Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 11:51
  • Data zakończenia: 4 kwietnia 2025 12:10

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Honowanie to zabieg wykańczający, który stosuje się w procesie naprawy

A. tulei cylindrowych
B. gniazd zaworów
C. powierzchni krzywek wału rozrządu
D. czopów wału korbowego
Niepoprawne odpowiedzi wskazują na niedostateczne zrozumienie procesu honowania i jego zastosowań w obróbce mechanicznej. Powierzchnie krzywek wałka rozrządu oraz gniazd zaworowych wymagają innych metod obróbczych, takich jak szlifowanie czy frezowanie, które są dostosowane do specyficznych potrzeb tych elementów. Krzywki wałka rozrządu mają skomplikowany kształt, który wymaga precyzyjnego dopasowania do pracy z zaworami, a ich obróbka najczęściej obejmuje szlifowanie dla uzyskania odpowiedniej geometrii oraz chropowatości. Gniazda zaworowe również wymagają precyzyjnej obróbki, ale zazwyczaj są obrabiane w procesie frezowania, aby zapewnić dokładne dopasowanie do zaworów. Z kolei czopy wału korbowego są poddawane szlifowaniu, aby uzyskać gładką powierzchnię, która jest kluczowa dla działania łożysk. Wybór niewłaściwej metody obróbczej dla tych komponentów może prowadzić do poważnych problemów, takich jak niewłaściwe działanie silnika, co podkreśla znaczenie znajomości odpowiednich technologii dla każdego elementu układu. Zrozumienie, że honowanie jest dedykowane głównie do obróbki tulei cylindrowych, pozwala uniknąć błędów w projektowaniu procesów produkcyjnych, co jest kluczowe dla zapewnienia wysokiej jakości i niezawodności w branży motoryzacyjnej.

Pytanie 2

Jak przeprowadza się naprawę niewielkiego uszkodzenia opony bezdętkowej?

A. wulkanizując z zewnątrz gumowy grzybek uszczelniający
B. przyklejając z zewnątrz gumową łatkę
C. wklejając od wewnętrznej strony gumowy grzybek uszczelniający
D. wprowadzając do nieszczelności masę uszczelniającą
Przyklejanie gumowej łatki od zewnątrz może wydawać się prostym sposobem na naprawę opony, lecz w przypadku opon bezdętkowych nie zapewnia to odpowiedniego uszczelnienia. Łatka stosowana na zewnątrz opony narażona jest na działanie czynników atmosferycznych, mechanicznych oraz chemicznych, co może prowadzić do jej odklejania się i ponownego pojawienia się nieszczelności. Dodatkowo, w przypadku drobnych uszkodzeń, zewnętrzna łatka nie jest w stanie skutecznie zablokować ucieczki powietrza, co może prowadzić do niebezpiecznej sytuacji na drodze. Wprowadzenie masy uszczelniającej w nieszczelność opony jest innowacyjnym, lecz nie zawsze skutecznym rozwiązaniem. Tego typu produkty mają swoje ograniczenia, a ich skuteczność często zależy od rodzaju uszkodzenia. W przypadku większych uszkodzeń, masa może nie być w stanie trwale zablokować wycieku powietrza. Wulkanizacja grzybka od zewnątrz również nie jest zalecana, ponieważ nie zapewnia odpowiedniego połączenia z oponą, a także nie spełnia standardów bezpieczeństwa. Wszystkie te błędne podejścia do naprawy opon bezdętkowych mogą prowadzić do poważnych konsekwencji, takich jak awarie na drodze, co powinno być dla nas alarmujące i skłaniać do stosowania jedynie sprawdzonych i zatwierdzonych metod naprawy.

Pytanie 3

Dynamiczne niewyważenie koła występuje, gdy

A. masa jest nierównomiernie rozłożona - po różnych stronach.
B. masa jest nierównomiernie rozłożona - skoncentrowana po jednej stronie.
C. opona ma większą masę.
D. felga ma większą masę.
Nierównomiernie rozłożona masa skupiona po jednej stronie nie prowadzi do prawidłowego zrozumienia problemu niewyważenia dynamicznego. Tego typu sytuacja może powodować, że koło będzie w pewnym momencie zrównoważone, co nie jest tym samym co niewyważenie dynamiczne. Ważne jest, aby zrozumieć różnicę między niewyważeniem statycznym a dynamicznym. Niewyważenie statyczne występuje wtedy, gdy masa nie jest równomiernie rozłożona wokół osi obrotu, co prowadzi do drgań w osi pionowej. Z kolei niewyważenie dynamiczne, które jest kluczowe w tym pytaniu, odnosi się do sytuacji, w której masa jest nierównomiernie rozmieszczona wzdłuż obwodu koła, co powoduje wibracje w osi poziomej. Odpowiedzi związane z większą masą opony lub felgi również nie są odpowiednie, ponieważ ciężar samych elementów nie jest decydujący, ale ich rozkład. Wprowadza to w błąd, ponieważ w rzeczywistości to rozkład masy na całej powierzchni koła ma największe znaczenie dla jego stabilności. Dlatego kluczowe jest, aby zwracać uwagę na równomierne rozłożenie masy podczas montażu kół, aby uniknąć problemów związanych z niewyważeniem dynamicznym, które mogą prowadzić do niepożądanych wibracji, a w konsekwencji uszkodzeń układu zawieszenia oraz zwiększonego zużycia paliwa.

Pytanie 4

Amortyzatory, które zostały poddane badaniu metodą Eusama, mają współczynnik tłumienia drgań na poziomie 60%

A. są w 40% uszkodzone
B. są w dobrym stanie
C. kwalifikują się do wymiany
D. są w stanie dostatecznym
Amortyzatory badane metodą Eusama z 60% współczynnikiem tłumienia drgań to naprawdę nieźle działające elementy. To oznacza, że dobrze radzą sobie z wygładzaniem jazdy i ogólnie poprawiają komfort. Dzięki temu wstrząsy są lepiej absorbowane i to jest mega ważne, jak chodzi o prowadzenie auta. Jak amortyzatory są w takiej formie, to mają szansę, że wszystko będzie działać sprawnie, a zawieszenie będzie miało dłuższą żywotność. Wiesz, w branży auto zawsze zwracamy uwagę na takie normy jak SAE czy ISO, bo to potwierdza, że sprawne amortyzatory to podstawa. Jak masz 60% współczynnika tłumienia, to możesz być pewny, że wszystko jest w porządku z bezpieczeństwem i wygodą jazdy.

