Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 17 kwietnia 2025 00:09
  • Data zakończenia: 17 kwietnia 2025 00:31

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. rozcieńczania
B. utrwalania
C. oczyszczania
D. zagęszczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 2

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. rozpuszczalnik organiczny
B. słabą zasadę
C. mieszaninę chromową
D. słaby kwas
Mieszanina chromowa składa się z kwasu siarkowego i dichromianu potasu, co czyni ją klasycznym środkiem do oczyszczania powierzchni zanieczyszczonych zwęglonymi osadami. Jej działanie polega na utlenianiu związków organicznych, co umożliwia ich skuteczne usunięcie. Przykładem zastosowania mieszaniny chromowej jest czyszczenie narzędzi laboratoryjnych oraz szkła laboratoryjnego, gdzie trudne do usunięcia resztki organiczne mogą zakłócać eksperymenty. W branży chemicznej stosowanie tej metody jest zgodne z najlepszymi praktykami, ponieważ nie tylko efektywnie usuwa osady, ale również minimalizuje ryzyko kontaminacji kolejnych prób. Ponadto, zgodnie z normami bezpieczeństwa, osoby pracujące z mieszanką chromową powinny stosować odpowiednie środki ochrony osobistej oraz przestrzegać zasad dotyczących zarządzania odpadami chemicznymi, aby zminimalizować wpływ na środowisko. Właściwe korzystanie z mieszaniny chromowej jest kluczowe dla osiągnięcia wysokiej jakości wyników w laboratoriach badawczych.

Pytanie 3

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. umożliwiają równomierne wrzenie cieczy
B. przyspieszają proces wrzenia cieczy
C. przyspieszają przebieg destylacji
D. obniżają temperaturę wrzenia cieczy
Odpowiedzi, które sugerują, że kamyczki wrzenne przyspieszają proces destylacji, przyspieszają wrzenie cieczy lub obniżają temperaturę wrzenia, opierają się na nieporozumieniach dotyczących mechanizmów zachodzących podczas tego procesu. Kamyczki wrzenne nie mają właściwości, które mogłyby przyspieszyć samego procesu destylacji; ich zadaniem jest raczej stabilizowanie procesu wrzenia. Stosowanie kamyczków wrzennych sprzyja równomiernemu rozkładowi ciepła w cieczy, co zapobiega tworzeniu się dużych bąbelków pary, które mogą prowadzić do niekontrolowanego wrzenia, znanego jako „bum wrzenia”. Ponadto, stwierdzenie, że kamyczki obniżają temperaturę wrzenia cieczy, jest błędne, ponieważ temperatura wrzenia substancji jest określona przez jej właściwości fizykochemiczne, a nie przez obecność kamyczków. Te niepoprawne odpowiedzi mogą prowadzić do mylnych wniosków, szczególnie w kontekście projektowania procesów chemicznych, gdzie precyzyjne zrozumienie dynamiki wrzenia jest kluczowe. W rzeczywistości, stosowanie kamyczków wrzennych ma na celu raczej poprawienie efektywności i bezpieczeństwa procesu destylacji, a nie jego przyspieszanie, co jest ważne w przemysłowych zastosowaniach destylacji, zwłaszcza w sektorze chemicznym i farmaceutycznym.

Pytanie 4

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi do badań
B. czystymi spektralnie
C. czystymi
D. czystymi chemicznie
Wybór innych odpowiedzi może wynikać z błędnego zrozumienia terminów związanych z czystością chemiczną. Odpowiedź 'spektralnie czyste' odnosi się specjalnie do odczynników, które muszą spełniać dodatkowe wymogi dotyczące czystości w kontekście analiz spektroskopowych. W takim przypadku czystość nie wystarcza, aby zapewnić dokładność wyników, ponieważ zanieczyszczenia mogą wpływać na widmo emitowane przez próbkę, co jest kluczowe w spektroskopii. Natomiast odpowiedź 'czyste do analiz' sugeruje, że odczynniki te są przygotowane do konkretnego zastosowania analitycznego, ale niekoniecznie spełniają wymagania dotyczące czystości chemicznej. Z kolei odpowiedź 'chemicznie czyste' jest zbyt ogólna, ponieważ nie określa konkretnego zakresu czystości, który jest szczególnie istotny w analizach laboratoryjnych. Często w praktyce laboratoria posługują się wytycznymi dotyczącymi czystości, które mogą być różne w zależności od zastosowania, a nieprzestrzeganie tych standardów może prowadzić do fałszywych wyników i nieefektywności badań. Dlatego znajomość terminologii i standardów jest kluczowa w pracy laboratoryjnej.

