Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 20:34
  • Data zakończenia: 3 kwietnia 2025 20:42

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak największą rezystancją wewnętrzną
B. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
C. z jak najmniejszą rezystancją wewnętrzną
D. z rezystancją wewnętrzną równą rezystancji obciążenia
Odpowiedź dotycząca użycia amperomierza z jak najmniejszą rezystancją wewnętrzną jest poprawna, ponieważ niska rezystancja wewnętrzna minimalizuje wpływ przyrządu pomiarowego na układ elektryczny, w którym dokonujemy pomiaru natężenia prądu. Gdy amperomierz ma dużą rezystancję wewnętrzną, wprowadza znaczące zmiany w obwodzie, co prowadzi do zniekształcenia wyników pomiarów. W praktyce oznacza to, że amperomierze stosowane w aplikacjach mechatronicznych, takich jak pomiary w systemach automatyki przemysłowej czy robotyce, powinny być projektowane tak, aby miały jak najmniejszy wpływ na mierzony obwód. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie odpowiednich parametrów technicznych przyrządów pomiarowych, aby zapewnić ich dokładność i wiarygodność. Przykładowo, w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, jak w diagnostyce sprzętu czy pomiarach laboratoryjnych, wybór amperomierza o niskiej rezystancji wewnętrznej staje się kluczowy dla uzyskania rzetelnych wyników. Dodatkowo, w sytuacjach gdzie prąd jest zmienny, a nie stały, zastosowanie odpowiedniego amperomierza pozwala na dokładne monitorowanie parametrów pracy urządzeń elektrycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb funkcjonowania CPU
B. Brak baterii podtrzymującej zasilanie
C. Potrzeba zmian w parametrach programu
D. Tryb wstrzymania CPU
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 5

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. generatorów
B. zasilaczy
C. stabilizatorów
D. prostowników
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 6

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 15 000 bar
C. 150 bar
D. 1 500 bar
Wybór ciśnienia 15 000 bar jest niewłaściwy, ponieważ wartość ta przekracza wytrzymałość typowych materiałów stosowanych w hydraulice. Tak ekstremalne ciśnienie nie jest praktykowane w żadnym standardowym zastosowaniu hydraulicznym. To prowadzi do mylnego wrażenia, że wyższe ciśnienie zawsze oznacza większą moc, co jest błędne. Niepotrzebne zwiększenie ciśnienia może prowadzić do uszkodzeń elementów układu hydraulicznego, a w skrajnych przypadkach do katastrof. Odpowiedź 1 500 bar również jest niepoprawna, ponieważ przeliczenia wskazują, że jest to wartość znacznie wyższa niż wymagana w danym przypadku. Z kolei 15 bar jest zbyt niskim ciśnieniem, co skutkowałoby nieskutecznością siłownika w wytwarzaniu wymaganej siły. Istotnym błędem w myśleniu może być niepełne zrozumienie zasad działania hydrauliki, gdzie kluczowe są proporcje między siłą, ciśnieniem i powierzchnią czynnych tłoków. Właściwe obliczenia i dobór parametrów są kluczowe w projektowaniu i eksploatacji maszyn hydraulicznych, co podkreśla znaczenie edukacji technicznej oraz przestrzegania standardów branżowych. Zrozumienie tych zasad pozwala na uniknięcie kosztownych błędów oraz zwiększa bezpieczeństwo operacyjne w zastosowaniach hydraulicznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. okulary ochronne
B. maskę przeciwpyłową
C. kask ochronny
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 11