Pytanie 5

Jakie jest znaczenie liczby cetanowej?

A. oleju napędowego
B. petrolu do samochodów
C. oleju do silników
D. gazu LPG
Wybór jednego z innych rodzajów paliwa, takich jak benzyna samochodowa, olej silnikowy czy gaz LPG, jest błędny z kilku powodów. Przede wszystkim liczba cetanowa jest specyficzna dla oleju napędowego i nie ma zastosowania w odniesieniu do benzyny, która działa na zupełnie innej zasadzie. Silniki benzynowe opierają swoje działanie na zapłonie iskrowym, gdzie kluczowym parametrem jest liczba oktanowa. Wysoka liczba oktanowa oznacza lepsze właściwości przeciwstukowe, co jest istotne w kontekście pracy silników benzynowych. Olej silnikowy natomiast jest substancją smarną, która nie jest paliwem, więc pytanie o jego liczbę cetanową jest w ogóle nieadekwatne. Z kolei gaz LPG, choć stosowany jako paliwo do silników, również nie ma związku z liczbą cetanową, gdyż jest to paliwo gazowe, które ma własne specyfikacje i normy. Typowe błędy związane z tym zagadnieniem to mylenie właściwości paliw i ich zastosowań w różnych typach silników, co może prowadzić do nieefektywnego doboru paliwa i poważnych problemów eksploatacyjnych. Kluczowe jest zrozumienie, że dla efektywności silnika diesla kluczowa jest właściwa liczba cetanowa, która zapewnia optymalne warunki pracy, co nie ma odniesienia w przypadku innych rodzajów paliw.

Pytanie 6

Podstawowym aspektem naprawy wiążącej się z wymianą uszczelki pod głowicą w silniku diesla jest odpowiedni jej wybór w odniesieniu do

A. elastyczności
B. twardości
C. długości
D. grubości
Wybór elastyczności, długości czy twardości uszczelki pod głowicą może prowadzić do różnych nieporozumień dotyczących jej funkcji i zastosowania. Elastyczność uszczelki jest istotna, ale nie jest kluczowym czynnikiem w doborze uszczelki pod głowicą. Zbyt elastyczna uszczelka może nie zapewnić odpowiedniej szczelności, a nadmierne odkształcenie może prowadzić do uszkodzenia silnika. Długość nie ma znaczenia, ponieważ uszczelki pod głowicą są produkowane w standardowych rozmiarach, które pasują do konkretnych modeli silników. Wybór twardości też może być mylący, gdyż uszczelki nie są dobierane głównie na podstawie twardości, ale raczej pod kątem ich grubości, co wpływa na ich działanie. Twardość wpływa na wytrzymałość materiału, ale nie jest decydującym czynnikiem w kontekście wymiany uszczelki pod głowicą. W praktyce, kluczowym błędem jest pomijanie specyfikacji producenta, co może prowadzić do nieodpowiedniego doboru uszczelek, a w rezultacie do poważnych awarii silnika. Ważne jest, aby technicy i mechanicy zdawali sobie sprawę z tych różnic i nie kierowali się mylnymi przesłankami, które mogą zniekształcić postrzeganą efektywność naprawy.

Pytanie 7

W diagnostyce samochodów wykorzystuje się oprogramowanie komputerowe

A. ESItronic
B. Eurotax
C. AutoCAD
D. Warsztat
ESItronic to zaawansowane oprogramowanie diagnostyczne używane w warsztatach samochodowych do analizy i naprawy pojazdów. Program ten umożliwia diagnozowanie usterek oraz odczytywanie danych z różnych systemów elektronicznych w samochodach, co jest kluczowe w nowoczesnym serwisowaniu. ESItronic jest dostosowany do wielu marek i modeli pojazdów, co czyni go uniwersalnym narzędziem w diagnostyce. Dzięki zastosowaniu tego oprogramowania mechanicy mogą szybko zidentyfikować problemy, co znacząco przyspiesza proces naprawy i zwiększa efektywność pracy. Program oferuje również dostęp do informacji technicznych, schematów, a także najnowszych aktualizacji dotyczących procedur serwisowych, co jest zgodne z najlepszymi praktykami branżowymi w zakresie utrzymania pojazdów. Przykładem zastosowania ESItronic może być diagnoza problemu z systemem ABS, gdzie mechanik korzysta z aplikacji do odczytu kodów błędów i analizy danych w czasie rzeczywistym.

Pytanie 8

Niepokojące dźwięki (dzwonienie) wydobywające się z obszaru cylindrów silnika podczas nagłego zwiększenia obrotów lub przeciążenia jednostki napędowej mogą świadczyć o

A. braku zapłonu w jednym z cylindrów
B. niedostatecznym smarowaniu silnika
C. powstawaniu spalania detonacyjnego
D. uszkodzeniu systemu dolotowego silnika
Odgłosy dzwonienia w silniku przy zwiększaniu prędkości obrotowej mogą być symptomem spalania detonacyjnego. Zjawisko to zachodzi, gdy mieszanka paliwowo-powietrzna w cylindrze zapala się w sposób niekontrolowany, prowadząc do gwałtownego wzrostu ciśnienia i temperatury. Spalanie detonacyjne powoduje wibracje i hałas, które mogą być słyszalne jako dzwonienie. Jest to szczególnie zauważalne w silnikach o wysokiej mocy lub w warunkach dużego obciążenia, gdy układ zapłonowy może nie nadążać za szybko zmieniającymi się warunkami pracy. Dlatego ważne jest monitorowanie stanu silnika oraz jakości paliwa, aby unikać takich sytuacji. Praktycznym rozwiązaniem jest stosowanie paliw o odpowiednich parametrach, które minimalizują ryzyko detonacji, a także regularne przeglądy i kalibracje układu zapłonowego. W kontekście standardów branżowych, przestrzeganie zaleceń producentów pojazdów oraz stosowanie się do norm emisji spalin pomoże w utrzymaniu silnika w dobrym stanie.

