Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 6 marca 2025 15:41
  • Data zakończenia: 6 marca 2025 16:40

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 5 lat
B. 6 lat
C. 8 lat
D. 4 lata
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
B. Kierownik grupy mechaników
C. Operator tej maszyny
D. Każdy pracownik na pisemne zlecenie pracodawcy
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar napięcia zasilania
B. Pomiar rezystancji uzwojeń stojana
C. Sprawdzenie stanu ochrony przeciwporażeniowej
D. Rozruch próbny urządzenia
Pomiar napięcia zasilania jest kluczowym elementem diagnostyki silników elektrycznych, jednak nie należy go klasyfikować jako badanie eksploatacyjne silnika w kontekście jego wewnętrznej analizy. W badaniach eksploatacyjnych koncentrujemy się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia czy ochrona przeciwporażeniowa. Pomiar rezystancji uzwojeń stojana pozwala na określenie stanu izolacji, a rozruch próbny urządzenia jest niezbędny do oceny jego wydajności i funkcjonalności. Podobnie, sprawdzenie stanu ochrony przeciwporażeniowej jest istotne dla zapewnienia bezpieczeństwa użytkowania. Pomiar napięcia zasilania, choć istotny, dotyczy warunków zewnętrznych, które nie wpływają bezpośrednio na wewnętrzny stan silnika, dlatego ta czynność nie jest częścią badań eksploatacyjnych silnika elektrycznego w węższym ujęciu.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. mostek Thomsona
B. mostek Wheatstone'a
C. amperomierz i woltomierz
D. omomierz oraz woltomierz
Prawidłowa odpowiedź to wykorzystanie amperomierza i woltomierza do pomiaru rezystancji metodą techniczną. Pomiar rezystancji w tym przypadku opiera się na zasadzie Ohma, według której rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I), czyli R = U/I. Amperomierz służy do pomiaru natężenia prądu płynącego przez obwód, natomiast woltomierz mierzy spadek napięcia na rezystorze. Dzięki temu można uzyskać dokładne wartości rezystancji, które są istotne w różnych zastosowaniach, od projektowania obwodów elektronicznych po diagnostykę sprzętu elektrycznego. Zastosowanie tej metody pomiarowej jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ zapewnia dokładność i wiarygodność wyników. Warto również zaznaczyć, że metody techniczne pomiaru rezystancji powinny być stosowane w odpowiednich warunkach, aby uniknąć błędów pomiarowych, takich jak zakłócenia elektromagnetyczne czy niewłaściwe ustawienia urządzeń pomiarowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O przekroju dwa razy mniejszym, połączonymi szeregowo
B. O przekroju dwa razy mniejszym, połączonymi równolegle
C. O średnicy dwa razy mniejszej, połączonymi równolegle
D. O średnicy dwa razy mniejszej, połączonymi szeregowo
Odpowiedź, która sugeruje użycie drutu o przekroju dwa razy mniejszym, połączonym równolegle, jest prawidłowa ze względu na zasadę zachowania impedancji w transformatorach. Gdy zmniejszamy pole przekroju poprzecznego drutu nawojowego, zwiększa się jego oporność, co negatywnie wpływa na zdolność przewodzenia prądu. Aby zrekompensować tę utratę, łączenie dwóch lub więcej drutów równolegle pozwala na zwiększenie efektywnej powierzchni przekroju poprzecznego, co przeciwdziała wzrostowi oporności. W praktyce takie podejście jest zgodne z normami stosowanymi w rewitalizacji transformatorów, gdzie zachowanie parametrów elektrycznych jest kluczowe dla ich dalszego funkcjonowania. Dodatkowo, przy odpowiednim doborze materiałów izolacyjnych oraz średnicy drutów, można uzyskać wydajność bliską oryginalnym wartościom. Przykładem może być przezwojenie transformatora w elektrowniach, gdzie zastosowanie drutów o mniejszych średnicach, połączonych równolegle, skutkuje poprawą funkcjonowania urządzenia, a także wpływa na obniżenie kosztów materiałów. Takie praktyki są szeroko przyjęte w branży, co potwierdzają liczne publikacje i normy techniczne.

Pytanie 13

Prąd ustawczy przekaźnika termobimetalowego, chroniącego silnik pompy wody, o prądzie znamionowym In = 10 A nie może być większy niż

A. 9,50 A
B. 10,50 A
C. 11,00 A
D. 10,10 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ zgodnie z zasadami działania przekaźników termobimetalowych, ich prąd nastawczy powinien być dostosowany do wartości znamionowej urządzenia, które ma zabezpieczać. W tym przypadku, dla przekaźnika zabezpieczającego silnik pompy o prądzie znamionowym In = 10 A, wartość prądu nastawczego powinna być ustawiona na wartość nieprzekraczającą 11,00 A. Umożliwia to zapewnienie odpowiedniego zabezpieczenia w przypadku przeciążenia silnika, ponieważ pozwala na zachowanie marginesu bezpieczeństwa. W praktyce, taka regulacja jest kluczowa, aby uniknąć uszkodzenia silnika oraz samego przekaźnika. Warto również zaznaczyć, że branżowe standardy, takie jak IEC 60947, podkreślają znaczenie odpowiedniego ustawienia wartości prądowych dla zapewnienia bezpiecznego i niezawodnego działania urządzeń. Przykładowo, w przypadku, gdy prąd nastawczy byłby zbyt niski, mogłoby dojść do fałszywego wyzwolenia przekaźnika, co prowadziłoby do niepotrzebnych przestojów maszyny. Z drugiej strony, ustawienie zbyt wysokiego prądu mogłoby nie zabezpieczyć silnika przed realnym przeciążeniem. Dlatego też, 11,00 A jest wartością optymalną, gwarantującą nie tylko bezpieczeństwo, ale również efektywność operacyjną systemu.