Pytanie 5

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. mydlanego roztworu
B. stężonego kwasu siarkowego(VI) technicznego
C. piasku oraz ściernych detergentów
D. alkoholowego roztworu NaOH
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 6

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru n<sub>sp</sub> = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m<sup>3</sup>. Wartość n<sub>sp</sub> zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.<br> Dlatego dla objętości V = 4900 m<sup>3</sup>, n<sub>sp</sub> wynosi

A. 35
B. 30
C. 12
D. 70
Niepoprawne odpowiedzi wskazują na nieporozumienia dotyczące zasad pobierania próbek nawozów oraz zastosowania odpowiednich wzorów obliczeniowych. Odpowiedzi takie jak 12, 35, czy 70, wynikają z błędnych założeń. Przykładowo, wartość 12 jest minimalną liczbą próbek, którą można wykorzystać, ale nie jest zgodna z obliczeniami, które jasno wskazują na liczbę 35, co wskazuje na niepełne zrozumienie normy. Z kolei odpowiedzi 35 i 70 ignorują regulacje dotyczące maksymalnej wartości n<sub>sp</sub>, która wynosi 30. Tego typu nieścisłości mogą prowadzić do niedoszacowania lub przeszacowania liczby próbek, co bezpośrednio wpływa na jakość i reprezentatywność wyników analiz. Ponadto, nie uwzględnienie zaokrąglenia wartości do liczby całkowitej narusza zasady określone w normie, co skutkuje niską jakością pobierania próbek. W praktyce, nieprawidłowe podejście do obliczeń może prowadzić do błędnych wniosków dotyczących skuteczności stosowanych nawozów, co ma wpływ na decyzje agronomiczne i strategie zarządzania glebą. Zrozumienie tych zasad jest kluczowe dla zapewnienia jakości analiz i wspierania decyzji w zakresie upraw rolnych.

Pytanie 7

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. mieszaniną kwasów azotowego(V) oraz solnego
B. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
C. stężonym kwasem azotowym(V)
D. rozcieńczonym kwasem azotowym(V)
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 8

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. techniczny
B. czysty do analizy
C. spektralnie czysty
D. czysty
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 9

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
B. Pobranie nadmiernej liczby próbek pierwotnych
C. Transport próbki mleka w temperaturze 30°C
D. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 10

Fragment procedury analitycznej<br> (...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm<sup>3</sup>, dodaj 5 cm<sup>3</sup> roztworu tiocyjanianu potasu oraz 10 cm<sup>3</sup> alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.<br> Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm<sup>3</sup>(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Ciągłej ciało stałe – ciecz
B. Okresowej ciało stałe – ciecz
C. Ciągłej ciecz – ciecz
D. Okresowej ciecz – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 11

Aby zebrać próbki gazów, wykorzystuje się

A. miarki cylindryczne
B. detektory gazów
C. butelki z plastikowym wieczkiem
D. aspiratory
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 12

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. parownica z łyżeczką porcelanową
B. moździerz z tłuczkiem
C. krystalizator ze szpatułką metalową
D. zlewka z bagietką
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 13

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. prostą
B. kulistą
C. palcową
D. spiralną
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 14

Aby przygotować 250 cm<sup>3</sup> roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 0,35 g KOH
B. 3,5 g KOH
C. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
D. 35,0 g KOH
Jak obliczamy masę potrzebną do przygotowania roztworu KOH, można się pomylić i wyjść z błędnymi wynikami. Przykładowo, 0,35 g KOH albo 14,0 g KOH to typowe błędy, które zwykle wynikają z niedokładnych obliczeń lub złego zrozumienia, co to jest molowość. Dla 0,35 g KOH może chodzić o to, że ktoś pomylił jednostki i myślał, że stężenie podaje w miligramach zamiast gramach. A 14,0 g KOH? Jasne, że to jest za dużo przy naszym stężeniu. Czasem zapominamy też przeliczyć centymetry sześcienne na litry, co prowadzi do fatalnych wyników. Niektórzy mogą mieć problem z masami molowymi, co skutkuje zupełnie nieprzemyślanymi wnioskami. W laboratoriach dokładność jest megaważna, bo nawet małe błędy w obliczeniach mogą zmienić wyniki całych eksperymentów. Trzeba naprawdę pilnować, żeby nie było takich pomyłek, bo w chemii może to kosztować mnóstwo niepotrzebnych kłopotów.