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. kontroli czystości paska
B. weryfikacji wymiarów
C. oceny stopnia zużycia
D. sprawdzenia poziomu naprężenia
Weryfikacja wymiarów, ocena stopnia zużycia oraz kontrola czystości paska są kluczowymi etapami przygotowań do montażu nowego paska klinowego i powinny być wykonywane, aby zapewnić prawidłowe funkcjonowanie przekładni pasowej. Weryfikacja wymiarów polega na sprawdzeniu, czy nowe komponenty są zgodne z wymiarami wymaganymi przez producenta, co jest istotne dla prawidłowego działania układu. Jeśli wymiary są niewłaściwe, może to prowadzić do niewłaściwego dopasowania, co wpływa na efektywność całego systemu. Ocena stopnia zużycia jest również niezwykle istotna; zużyte elementy mogą nie tylko wpływać na sprawność paska, ale również na jego żywotność. W praktyce oznacza to, że mechanicy powinni regularnie monitorować stan przekładni pasowej, aby zminimalizować ryzyko awarii. Kontrola czystości paska jest szczególnie ważna, ponieważ zanieczyszczenia mogą powodować uszkodzenie zarówno paska, jak i kół pasowych. Zanieczyszczenia mogą prowadzić do nadmiernego tarcia, co zwiększa ryzyko przegrzania i uszkodzenia. Dlatego ważne jest, aby każdy z tych kroków był integralną częścią procesu montażu, gdyż pomijanie ich może prowadzić do poważnych problemów eksploatacyjnych i zwiększonej awaryjności urządzeń.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Codzienna wymiana filtra powietrza
B. Okresowe wyłączanie sprężarki
C. Usuwanie kondensatu wodnego
D. Codzienna wymiana oleju w smarownicy
Codzienna wymiana oleju w smarownicy, okresowe wyłączanie sprężarki oraz codzienna wymiana filtra powietrza to działania, które mogą być istotne w utrzymaniu systemów pneumatycznych, jednak nie są one typowe dla konserwacji układów pneumatycznych jako całości. Wymiana oleju w smarownicy jest ważna dla zachowania odpowiedniego smarowania elementów mechanicznych, ale nie jest kluczowym działaniem związanym bezpośrednio z układami pneumatycznymi, które operują głównie na sprężonym powietrzu. Podobnie, okresowe wyłączanie sprężarki może być praktyką w celu konserwacji, ale nie należy do rutynowych działań konserwacyjnych układów pneumatycznych. Filtr powietrza ma z kolei na celu usuwanie zanieczyszczeń, ale jego codzienna wymiana nie jest wymagana, chyba że jest on szczególnie narażony na zanieczyszczenia. W rzeczywistości, w wielu systemach stosuje się strategie konserwacji oparte na harmonogramach, które są dostosowane do warunków pracy, a nie na codziennych wymianach. Typowe błędy myślowe polegają na przeoczeniu kluczowego aspektu, jakim jest usuwanie kondensatu, które jest bardziej krytyczne dla stabilności i efektywności całego systemu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą trudnopalną
B. bawełnianą w formie kombinezonu
C. roboczą standardową
D. termoaktywną
Odpowiedzi takie jak "robocze zwykłe", "termoaktywne" oraz "bawełniane typu kombinezon" są niewłaściwe w kontekście pracy przy procesie odlewania taśmy cynkowo-tytanowej. Odzież robocza zwykła nie zapewnia odpowiedniej ochrony przed wysoką temperaturą oraz ogniem, co jest kluczowe w tym środowisku. Ubrania wykonane z materiałów nieodpornych na ogień mogą ulec zapaleniu w przypadku kontaktu z płomieniem lub iskrami, co naraża pracownika na poważne ryzyko poparzeń oraz innych obrażeń. Odzież termoaktywna, choć ma swoje miejsce w odzieży roboczej, nie oferuje wystarczającej ochrony przed ogniem i nie jest zaprojektowana do pracy w ekstremalnych warunkach cieplnych. Natomiast bawełniane kombinezony, mimo że są wygodne, również nie mają właściwości trudnopalnych, co czyni je niewłaściwym wyborem w tej specyficznej sytuacji. Niezrozumienie znaczenia stosowania odpowiednich materiałów w odzieży roboczej może prowadzić do niebezpiecznych sytuacji, dlatego kluczowe jest, aby wszyscy pracownicy byli świadomi zagrożeń związanych z ich środowiskiem pracy i stosowali odpowiednie środki ochrony osobistej, które spełniają wszelkie normy oraz przepisy bezpieczeństwa.