Pytanie 9

Reperacja tarczy hamulcowej, której bicie osiowe przekracza dozwolone wartości, polega na

A. wyprostowaniu
B. frezowaniu
C. osiowaniu
D. przetaczaniu
Przetaczanie tarczy hamulcowej to proces, który pozwala na przywrócenie jej prawidłowego kształtu i grubości, eliminując bicie osiowe, które może wpływać na jakość hamowania. W trakcie przetaczania, tarcza jest obrabiana na specjalnej maszynie, co pozwala na usunięcie materiału w miejscach, gdzie występują nierówności. To zyskuje szczególne znaczenie, gdy tarcza jest już zużyta, a jej wymiana na nową nie jest konieczna, co jest korzystne z perspektywy ekonomicznej i ekologicznej. Przetaczanie tarcz hamulcowych powinno być przeprowadzane zgodnie z normami przemysłowymi, które określają minimalne grubości tarcz oraz tolerancje bicia, co zapewnia nie tylko bezpieczeństwo, ale i komfort jazdy. Dobre praktyki branżowe sugerują, aby przetaczanie wykonywać w wyspecjalizowanych warsztatach, gdzie fachowcy mają odpowiedni sprzęt oraz doświadczenie. Dzięki temu można uniknąć błędów, które mogłyby prowadzić do dalszego zużycia układu hamulcowego oraz zagrożenia dla bezpieczeństwa pojazdu.

Pytanie 10

W mechanizmie silnika tłokowo-korbowego występują zmieniające się obciążenia, które prowadzą do uszkodzeń śrub korbowodowych na skutek

A. starzenia się materiału
B. zużycia mechanicznego
C. zużycia w wyniku erozji
D. zmęczenia struktury materiałowej
Zmęczenie materiału to proces, w którym materiał ulega uszkodzeniu wskutek cyklicznych obciążeń, co jest typowe w mechanizmie tłokowo-korbowym. W silnikach spalinowych, śruby korbowodowe narażone są na zmienne siły, które działają na nie podczas pracy silnika. Te siły powodują, że mikrodefekty w strukturze materiału zaczynają się powiększać, co w końcu prowadzi do pęknięć i zniszczenia elementu. Przykładem wpływu zmęczenia materiału jest zjawisko zmęczenia zmiennego, które można obserwować przy silnikach pracujących w trybie o zmiennej prędkości obrotowej. W praktyce, inżynierowie muszą projektować elementy silników zgodnie z normami, takimi jak ISO 1099, które dotyczą wytrzymałości na zmęczenie, aby zapewnić ich długotrwałą funkcjonalność. Używanie materiałów o wysokiej trwałości oraz odpowiednich powłok ochronnych również przyczynia się do wydłużenia żywotności takich komponentów.

Pytanie 11

Przyczyną "przekrzywienia" koła kierownicy w lewą stronę po wcześniejszym najazdowaniu prawym przednim kołem na dużą wyrwę w nawierzchni może być

A. uszkodzenie kordu opony
B. zmiana wyważenia koła
C. skrzywienie rantu obręczy koła
D. skrzywienie drążka kierowniczego
Skrzywienie drążka kierowniczego jest kluczowym czynnikiem wpływającym na układ kierowniczy pojazdu. Po najechaniu w dużą wyrwę nawierzchni, drążek kierowniczy może ulec deformacji, co prowadzi do nieprawidłowego ustawienia kół i odchylenia koła kierownicy w lewą stronę. Taka sytuacja często występuje, gdy pojazd przechodzi przez ekstremalne warunki drogowe. Skrzywiony drążek kierowniczy nie tylko wpływa na kierowanie pojazdem, ale również może prowadzić do nadmiernego zużycia opon oraz innych komponentów układu zawieszenia. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie regularnych przeglądów układu kierowniczego i zawieszenia. Przykładem zastosowania tej wiedzy jest rutynowa kontrola stanu technicznego pojazdu, która powinna obejmować sprawdzenie drążków kierowniczych oraz ich geometrii w celu zapewnienia bezpieczeństwa jazdy oraz komfortu użytkowników.

Pytanie 12

Który z poniższych elementów nie wchodzi w skład sprzęgła ciernego?

A. Sprężyna dociskowa
B. Łożysko wyciskowe
C. Sprężyna centralna
D. Wał napędowy silnika
Wał napędowy silnika nie jest częścią sprzęgła ciernego, ponieważ pełni zupełnie inną funkcję w układzie napędowym pojazdu. Sprzęgło cierne to mechanizm, który umożliwia płynne łączenie i rozłączanie momentu obrotowego pomiędzy silnikiem a skrzynią biegów. W skład sprzęgła ciernego wchodzą elementy takie jak łożysko wyciskowe, sprężyna dociskowa oraz tarcza sprzęgłowa. Każdy z tych elementów ma kluczowe znaczenie dla poprawnego działania sprzęgła. Na przykład, łożysko wyciskowe pozwala na odciągnięcie sprężyny dociskowej w celu swobodnego przesuwania tarczy sprzęgłowej. Dobrze działające sprzęgło cierne zapewnia efektywne przenoszenie mocy z silnika do układu napędowego, co jest istotne dla osiągów pojazdu. Wiedza na temat konstrukcji i działania sprzęgła jest niezbędna dla mechaników i inżynierów zajmujących się układami napędowymi, a także dla wszystkich pasjonatów motoryzacji.