Pytanie 15

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. stałe, niepalne
B. stałe, palne
C. toksyczne, palne
D. bardzo toksyczne, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 16

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl<br> 0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm<sup>3</sup> w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.<br> Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
B. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
C. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
D. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.

Pytanie 17

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. manometr
B. piknometr
C. areometr
D. waga hydrostatyczna
Piknometr, areometr i waga hydrostatyczna to przyrządy, które mają na celu pomiar gęstości cieczy, każdy z nich w nieco inny sposób. Piknometr jest naczyniem o znanej objętości, które umożliwia dokładny pomiar masy cieczy, co pozwala na obliczenie gęstości przez zastosowanie prostego wzoru. Areometr, z kolei, działa na zasadzie pływania w cieczy, gdzie głębokość zanurzenia jest proporcjonalna do gęstości cieczy, co ułatwia pomiar w praktycznych sytuacjach, takich jak kontrola stężenia roztworów. Waga hydrostatyczna stosuje zasadę Archimedesa do pomiaru masy cieczy w powietrzu i w wodzie, dostarczając precyzyjnych informacji o gęstości. Wybór niewłaściwego przyrządu, jak manometr, do pomiaru gęstości może prowadzić do błędnych wniosków oraz problemów operacyjnych w laboratoriach i zakładach przemysłowych. Manometr, skonstruowany do pomiaru ciśnienia, nie dostarcza informacji o masie ani objętości cieczy, co jest kluczowe do wyznaczenia gęstości. Dlatego ważne jest, aby dobrze znać funkcje poszczególnych przyrządów i ich zastosowanie w określonych kontekstach pomiarowych, aby uniknąć nieporozumień i błędów w analizach chemicznych oraz fizycznych.

Pytanie 18

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę podnieść
B. zmniejszyć, a temperaturę podnieść
C. zwiększyć, a temperaturę zmniejszyć
D. zmniejszyć, a temperaturę obniżyć
W odpowiedziach, gdzie sugerujesz zmniejszenie stężenia substratów lub obniżenie temperatury, nie bierzesz pod uwagę podstawowych zasad chemii. Zmniejszając stężenie, zmniejszasz liczbę cząsteczek do reakcji, co mocno obniża szanse na zderzenie. W zasadzie, im wyższe stężenie reagentów, tym lepsza szybkość reakcji, według prawa zachowania masy. Obniżenie temperatury też działa na niekorzyść, bo zmniejsza energię kinetyczną cząsteczek, co spowalnia reakcje. To szczególnie widać w reakcjach enzymatycznych, gdzie enzymy najlepiej działają w określonych temperaturach. Nieodpowiednie zarządzanie temperaturą i stężeniem może wyjść nam bokiem w przemyśle, bo zwiększa koszty produkcji i wpływa na jakość końcowego produktu. W sumie, rozumienie optymalizacji warunków reakcji to kluczowa sprawa w projektowaniu tych reakcji chemicznych.

Pytanie 19

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. rękawic odpornych na kwasy, maski ochronnej
B. okularów ochronnych, rękawic lateksowych, maski ochronnej
C. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
D. fartucha, okularów ochronnych, rękawic odpornych na kwasy
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 20

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 185 °C - 190 °C
B. 175 °C - 179 °C
C. 181 °C - 185 °C
D. 178 °C - 182 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 21

Jaką substancję należy koniecznie oddać do utylizacji?

A. Chromian(VI) potasu
B. Glukoza
C. Sodu chlorek
D. Gliceryna
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 22

Którego z poniższych naczyń laboratoryjnych <u><strong>nie powinno się używać</strong></u> do podgrzania 100 cm<sup>3</sup>wody?

