów. Dlatego tak ważne jest zrozumienie, jak właściwości oleju wpływają na jego działanie w praktycznych zastosowaniach hydraulicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Regularna wymiana rozdzielacza
B. Miesięczny demontaż oraz montaż pomp
C. Regularna wymiana filtrów
D. Codzienna wymiana oleju
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 17

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 300 lx
B. 800 lx
C. 600 lx
D. 100 lx
Natężenie oświetlenia na poziomie 800 lx jest zalecane w miejscach, gdzie wykonywane są precyzyjne prace, takich jak laboratoria, warsztaty czy strefy montażowe. Tego rodzaju oświetlenie zapewnia wystarczającą ilość światła, co jest kluczowe dla dokładności i jakości wykonania zadań. Zbyt niskie natężenie oświetlenia może prowadzić do zmęczenia wzroku, obniżenia wydajności i zwiększonego ryzyka błędów. Przykład zastosowania tej zasady można zaobserwować w branży elektronicznej, gdzie montaż drobnych komponentów wymaga wyjątkowej precyzji. Zgodnie z normami takimi jak PN-EN 12464-1, specyfikującymi wymagania dotyczące oświetlenia miejsc pracy, natężenie oświetlenia na poziomie 800 lx jest odpowiednie dla miejsc wymagających koncentracji oraz dokładności. Należy również pamiętać o równomiernym rozkładzie światła, co jest równie istotne dla eliminacji cieni, które mogą utrudniać widoczność detali. Wysokiej jakości oświetlenie to klucz do efektywności i bezpieczeństwa w miejscu pracy.

Pytanie 18

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. zielonym kolorem z żółtą obręczą
B. symbolem podwójnego trójkąta z określoną wartością napięcia
C. symbolem kwadratu z określoną wartością napięcia
D. napisem "narzędzie bezpieczne"
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 19

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Spadek temperatury oleju za filtrem
B. Wzrost ciśnienia oleju przed filtrem
C. Wzrost ciśnienia oleju za filtrem
D. Spadek temperatury oleju przed filtrem
Wzrost ciśnienia oleju przed filtrem hydraulicznych jest kluczowym wskaźnikiem, który może świadczyć o zanieczyszczeniu filtra. W przypadku, gdy filtr hydrauliczny jest zablokowany z powodu nagromadzenia zanieczyszczeń, olej nie może swobodnie przepływać przez filtr, co prowadzi do wzrostu ciśnienia na wejściu. Jest to zjawisko często obserwowane w systemach hydraulicznych, w których regularnie monitoruje się ciśnienie. Przykładem może być system hydrauliczny w maszynach budowlanych, gdzie zanieczyszczenia w filtrze mogą prowadzić do awarii układu. Dlatego ważne jest, aby regularnie sprawdzać ciśnienie oleju przed filtrem i podejmować odpowiednie kroki, gdy ciśnienie przekracza ustalone normy. Zgodnie z dobrymi praktykami branżowymi, zaleca się również regularną wymianę filtrów hydraulicznych oraz przeprowadzanie konserwacji, co pozwala na utrzymanie efektywności systemu i minimalizowanie ryzyka poważnych uszkodzeń.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. silnika z pompą hydrauliczną
B. programatora z siłownikiem
C. grupy siłowników z modułem rozszerzającym
D. programatora ze sterownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 26

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. jednym kluczem płaskim
C. dwoma kluczami płaskimi
D. dwoma kluczami nasadowymi
Wybór jednego klucza płaskiego do zabezpieczenia połączeń gwintowych jest niewłaściwą strategią, ponieważ nie zapewnia równomiernego i stabilnego mocowania. Klucz płaski, używany w pojedynkę, nie może skutecznie zapobiec odkręceniu się nakrętki, szczególnie w sytuacjach narażonych na wibracje lub zmiany temperatury, które mogą powodować luzowanie się połączeń. Użycie jednego klucza płaskiego prowadzi do zwiększonego ryzyka uszkodzenia gwintu, ponieważ siła zastosowana do obracania nakrętki może być niestabilna i wymuszać nieprawidłowe obciążenia na połączeniu. Podobnie, korzystanie z dwóch kluczy nasadowych lub jednego klucza nasadowego w takim kontekście również nie jest optymalne. Klucze nasadowe, choć mogą być efektywne w kilku zastosowaniach, nie zapewniają takiego samego poziomu kontroli nad obydwoma elementami gwintowymi jak klucze płaskie. Klucze nasadowe mogą łatwo zsuwać się z nakrętek, zwłaszcza przy zmieniających się obciążeniach, co dodatkowo zwiększa ryzyko poluzowania. W praktyce, kluczowe jest zrozumienie, że odpowiednie narzędzia i techniki zabezpieczania połączeń gwintowych odgrywają kluczową rolę w zapewnieniu ich trwałości i funkcjonalności. Zachowanie standardów montażowych oraz konserwacyjnych jest istotnym elementem w inżynierii, który wpływa na bezpieczeństwo i wydajność całych konstrukcji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. analizy zużycia styków
B. wprowadzania regulacji
C. usuwania kurzu
D. sprawdzania dokręcenia śrub zacisków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. silnik tłokowy
B. siłownik teleskopowy
C. silnik zębaty
D. siłownik nurnikowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Filtr o charakterystyce pasmowo-zaporowej