Pytanie 13

Przygotowując pojazd do dłuższego przechowywania, należy

A. spuścić płyn hamulcowy
B. wymienić olej silnikowy oraz filtr oleju
C. spuścić zużyty olej z silnika i napełnić zbiornik paliwem
D. podnieść ciśnienie w oponach do maksymalnej wartości określonej przez producenta
Wymiana oleju silnikowego oraz filtra oleju przed długotrwałym przechowywaniem pojazdu jest kluczowym krokiem w zapewnieniu jego długowieczności i niezawodności. Stary olej zawiera zanieczyszczenia oraz kwasy, które mogą prowadzić do korozji i uszkodzeń silnika w trakcie długiego postoju. Nowy olej, zwłaszcza taki, który spełnia normy jakości API (American Petroleum Institute) lub ILSAC (International Lubricant Standardization and Approval Committee), zapewnia lepsze smarowanie oraz ochronę przed zużyciem. Dodatkowo, wymiana filtra oleju jest niezbędna, aby usunąć wszelkie zanieczyszczenia zgromadzone w systemie smarowania. Przykładowo, w przypadku samochodów, które będą stały przez kilka miesięcy, zaleca się zastosowanie oleju o niskiej lepkości, co ułatwi uruchomienie silnika po dłuższym okresie nieużywania. Należy również pamiętać, że regularna konserwacja i wymiana oleju zgodnie z zaleceniami producenta są kluczowe dla utrzymania pojazdu w dobrym stanie, co jest zgodne z praktykami motoryzacyjnymi oraz standardami branżowymi.

Pytanie 14

Aby ocenić skuteczność hamulców w pojeździe na podstawie pomiaru siły hamowania, jakie urządzenie powinno być użyte?

A. manometr o zakresie pomiarowym 0 do 10 MPa
B. czujnik nacisku
C. opóźnieniomierz
D. urządzenie rolkowe
Poprawna odpowiedź to urządzenie rolkowe, które jest powszechnie stosowane do oceny skuteczności działania hamulców w pojazdach. Urządzenie to umożliwia pomiar siły hamowania poprzez symulację warunków rzeczywistej jazdy, co pozwala na dokładne określenie efektywności układu hamulcowego. W praktyce, podczas badania, pojazd jest umieszczany na rolkach, które naśladują opór toczenia. Dzięki zastosowaniu takiego urządzenia możliwe jest uzyskanie precyzyjnych danych dotyczących siły hamowania, co jest kluczowe dla bezpieczeństwa ruchu drogowego. Standardy branżowe, takie jak ISO 3888, podkreślają znaczenie testów hamulców w kontekście homologacji pojazdów. Użycie urządzenia rolkowego pozwala również na identyfikację problemów z układem hamulcowym, takich jak nierównomierne działanie lub zużycie komponentów. W kontekście regularnych przeglądów technicznych, wykorzystanie takiego sprzętu jest niezbędne dla zapewnienia, że pojazd spełnia normy bezpieczeństwa.

Pytanie 15

Zbyt niskie ciśnienie powietrza w oponie jednego z kół osi przedniej może prowadzić do

A. ściągania pojazdu w stronę koła z wyższym ciśnieniem
B. ściągania pojazdu w kierunku koła z niższym ciśnieniem
C. zużycia środkowej części bieżnika
D. zużycia lewej strony bieżnika koła lewego lub prawej strony bieżnika koła prawego
Zbyt niskie ciśnienie powietrza w oponie jednego koła osi przedniej prowadzi do sytuacji, w której pojazd 'ściąga' w stronę koła z niższym ciśnieniem. Wynika to z różnicy w przyczepności oraz sił działających na pojazd. Opona z niższym ciśnieniem ma większą powierzchnię styku z nawierzchnią, co wpływa na stabilność pojazdu, a także na kierowanie nim. W praktyce, kierowca powinien regularnie kontrolować ciśnienie w oponach zgodnie z zaleceniami producenta, co wpływa na bezpieczeństwo jazdy oraz ekonomikę paliwową. Niskie ciśnienie może prowadzić do nadmiernego zużycia opon, co jest niezgodne z zasadami dobrej praktyki w zakresie eksploatacji pojazdów. Regularne przeglądy stanu opon oraz ich właściwe napompowanie to kluczowe aspekty dbania o bezpieczeństwo i komfort jazdy. Dodatkowo, zgodnie z normami branżowymi, monitorowanie ciśnienia powietrza powinno być praktykowane przed każdą dłuższą podróżą, aby uniknąć nieprzewidzianych problemów na drodze.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Badanie organoleptyczne jako sposób diagnostyczny to testowanie

A. bez przyrządów
B. interfejsem diagnostycznym
C. ciśnienia sprężania
D. lepkości oleju
Badanie organoleptyczne to metoda diagnostyki, która polega na ocenie cech fizycznych i sensorycznych materiałów bez użycia przyrządów pomiarowych. Przykładem zastosowania tej metody w przemyśle spożywczym może być ocena smaku, zapachu czy wyglądu produktów. W branży chemicznej badania organoleptyczne są stosowane do oceny jakości olejów, gdzie eksperci mogą ocenić ich lepkość i zapach. Metoda ta jest niezwykle cenna, ponieważ pozwala na bezpośrednie zaangażowanie zmysłów, co może prowadzić do szybkich i praktycznych wniosków. Warto również zauważyć, że standardy branżowe, takie jak ISO 8589, określają wytyczne dotyczące przeprowadzania takich badań, co zapewnia ich wiarygodność i powtarzalność. Przeprowadzanie badań organoleptycznych wymaga jednak odpowiedniego przeszkolenia i doświadczenia, aby wyniki były rzetelne i zgodne z oczekiwaniami.