Pytanie 25

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HR
D. HH
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 26

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. czujnik zegarowy
B. poziomnicę
C. kątomierz
D. przymiar liniowy
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 27

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. braku jednej fazy zasilającej silnik
C. użycia stałego napięcia w obwodzie sterowania silnika
D. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. rezystora
B. solenoidu
C. diody pojemnościowej
D. kondensatora
Wybór rezystora jako odpowiedzi na to pytanie jest błędny, ponieważ parametry wymienione w pytaniu nie są typowe dla tego elementu. Rezystory są elementami, które służą do ograniczania przepływu prądu w obwodach elektrycznych, a ich podstawowe parametry to rezystancja, moc znamionowa oraz tolerancja. Rezystancja jest miarą oporu, który rezystor stawia przepływającemu prądowi, a moc znamionowa odnosi się do maksymalnej mocy, jaką rezystor może rozproszyć bez ryzyka uszkodzenia. W kontekście solenoidu, który jest również niewłaściwym wyborem, jego parametry dotyczą głównie indukcyjności oraz maksymalnego prądu, a nie napięcia probierczego czy stratności dielektrycznej. Dioda pojemnościowa, z drugiej strony, jest elementem, który może wykazywać pewne właściwości pojemnościowe, jednak nie jest odpowiednia w kontekście wymienionych parametrów, które są typowe dla kondensatorów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to pomylenie funkcji elementów elektronicznych; zrozumienie różnic w zastosowaniach rezystorów, solenoidów i kondensatorów jest kluczowe dla właściwego doboru komponentów do projektów elektronicznych. W elektronice, precyzyjne rozróżnienie parametrów i ich zastosowań jest niezbędne dla zapewnienia efektywności i niezawodności układów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. megaomomierz
B. mostek Wheatstone'a
C. omomierz
D. mostek Thomsona
Omomierz, mimo że na pierwszy rzut oka wydaje się odpowiednim narzędziem do pomiaru rezystancji, ma swoje ograniczenia, zwłaszcza w kontekście bardzo dokładnych pomiarów. Jego działanie opiera się na bezpośrednim pomiarze rezystancji, co może prowadzić do błędów wynikających z wpływu temperatury, pojemności czy indukcyjności. Ponadto, omomierze mogą mieć ograniczoną dokładność w przypadku pomiarów bardzo niskich lub wysokich wartości rezystancji, co czyni je mniej skutecznymi niż mostek Wheatstone'a. Megaomomierz, chociaż jest narzędziem do pomiaru dużych rezystancji, również może nie zapewniać wystarczającej precyzji w pomiarze wartości nieznanych, ponieważ jego zastosowanie jest głównie ograniczone do testów izolacji. Mostek Thomsona, z kolei, jest bardziej skomplikowanym układem, który nie jest powszechnie stosowany w praktycznych zastosowaniach w porównaniu do mostka Wheatstone'a. Typowe błędy myślowe prowadzące do wyboru tych narzędzi obejmują niedocenienie znaczenia równowagi w pomiarze oraz niezrozumienie wpływu czynników zewnętrznych na wyniki pomiarów. Dlatego istotne jest, aby przed dokonaniem wyboru narzędzia pomiarowego zrozumieć różnice między nimi oraz ich zastosowania w kontekście wymaganych standardów dokładności.

Pytanie 34

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Rozdzielający
B. Przelotowy
C. Zwrotny
D. Odcinający
Wybór niewłaściwego zaworu wynika z nieporozumienia dotyczącego funkcji poszczególnych typów zaworów. Zawór rozdzielający nie zapewnia jednokierunkowego przepływu czynnika roboczego, lecz ma na celu kierowanie przepływu do różnych sekcji systemu. Używany jest w aplikacjach, gdzie konieczne jest przełączanie między różnymi obiegami, co czyni go nieodpowiednim w kontekście wymagania o przepływie tylko w jednym kierunku. Zawór odcinający, z kolei, służy do całkowitego zamykania lub otwierania przepływu, a nie do jego kontrolowania w określonym kierunku. W praktyce, zawory odcinające są istotne w sytuacjach, gdzie konieczne jest całkowite odcięcie zasilania do danej linii, jednak nie regulują one kierunku przepływu, co jest kluczowe w kontekście pytania. Zawór przelotowy, podobnie jak zawór odcinający, nie ogranicza przepływu do jednego kierunku, ale raczej umożliwia swobodny przepływ w obu kierunkach. Zrozumienie charakterystyki tych zaworów jest kluczowe dla prawidłowego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych, aby uniknąć błędów, które mogą prowadzić do awarii systemu.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
C. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
D. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.