A. przepuszcza sygnały o niskich częstotliwościach.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
D. tłumi sygnały o niskich częstotliwościach.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. -90°
B. 0°
C. 45°
D. 90°
Odpowiedzi takie jak 45°, 0° i -90° są nieprawidłowe z perspektywy teorii przesunięcia fazowego w regulatorach PD. Sugerowanie, że przesunięcie fazowe wynosi 45° jest błędne, ponieważ odpowiada to określonej konfiguracji układów, która nie jest charakterystyczna dla regulatorów PD. Tego typu wartości przesunięcia są związane z bardziej złożonymi układami, które uwzględniają dodatkowe elementy, takie jak filtry lub inne formy regulacji. Natomiast odpowiedź 0° implikuje, że sygnał wyjściowy jest synchroniczny z wejściowym, co jest sprzeczne z zamierzeniem regulatora PD, który zawsze wprowadza pewne opóźnienie. W przypadku odpowiedzi -90°, sugeruje to, że sygnał wyjściowy jest opóźniony w przeciwnym kierunku, co również nie znajduje potwierdzenia w teorii. W inżynierii, zrozumienie przesunięcia fazowego jest kluczowe dla zapewnienia stabilności systemu regulacji. Błędy w ocenie przesunięcia fazowego mogą prowadzić do oscylacji lub niestabilności, co stanowi jeden z najczęstszych problemów w praktyce inżynierskiej. Dlatego ważne jest, aby dokładnie analizować odpowiedzi na temat przesunięcia fazowego, aby uniknąć błędów projektowych i osiągnąć optymalne działanie systemów automatyki.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. nitów
B. łap
C. zatrzasków
D. śrub
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. Hz
B. V/(obr./min)
C. V
D. obr./min
Wybór jednostek V, obr./min oraz Hz jako odpowiedzi na pytanie o podstawowy parametr prądnicy tachometrycznej jest nieuzasadniony, ponieważ nie oddają one w pełni relacji pomiędzy napięciem a prędkością obrotową. Napięcie (V) samo w sobie nie informuje o prędkości obrotowej, a jego wartość w kontekście prądnicy tachometrycznej jest ściśle powiązana z tym parametrem. Z kolei obr./min, choć odnosi się do prędkości obrotowej, nie jest jednostką wyjściową prądnicy, lecz raczej miarą obrotów. Natomiast Hz, czyli herce, jest jednostką częstotliwości i również nie ma związku z parametrami prądnicy tachometrycznej, której zadaniem jest pomiar prędkości obrotowej w kontekście generowania sygnałów elektrycznych. Typowym błędem myślowym, który prowadzi do tych niepoprawnych wyborów, jest ignorowanie kontekstu zastosowania prądnicy. Użytkownicy często koncentrują się na pojedynczych jednostkach, nie biorąc pod uwagę ich wzajemnych relacji i zastosowania w praktyce. Dlatego kluczowe jest zrozumienie, że prądnica tachometryczna operuje na zasadzie transformacji energii mechanicznej na sygnał elektryczny, który jest proporcjonalny do prędkości obrotowej, co najlepiej obrazuje jednostka V/(obr./min). W kontekście inżynieryjnym, zrozumienie tej relacji jest fundamentalne dla prawidłowego projektowania i wdrażania systemów automatyki.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. wymienić membranę
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić uszczelkę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.