Pytanie 20

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. wyłącznie tarcze hamulcowe kół osi przedniej
B. jedynie tarczę hamulcową koła lewego przedniego
C. tarcze i klocki hamulcowe wszystkich kół
D. tarcze oraz klocki hamulcowe osi przedniej
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 21

Charakterystykę zewnętrzną silnika wykonuje się podczas

A. badania skanerem diagnostycznym
B. testu na hamowni
C. próby drogowej
D. testu dymomierzem
Test dymomierzem, próba drogowa oraz badanie skanerem diagnostycznym to metody, które mają swoje specyficzne zastosowania, ale nie są odpowiednie do określania charakterystyki zewnętrznej silnika w kontekście wydajności i mocy. Test dymomierzem koncentruje się na pomiarze emisji spalin, co jest istotne w kontekście oceny ekologicznej, ale nie dostarcza informacji o mocy czy momencie obrotowym silnika. Próba drogowa z kolei dostarcza informacji o zachowaniu pojazdu w realnych warunkach, jednak wyniki mogą być zafałszowane przez zmienne zewnętrzne, takie jak warunki atmosferyczne czy stan nawierzchni, przez co nie można uzyskać precyzyjnych danych dotyczących wydajności silnika. Badanie skanerem diagnostycznym skupia się na analizie błędów systemów elektronicznych i nie jest właściwym narzędziem do oceny charakterystyki silnika. Te podejścia mogą prowadzić do mylnego wniosku, że są one wystarczające do oceny silnika, co jest błędne. Zrozumienie różnicy między tymi metodami jest kluczowe dla profesjonalistów w dziedzinie mechaniki i inżynierii samochodowej, aby właściwie dobierać narzędzia do analizy silników i ich parametrów.

Pytanie 22

Pomieszczenie, w którym przeprowadza się analizę spalin, powinno być wyposażone w

A. odciąg spalin odprowadzający spaliny na zewnątrz
B. klimatyzację
C. ogólną wentylację nawiewną
D. wentylację grawitacyjną
Odpowiedź 'odciąg spalin odprowadzający spaliny na zewnątrz' jest prawidłowa, ponieważ przeprowadzanie analizy spalin wymaga zapewnienia odpowiednich warunków bezpieczeństwa oraz minimalizacji ryzyka związanego z ich obecnością w pomieszczeniu. Odciąg spalin, który kieruje spaliny na zewnątrz, pozwala na skuteczne usunięcie szkodliwych substancji do atmosfery, co jest kluczowe dla zdrowia ludzi oraz ochrony środowiska. W praktyce, takie systemy są wykorzystywane w laboratoriach, zakładach przemysłowych oraz przy badaniach emisji spalin pojazdów. Zgodnie z normami branżowymi, takimi jak PN-EN 15259, systemy odciągowe powinny być projektowane i eksploatowane w sposób zapewniający ich efektywność i bezpieczeństwo, co obejmuje regularne przeglądy oraz konserwację. Dlatego zapewnienie odpowiedniego odciągu spalin nie tylko spełnia wymagania prawne, ale również chroni zdrowie pracowników i użytkowników.

Pytanie 23

W nowoczesnych systemach zasilania silnika o zapłonie samoczynnym typu Commonrail, paliwo ulega sprężeniu do ciśnienia wynoszącego

A. 10 kPa
B. 1000 atm
C. 2000 bar
D. 18 MPa
Odpowiedź 2000 bar jest prawidłowa, ponieważ w nowoczesnych systemach zasilania silnika z zapłonem samoczynnym typu Commonrail, ciśnienie sprężania paliwa osiąga wartości rzędu 2000 bar, co odpowiada około 200 MPa. Taka wartość ciśnienia jest kluczowa dla efektywnego rozpylania paliwa w komorze spalania, co z kolei zapewnia optymalne warunki do spalania, zwiększając wydajność silnika oraz redukując emisję zanieczyszczeń. Nowoczesne wtryskiwacze paliwa są zaprojektowane do pracy w tych ekstremalnych warunkach, co pozwala na precyzyjne dawkowanie paliwa i lepsze spalanie. Przy tak wysokim ciśnieniu, paliwo atomizuje się na drobne krople, co sprzyja lepszemu wymieszaniu z powietrzem, prowadząc do bardziej efektywnego procesu spalania. Przykładowo, w silnikach wysokoprężnych wykorzystywanych w pojazdach osobowych oraz dostawczych, zastosowanie systemu Commonrail z ciśnieniem na poziomie 2000 bar pozwala na znaczną redukcję zużycia paliwa oraz emisji tlenków azotu (NOx), co jest zgodne z normami ekologicznymi Euro 6.

Pytanie 24

Zgodnie z numeracją określoną przez producenta, pierwszy cylinder w silniku rzędowym czterosuwowym

A. jest zawsze z prawej strony pojazdu
B. może być umiejscowiony od strony koła zamachowego
C. znajduje się zawsze z przodu auta
D. może być symetrycznie ulokowany pomiędzy innymi cylindrami
Pierwszy cylinder w czterosuwowym silniku rzędowym może być umiejscowiony od strony koła zamachowego, co jest zgodne z praktykami stosowanymi w wielu konstrukcjach silnikowych. To ulokowanie cylindrów ma znaczenie w kontekście równowagi silnika oraz efektywności pracy. W niektórych silnikach, zwłaszcza tych zaprojektowanych do zastosowań w motoryzacji, pierwszy cylinder często znajduje się zgodnie z konwencjami producentów, co wpływa na sposób, w jaki silnik jest zaprojektowany, montowany i serwisowany. Przykładem mogą być silniki marki Ford, gdzie mechanicy często muszą uwzględniać to umiejscowienie przy pracach związanych z naprawą układu zapłonowego. Dodatkowo, umiejscowienie cylindrów ma wpływ na sposób, w jaki silnik generuje moc oraz moment obrotowy, co ma kluczowe znaczenie dla osiągów pojazdów. W literaturze technicznej oraz w dokumentacjach producentów można znaleźć wytyczne dotyczące tego, jak interpretować umiejscowienie cylindrów w kontekście ich numeracji, co jest istotne dla prawidłowego zrozumienia struktury silnika oraz jego funkcjonowania.