A. Zlewki o pojemności 200 cm3
B. Kolby stożkowej o pojemności 200 cm3
C. Zlewki o pojemności 150 cm3
D. Kolby miarowej o pojemności 100 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 23

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. degradacja termiczna
B. chłonięcie wody
C. utrata lotnych składników
D. rozpad promieniotwórczy
Przechowywanie pobranych próbek laboratoryjnych w lodówce jest kluczowym procesem, gdyż zapobiega degradacji termicznej, która może prowadzić do nieodwracalnych zmian w składzie chemicznym analitów. Degradacja termiczna zachodzi, gdy próbki są narażone na podwyższone temperatury, co może powodować denaturację białek, rozkład enzymów, a także zmiany w składzie chemicznym substancji czynnych. Przechowywanie w lodówce (zwykle w temperaturze 2-8°C) zapewnia stabilność wielu związków, co jest niezbędne w badaniach analitycznych. Przykładowo, próbki krwi, moczu czy tkanek biologicznych często wymagają przechowywania w chłodnych warunkach, aby zminimalizować ryzyko degradacji. Standardy takie jak ISO 15189 dla laboratoriów medycznych podkreślają istotność odpowiednich warunków przechowywania próbek, co jest niezbędne dla uzyskania wiarygodnych wyników analiz. Właściwe przechowywanie nie tylko chroni próbki, ale również zwiększa dokładność wyników badań, co jest kluczowe dla diagnostyki i dalszego leczenia pacjentów.

Pytanie 24

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. rozpuszczanie i rozcieńczanie
C. wymywanie lub wymianę jonową
D. mineralizację suchą
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 25

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. niebieski
B. czerwony
C. fioletowy
D. malinowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 26

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm<sup>3</sup>?

A. 6,30 mol/dm3
B. 5,30 mol/dm3
C. 3,49 mol/dm3
D. 3,60 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 27

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. wodnych roztworów kwasów
B. wskaźników
C. wzorców
D. rozpuszczalników do chromatografii
Wybór wzorców, wskaźników czy rozpuszczalników do chromatografii jako odczynników o specjalnym przeznaczeniu opiera się na niepełnym zrozumieniu ich funkcji w kontekście analizy chemicznej. Wzorce chemiczne są niezbędne do kalibracji instrumentów oraz zapewnienia dokładności pomiarów, co jest podstawą każdej analizy. Użycie wzorców o odpowiedniej czystości i znanym składzie jest kluczowe dla uzyskania wiarygodnych wyników. Wskaźniki, takie jak fenoloftaleina czy oranż metylowy, mają kluczowe znaczenie w reakcjach titracyjnych, gdzie zmiana koloru sygnalizuje osiągnięcie punktu końcowego i umożliwia precyzyjne określenie stężenia substancji. Rozpuszczalniki do chromatografii są istotne, jako że ich właściwości wpływają na skuteczność separacji składników w próbce. Wybierając niewłaściwą odpowiedź, można przeoczyć rolę, jaką odczynniki o specjalnym przeznaczeniu odgrywają w osiąganiu wysokiej jakości wyników eksperymentalnych. W praktyce laboratoryjnej kluczowe jest zrozumienie, które substancje są stosowane do konkretnych celów, co może wpłynąć na jakość i powtarzalność wyników analizy. Dlatego ważne jest, aby nie mylić ogólnych roztworów z substancjami o specjalistycznym zastosowaniu, co może prowadzić do błędów w analizie i interpretacji danych.

Pytanie 28

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. przed połączeniem nałożyć na szlify glicerynę
B. dokładnie oczyścić i osuszyć sprzęt
C. przed połączeniem wypłukać szlify acetonem
D. przed połączeniem nałożyć na szlify wazelinę
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 29

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór szczawianu potasu
B. uniwersalny papierek wskaźnikowy
C. roztwór azotanu srebra
D. roztwór chlorku baru
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 30

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, koncentrację i numer katalogowy
B. koncentrację, producenta i wykaz zanieczyszczeń
C. koncentrację, ostrzeżenia H oraz datę przygotowania
D. masę, datę przygotowania i numer katalogowy
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 31

Aby przygotować 500 cm<sup>3</sup> roztworu KMnO<sub>4</sub> (M = 158 g/mol) o stężeniu 0,02 mol/dm<sup>3</sup>, ile należy zważyć?