Pytanie 25

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. awaria pompy olejowej
B. uszkodzenie uszczelki pod głowicą
C. zbyt duże zanieczyszczenie filtra oleju
D. zużycie czopów wału korbowego
Uszkodzenie uszczelki pod głowicą jest jedną z najczęstszych przyczyn wzrostu poziomu oleju w silniku. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynów chłodniczych do komory spalania lub do układu smarowania. Płyn chłodniczy, który dostaje się do silnika, może powodować zubożenie oleju lub jego nadmiar z powodu zjawiska emulgacji, co prowadzi do wzrostu poziomu oleju. W praktyce, mechanik powinien regularnie sprawdzać uszczelki oraz wykonywać testy ciśnienia, aby wykryć potencjalne nieszczelności. Dobre praktyki w zakresie konserwacji silnika obejmują również korzystanie z oleju i płynów chłodniczych o odpowiednich parametrach, co ma kluczowe znaczenie dla długowieczności silnika. Rekomendowane jest również regularne przeprowadzanie inspekcji wizualnych, które mogą pomóc w wczesnym wykryciu problemów z uszczelką pod głowicą, co może zapobiec poważniejszym uszkodzeniom silnika.

Pytanie 26

Czym charakteryzuje się sprzęgło w samochodzie?

A. nie pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
B. pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
C. stanowi trwałe połączenie silnika spalinowego z innymi elementami układu napędowego
D. nie pozwala na płynne łączenie oraz rozłączanie części układu napędowego
Sprzęgło samochodowe jest kluczowym elementem układu napędowego, który umożliwia płynne łączenie i rozłączanie silnika spalinowego z pozostałymi komponentami, takimi jak skrzynia biegów. Główna funkcja sprzęgła polega na przenoszeniu momentu obrotowego z silnika na koła, co jest niezbędne podczas zmian biegów oraz uruchamiania pojazdu. Dzięki zastosowaniu sprzęgła, kierowca może kontrolować moment przeniesienia mocy, co pozwala na wygodne manewrowanie oraz uniknięcie szarpania podczas jazdy. W praktyce, dobrej jakości sprzęgło powinno charakteryzować się niskim zużyciem, odpornością na wysokie temperatury oraz zdolnością do przenoszenia dużych obciążeń. W branży motoryzacyjnej stosowane są różne typy sprzęgieł, w tym sprzęgła suche, mokre oraz wielotarczowe, z których każdy ma swoje zastosowanie w zależności od specyfikacji pojazdu. Warto również zaznaczyć, że regularna kontrola i serwisowanie sprzęgła są kluczowe dla utrzymania sprawności układu napędowego oraz zwiększenia bezpieczeństwa na drodze.

Pytanie 27

Ostatnim krokiem podczas montażu rozrusznika jest

A. podłączenie zacisków do akumulatora
B. zamontowanie osłony rozrusznika
C. przykręcenie przewodów do włącznika elektromagnetycznego
D. przymocowanie rozrusznika do obudowy sprzęgła
Wybór innych opcji jako ostatnich czynności montażowych rozrusznika opiera się na niepełnym zrozumieniu kolejności oraz znaczenia poszczególnych etapów instalacji. Przykręcenie przewodów do włącznika elektromagnetycznego, choć istotne, powinno być wykonane wcześniej w procesie, aby zapewnić, że włącznik działa prawidłowo, gdy zasilanie jest podłączone. Natomiast przykręcenie rozrusznika do obudowy sprzęgła to kluczowa czynność, która musi być zrealizowana przed podłączeniem akumulatora, aby fizycznie ustabilizować elementy i zapobiec ich uszkodzeniu podczas dalszych prac. Zamontowanie osłony rozrusznika również powinno odbywać się po usunięciu rozrusznika, ale przed jego uruchomieniem, aby chronić go przed zanieczyszczeniami. Te pomyłki pokazują typowy błąd myślowy, w którym użytkownik nie rozumie, że montaż rozrusznika wymaga dużej precyzji i znajomości procedur. Właściwa kolejność działań jest kluczowa dla zapewnienia, że silnik uruchomi się prawidłowo i że wszystkie elementy będą prawidłowo współdziałać. W związku z tym, pomijanie lub błędne ustawienie tych czynności może prowadzić do awarii systemu i dodatkowych kosztów napraw.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Sonda lambda stanowi element, który znajduje się w systemie

A. hamulcowym
B. zasilania
C. chłodzenia
D. wydechowym
Sonda lambda, znana również jako czujnik tlenu, jest kluczowym elementem układu wydechowego w pojazdach. Jej głównym zadaniem jest monitorowanie stężenia tlenu w spalinach, co pozwala na optymalizację procesu spalania w silniku. Dzięki pomiarom sondy lambda, system zarządzania silnikiem (ECU) może dostosować proporcje paliwa i powietrza, co prowadzi do zredukowania emisji spalin i poprawy efektywności paliwowej. Współczesne pojazdy często wykorzystują sondy lambda w systemach z jednoczesnym monitorowaniem i regulowaniem procesu spalania, co jest zgodne z normami emisji spalin, takimi jak Euro 6. Przykładowo, w silnikach benzynowych sonda lambda pozwala na osiągnięcie tzw. 'stoichiometric ratio', co jest optymalnym współczynnikiem powietrza do paliwa. Ponadto, regularne sprawdzanie stanu sondy lambda jest istotne dla utrzymania sprawności układu wydechowego oraz zapobiegania potencjalnym problemom z działaniem silnika.

Pytanie 31

Gdzie wykorzystuje się rezonator Helmholtza?

A. w systemie zapłonowym silnika
B. w systemie zasilania silnika
C. w systemie wylotowym silnika
D. w systemie dolotowym silnika
Rezonator Helmholtza jest komponentem stosowanym w układzie dolotowym silnika, którego głównym zadaniem jest optymalizacja przepływu powietrza do cylindrów silnika. Działa na zasadzie rezonansu akustycznego, co oznacza, że potrafi amplifikować określone częstotliwości dźwięku, co z kolei wpływa na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną. W praktyce, wykorzystanie rezonatora Helmholtza zwiększa efektywność spalania, co prowadzi do poprawy osiągów silnika oraz zmniejszenia emisji spalin. Przykładem zastosowania tego rozwiązania mogą być silniki sportowe, gdzie poprawne wprowadzenie i sprężenie mieszanki paliwowej jest kluczowe dla uzyskania maksymalnej mocy. Takie systemy projektowane są zgodnie z dobrą praktyką inżynieryjną, uwzględniając parametry akustyczne oraz dynamikę przepływu, co pozwala na dostosowanie rezonatorów do specyficznych wymagań silnika. Ponadto, w kontekście norm emisji spalin, zrozumienie wpływu rezonatorów na proces spalania staje się kluczowe dla projektowania bardziej ekologicznych jednostek napędowych.

Pytanie 32

Maksymalna dopuszczalna zawartość CO (tlenku węgla) w spalinach dla silników benzynowych wyprodukowanych po 2004 roku, w czasie biegu jałowego, nie powinna być większa niż

A. 3,5% objętości spalin
B. 2,5% objętości spalin
C. 1,5% objętości spalin
D. 0,3% objętości spalin
Wybór odpowiedzi innych niż 0,3% objętości spalin wskazuje na brak zrozumienia norm emisji zanieczyszczeń oraz regulacji dotyczących silników spalinowych. Na przykład, podanie wartości 1,5% lub 2,5% nie tylko przekracza aktualne normy, ale także nie uwzględnia technologii, które zostały wprowadzone do silników po 2004 roku. Silniki współczesne są wyposażone w zaawansowane systemy oczyszczania spalin, które skutecznie redukują emisję tlenku węgla do poziomów znacznie poniżej 0,3%. Również warto zauważyć, że normy emisji takich jak Euro 5, które zaczęły obowiązywać od 2009 roku, wymuszają dalsze ograniczenie emisji dla nowych pojazdów. Wybierając wartości 3,5% lub inne, można wskazać na typowe błędy myślowe, takie jak mylenie biegu jałowego z innymi warunkami pracy silnika. W rzeczywistości na biegu jałowym emisja powinna być monitorowana w bardzo kontrolowanych warunkach, a wartości przekraczające 0,3% stanowią poważne naruszenie przepisów, które mogą skutkować koniecznością przeprowadzenia naprawy lub modyfikacji układu wydechowego. Należy pamiętać, że zrozumienie tych norm jest kluczowe dla wszystkich, którzy pracują w branży motoryzacyjnej oraz zajmują się diagnostyką silników.

Pytanie 33

Do zadań sondy lambda zainstalowanej tuż za katalizatorem należy

A. korekcja kąta wyprzedzenia zapłonu
B. mierzenie poziomu tlenu w spalinach, które opuszczają silnik
C. mierzenie poziomu tlenu w spalinach, które wydobywają się z katalizatora
D. kontrola składu mieszanki paliwowo-powietrznej
Odpowiedzi dotyczące pomiaru poziomu tlenu w spalinach opuszczających silnik, regulacji składu mieszanki paliwowo-powietrznej czy korekcji kąta wyprzedzenia zapłonu są nieprawidłowe, ponieważ nie odzwierciedlają rzeczywistych funkcji sondy lambda umieszczonej za katalizatorem. Pomiar tlenu w spalinach opuszczających silnik miałby zastosowanie w teorii, ale w praktyce sonda lambda za katalizatorem służy do monitorowania stanu spalin po ich przejściu przez proces katalityczny. To właśnie w tym miejscu można ocenić skuteczność działania katalizatora, ponieważ sonda rejestruje zmiany w składzie spalin, co jest krytyczne dla zarządzania emisjami. Regulacja składu mieszanki paliwowo-powietrznej również nie jest bezpośrednią funkcją sondy lambda, która dostarcza sygnał do jednostki sterującej, ale sama nie dokonuje modyfikacji składu mieszanki. Kąt wyprzedzenia zapłonu jest kolejnym parametrem, który nie jest kontrolowany przez sondę lambda. W rzeczywistości, błędne zrozumienie ról różnych komponentów systemu zarządzania silnikiem może prowadzić do nieefektywnego działania silnika oraz zwiększonej emisji zanieczyszczeń. Zrozumienie, że sonda lambda działa jako czujnik, a nie jako bezpośredni kontroler, jest kluczowe dla prawidłowej diagnozy i konserwacji nowoczesnych układów wydechowych.

Pytanie 34

Instalacja "suchej" tulei cylindrowej powinna odbywać się z użyciem

A. młotka gumowego
B. młotka ślusarskiego
C. ściągacza do łożysk
D. prasy hydraulicznej
Montaż 'suchej' tulei cylindrowej przy użyciu prasy hydraulicznej jest zalecany ze względu na precyzję oraz kontrolę siły, którą można zastosować podczas tego procesu. Prasa hydrauliczna pozwala na równomierne rozłożenie sił na powierzchni tulei, co minimalizuje ryzyko jej odkształcenia lub uszkodzenia. W praktyce, użycie prasy hydraulicznej zapewnia, że tuleja zostanie wprowadzona do gniazda z odpowiednią siłą, co jest szczególnie ważne w przypadku komponentów silnikowych, gdzie tolerancje wymiarowe są krytyczne. Dobrą praktyką jest przeprowadzenie montażu w kontrolowanych warunkach, co można osiągnąć, stosując odpowiednie narzędzia. Istotne jest również, aby przed montażem sprawdzić stan tulei oraz gniazda, co pozwala na uniknięcie problemów związanych z niewłaściwym dopasowaniem. W przemyśle motoryzacyjnym i maszynowym, użycie prasy hydraulicznej jest standardem, aby zapewnić długoterminową niezawodność oraz poprawne działanie silników i innych mechanizmów.

Pytanie 35

Jednorodne, nadmierne zużycie centralnej części bieżnika opony, występujące wzdłuż całego obwodu, jest spowodowane?