A. 15,8 g KMnO4
B. 7,95 g KMnO4
C. 3,16 g KMnO4
D. 1,58 g KMnO4
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów dotyczących obliczeń chemicznych. Często popełnianym błędem jest mylenie jednostek objętości; na przykład, jeżeli ktoś obliczał masę KMnO4 dla 500 cm³, ale nie przeliczył tej wartości na dm³, może to prowadzić do znaczących pomyłek. Warto pamiętać, że 500 cm³ to 0,5 dm³, co jest kluczowe dla poprawności obliczeń. Dodatkowo, nieprawidłowy wybór jednostek stężenia, jak np. użycie stężenia masowego zamiast molowego, może wprowadzić w błąd. Innym typowym błędem jest pominięcie mocy molowej, co prowadzi do przeszacowania lub niedoszacowania wymaganej masy substancji. W kontekście przygotowywania roztworów, zgodność z normami oraz dobrymi praktykami laboratoryjnymi jest kluczowa. Na przykład, nieodpowiednia masa może wpłynąć na wyniki analizy, co w konsekwencji prowadzi do błędnych wniosków. Dlatego zawsze zaleca się staranność i dokładność w obliczeniach oraz stosowanie odpowiednich jednostek. To nie tylko zwiększa precyzję, ale i pozwala uniknąć kosztownych pomyłek w dalszych etapach badań chemicznych.

Pytanie 32

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 11,2 dm3
B. 2,24 dm3
C. 22,4 dm3
D. 4,48 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 33

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 100%
B. 0,1%
C. 10%
D. 1%
Stwierdzenia, że błąd względny wynosi 1%, 100% lub 0,1% są wynikiem nieprawidłowego rozumienia definicji błędu względnego oraz jego obliczania. Błąd względny jest proporcjonalny do stosunku błędu pomiaru do wartości mierzanej, co w omawianym przypadku oznacza, że jeżeli mamy wagę z dokładnością 0,1 g, to w kontekście próbki o masie 1 g, maksymalny błąd pomiaru wynosi 0,1 g. Obliczając błąd względny, musimy uwzględnić, iż 0,1 g to 10% z 1 g, co jest kluczowym aspektem w analizie wyników. Odpowiedzi takie jak 1% sugerują, że badacz błędnie oblicza proporcję błędu do całkowitej wagi próbki, co może prowadzić do poważnych konsekwencji w analizach laboratoryjnych. Odpowiedź 100% jest całkowicie mylna, ponieważ błędy pomiaru nie mogą przekraczać wartości mierzonych. Ostatnia opcja, 0,1%, jest wprowadzająca w błąd, ponieważ nie uwzględnia rzeczywistego stosunku błędu do wartości mierzonych. W zakresie kontroli jakości oraz walidacji metod pomiarowych, kluczowe jest posługiwanie się poprawnymi definicjami i wzorami, aby zapewnić dokładność i wiarygodność wyników analitycznych.

Pytanie 34

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. twarde
B. rzadkie
C. bardzo gęste
D. średnio gęste
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.

Pytanie 35

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. tlenek cynku i wodorotlenek sodu
B. chlorek cynku i wodorotlenek sodu
C. chlorek cynku i wodę
D. cynk i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 36

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słaby kwas
B. mieszaninę chromową
C. słabą zasadę
D. gorącą wodę
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 37

Rozpuszczalność siarczanu(VI) potasu przy temperaturze 30oC wynosi 13 g na 100 g wody. Jaką masę tego związku należy dodać do wody, aby uzyskać 500 g roztworu nasyconego?