A. niewyważeniem koła
B. zbyt dużym ciśnieniem w oponie
C. nieprawidłowym ustawieniem zbieżności kół
D. zbyt małym ciśnieniem w oponie
Zbyt duże ciśnienie w oponie prowadzi do nadmiernego zużycia środkowej części bieżnika, co jest wynikiem zmniejszonej powierzchni kontaktu opony z nawierzchnią drogi. Wysokie ciśnienie powoduje, że opona staje się sztywniejsza, a jej środkowa część wpada w kontakt z drogą w większym stopniu niż boki. W praktyce oznacza to, że podczas jazdy opona nie jest w stanie równomiernie rozkładać obciążenia, co skutkuje szybszym zużyciem bieżnika w centralnym obszarze. Zaleca się regularne sprawdzanie ciśnienia w oponach, zgodnie z normami producenta, aby zapewnić ich optymalną wydajność i bezpieczeństwo. Właściwe ciśnienie w oponach wpływa nie tylko na trwałość opon, ale również na zużycie paliwa oraz stabilność pojazdu. Przykładowo, zbyt wysokie ciśnienie może również powodować zwiększone ryzyko aquaplaningu podczas deszczu, co jest istotnym zagrożeniem dla bezpieczeństwa jazdy.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Równomierność funkcjonowania amortyzatorów w kołach jednej osi określa różnica wskaźnika EUSAMA. Maksymalna wartość tej różnicy nie powinna przekraczać

A. 25%
B. 20%
C. 30%
D. 10%
Odpowiedź 20% jest prawidłowa, ponieważ zgodnie z normami dotyczącymi amortyzatorów, takich jak ISO 2631, równomierność działania amortyzatorów kół jednej osi powinna mieścić się w granicach 20%. Przekroczenie tej wartości może prowadzić do niebezpiecznych sytuacji na drodze, wpływając na stabilność pojazdu oraz komfort jazdy. W praktyce, właściwie działające amortyzatory są kluczowe dla bezpieczeństwa i efektywności pojazdu, a ich niewłaściwa kalibracja może skutkować nieprawidłowym zachowaniem się pojazdu w trakcie manewrów, takich jak hamowanie czy pokonywanie zakrętów. Regularne sprawdzanie stanu amortyzatorów oraz ich wymiana zgodnie z zaleceniami producentów to praktyki, które znacząco przyczyniają się do poprawy bezpieczeństwa oraz komfortu jazdy. Dlatego też warto zwracać uwagę na wskaźniki takie jak EUSAMA, które stanowią miernik skuteczności amortyzatorów, a ich przestrzeganie to standard w branży motoryzacyjnej.

Pytanie 38

Aby zmierzyć luz zaworowy, konieczne jest posiadanie

A. szczelinomierza
B. mikrometru
C. passametra
D. głębokościomierza
Szczelinomierz to narzędzie niezbędne do pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a dźwignią zaworu (lub innym elementem napędu) i jest kluczowy dla prawidłowego działania silnika. Zbyt mały luz może prowadzić do zatarcia zaworów, natomiast zbyt duży luz może powodować nieprawidłowe działanie silnika i zwiększone zużycie paliwa. Szczelinomierz składa się z zestawu cienkich blaszek o różnych grubościach, które umożliwiają dokładne określenie luzu. Przykładowo, w silnikach o napędzie benzynowym, zaleca się regularne sprawdzanie luzu zaworowego co 10 000-15 000 km, co można wykonać właśnie przy pomocy szczelinomierza, zgodnie z zaleceniami producenta. Ponadto, znajomość i umiejętność stosowania szczelinomierza jest podstawowym elementem wyposażenia mechanika, co potwierdzają standardy branżowe i dobre praktyki w obsłudze silników.

Pytanie 39

Elementy nazywane "tulejami mokrymi" są instalowane w

A. sprzęgle dwustopniowym
B. układzie smarowania silnika
C. skrzyni biegów
D. bloku silnika
Tuleje mokre, znane również jako tuleje cylindrowe, to elementy montowane w bloku silnika, które mają kluczowe znaczenie dla efektywnego działania jednostki napędowej. Ich główną funkcją jest zapewnienie miejsca dla tłoka oraz optymalizacja procesu smarowania. Tuleje mokre są osadzone w bloku silnika w taki sposób, że współpracują z płynem chłodzącym, co pozwala na utrzymanie odpowiedniej temperatury pracy silnika. Przykładem zastosowania tulei mokrej może być silnik spalinowy, w którym olej silnikowy krąży wokół tulei, minimalizując tarcie oraz zużycie. Niektóre nowoczesne silniki stosują standardy, takie jak SAE J300, które określają właściwości olejów silnikowych i ich kompatybilność z różnymi materiałami, w tym z tulejami mokrymi. W ramach dobrych praktyk branżowych, regularna kontrola stanu tulei oraz ich smarowania jest niezbędna dla zapewnienia długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 40

Funkcja amortyzatora w systemie zawieszenia

A. zalicza się do kategorii elementów sprężystych zawieszenia
B. zapobiega odrywaniu kół od powierzchni
C. może pełnić rolę sprężyny w układzie zawieszenia
D. wydłuża czas oscylacji sprężyny
Amortyzatory nie są elementami sprężystymi zawieszenia, lecz elementami tłumiącymi, które współpracują z sprężynami w celu zapewnienia optymalnych warunków jazdy. W związku z tym można błędnie myśleć, że amortyzator może zastąpić sprężynę, co jest zupełnie nieprawidłowe. Sprężyna przechowuje energię i zapewnia nośność pojazdu, podczas gdy amortyzator kontroluje szybkość, z jaką ta energia jest uwalniana. Niezrozumienie tej różnicy prowadzi do przekonania, że amortyzator pełni tę samą rolę co sprężyna, co jest błędne. Ponadto, stwierdzenie, że amortyzator wydłuża czas drgań sprężyny, również jest mylące. Amortyzatory mają za zadanie redukować, a nie wydłużać drgania, co jest kluczowe dla utrzymania stabilności i komfortu jazdy. Typowym błędem myślowym w tej kwestii jest utożsamianie tłumienia z wydłużeniem czasu reakcji, co jest sprzeczne z zasadami działania układów zawieszenia. Aby zrozumieć popraw