A. 65,0 g
B. 52,0 g
C. 57,5 g
D. 74,4 g
Wybór innej odpowiedzi może wynikać z nieporozumienia w zakresie obliczeń dotyczących rozpuszczalności oraz stężenia roztworu. Zrozumienie tego zagadnienia wymaga uwzględnienia kluczowych zasad chemii, a zwłaszcza proporcji, które rządzą rozpuszczalnością substancji. Na przykład, jeżeli ktoś wybrał masę 65,0 g, mógł błędnie założyć, że całkowita masa roztworu równa się sumie masy rozpuszczonego solutu i masy wody, ale nie uwzględnił faktu, że masa wody musi być większa, aby osiągnąć nasycenie. Osoby, które wybierają 52,0 g, mogą myśleć, że wystarczająca ilość soli została dodana, nie zdając sobie sprawy z tego, że nie osiągną one wymaganej nasycenia roztworu. Dodatkowo, wybór 74,4 g jest również niepoprawny, ponieważ przekracza to ilość siarczanu, która mogłaby rozpuścić się w 500 g roztworu w temp. 30°C, co prowadzi do nadmiaru substancji rozpuszczonej, a tym samym do błędnych wniosków dotyczących stężenia. W związku z tym, kluczowe jest zrozumienie proporcji w kontekście rozpuszczalności oraz umiejętność przeprowadzania obliczeń, aby prawidłowo obliczać ilości składników potrzebnych do uzyskania właściwego roztworu nasyconego. Edukacja w obszarze chemii jest kluczowa, aby unikać typowych błędów i wprowadzać precyzyjne dane do praktyki laboratoryjnej.

Pytanie 38

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 1:2
B. 2:1
C. 1:1
D. 3:7
Patrząc na błędne odpowiedzi, widać, że spora część osób myli proporcje, co prowadzi do złych obliczeń stężenia. Na przykład przy stężeniu 2:1, można pomyśleć, że większa ilość 30% jakoś zrekompensuje jego mniejsze stężenie, ale to jest w sumie błąd. Mieszanie w takim stosunku da zbyt niskie stężenie etanolu, bo mniejsza ilość roztworu 70% nie podniesie go do 50%. Inny typowy błąd to myślenie, że stosunek 1:2 da dobrego miksu, ale to też za dużo 70%, co sprawi, że końcowe stężenie będzie powyżej 50%. Niektórzy mylą mieszanie z obliczaniem średnich, a to w kontekście stężeń nie ma sensu, bo nie uwzględniają różnicy w stężeniach. Kluczem przy takich obliczeniach jest zrozumienie, że musimy znaleźć równowagę w mieszaniu różnych stężeń, żeby uzyskać pożądaną wartość średnią, a to wymaga znajomości zasad chemii i matematyki. Przygotowywanie roztworów o określonych stężeniach jest codziennością w laboratoriach chemicznych oraz w przemyśle, gdzie precyzja jest mega ważna.

Pytanie 39

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
B. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
C. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
D. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
Wybór innych opcji może wynikać z nieporozumienia dotyczącego obliczeń związanych z przygotowaniem roztworów. W szczególności, w przypadku pierwszej odpowiedzi zakłada się, że do sporządzenia 0,5 dm3 roztworu potrzeba dwóch fiksanalów, co jest nieuzasadnione. Każda kolba miarowa powinna być używana indywidualnie, a liczba moli nie wymaga podziału na dwa fiksanale, ponieważ wystarczy przygotować jeden o odpowiedniej objętości. Kolejna odpowiedź błędnie sugeruje, że do sporządzenia roztworu o stężeniu 0,2 mol/dm3 potrzeba fiksanalu o stężeniu 0,1 mola, co również jest mylące. Stężenie 0,1 mola odpowiadałoby roztworowi o niższym stężeniu, a nie wymaganym stężeniu 0,2 mol/dm3. Ostatnia niepoprawna opcja podaje, że do sporządzenia 0,5 dm3 roztworu wystarczy fiksanal o stężeniu 0,2 mola, co może prowadzić do pomyłki, ponieważ taka ilość HCl przekroczyłaby potrzebną ilość do uzyskania 0,5 dm3 roztworu o stężeniu 0,2 mol/dm3. Modelując takie obliczenia, kluczowe jest zrozumienie, że każdy roztwór musi być przygotowany z uwzględnieniem odpowiednich proporcji molowych, aby uniknąć błędów i zapewnić bezpieczeństwo w laboratorium.

Pytanie 40

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm<sup>3</sup> roztworu HCl o stężeniu 0,2 mol/dm<sup>3</sup>?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
B. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
C. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
D. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.