Pytanie 14

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Przerwa w przewodzie ochronnym w sieci zasilającej.
B. Wzrost wartości napięcia z sieci zasilającej.
C. Brak jednej z faz zasilania.
D. Zwiększenie częstotliwości napięcia zasilającego.
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 15

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA

A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 16

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Amperomierz oraz licznik
B. Woltomierz i amperomierz
C. Woltomierz oraz omomierz
D. Waromierz oraz amperomierz
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-S
B. TT
C. IT
D. TN-C
Wybór układów TT, TN-S i IT jako potencjalnych odpowiedzi na pytanie może wynikać z niewłaściwego zrozumienia zasad ochrony przeciwporażeniowej oraz działania wyłączników różnicowoprądowych. W systemie TT, neutralny przewód jest oddzielony od przewodu ochronnego. W przypadku uszkodzenia, WRP może skutecznie wykryć prąd upływowy, co pozwala na szybką reakcję i odłączenie obwodu. Podobnie w układzie TN-S, gdzie przewody PE i N są oddzielone, WRP działa właściwie, zapewniając ochronę przed porażeniem elektrycznym. W systemie IT, brak uziemienia w przewodzie neutralnym sprawia, że WRP również może działać, jednakże wymaga to specyficznego nadzoru i dodatkowych mechanizmów zabezpieczeń. Osoby myślące, że WRP można stosować w każdym typie sieci, mogą nie rozumieć, że jego skuteczność zależy od prawidłowego uziemienia oraz separacji obwodów. Ostatecznie, kluczem do bezpieczeństwa w systemach elektrycznych jest nie tylko zastosowanie odpowiednich urządzeń zabezpieczających, ale również właściwe projektowanie i wykonawstwo instalacji elektrycznych zgodnie z aktualnymi normami i standardami, takimi jak PN-IEC 60364.

Pytanie 19

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Przeglądy wymagające demontażu
B. Zarządzanie czasem pracy
C. Włączanie i wyłączanie
D. Oględziny wymagające demontażu
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 400 mA
B. 100 mA
C. 500 mA
D. 200 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 22

Jakiego typu obudowę ma urządzenie elektryczne oznaczone na tabliczce znamionowej symbolem IP001?

A. Wodoszczelną
B. Głębinową
C. Zamkniętą
D. Otwartą
Obudowa oznaczona symbolem IP001 wskazuje, że urządzenie ma otwartą konstrukcję, co oznacza, że nie jest przystosowane do ochrony przed wnikaniem wody ani ciał stałych. W standardzie IP (Ingress Protection) pierwsza cyfra, w tym przypadku '0', oznacza brak ochrony przed ciałami stałymi, zaś druga cyfra, '1', oznacza ograniczoną ochronę przed wodą. W praktyce oznacza to, że urządzenie jest przeznaczone do zastosowania w suchych pomieszczeniach, gdzie nie ma ryzyka kontaktu z wodą. Tego typu obudowy są często stosowane w urządzeniach elektronicznych, które nie wymagają specjalnej ochrony, takich jak niektóre modele komputerów, sprzętu biurowego lub urządzeń domowych. Zrozumienie klasyfikacji IP jest kluczowe dla odpowiedniego doboru urządzeń do zastosowań w różnych warunkach otoczenia oraz dla zapewnienia ich długotrwałego i bezpiecznego działania.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu uzwojeń stojana
B. intensywności pola magnetycznego
C. oporu rdzenia stojana
D. okresu jego działania
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 25

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
B. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
C. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
D. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 26

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 344 C-20-30-AC
C. P 304 25-30-AC
D. P 302 25-30-AC
Wyłącznik różnicowoprądowy P 312 B-16-30-AC jest odpowiednim wyborem do zabezpieczania obwodów gniazd wtyczkowych w instalacji jednofazowej 230 V/50 Hz. Oznaczenie to wskazuje na jego zdolność do detekcji prądów upływowych i jednoczesne zabezpieczenie przed przeciążeniami oraz zwarciami. W szczególności litera 'B' oznacza, że urządzenie jest przystosowane do obciążeń indukcyjnych, co czyni je idealnym w wielu zastosowaniach domowych oraz biurowych, gdzie używane są urządzenia elektryczne z silnikami. Warto również zwrócić uwagę na wartość prądu różnicowego, która wynosi 30 mA, co jest zgodne z normami bezpieczeństwa, zgodnie z dyrektywą 2014/35/UE. Użycie tego wyłącznika przyczynia się do zwiększenia bezpieczeństwa użytkowników, minimalizując ryzyko porażenia prądem, co powinno być priorytetem w każdym projekcie elektrycznym. Zastosowanie wyłączników różnicowoprądowych w takim obwodzie jest nie tylko najlepszą praktyką, ale także wymogiem wielu norm budowlanych i elektrycznych, co czyni je kluczowymi elementami nowoczesnych instalacji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1

Ilustracja do pytania
A. przerwie w uzwojeniu VI - V2
B. zwarciu międzyzwojowym w uzwójeniu V1 - V2
C. przerwie w uzwojeniu Wl - W2
D. zwarciu międzyzwojowym w uzwojeniu Ul - U2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 50 V
B. 220 V
C. 110 V
D. 70 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Zmniejszyć średnicę przewodów kabla WLZ
B. Pozostawić instalację zasilającą bez zmian
C. Zwiększyć średnicę przewodów w instalacji wewnętrznej
D. Zwiększyć średnicę przewodów kabla WLZ
Jak spojrzysz na te wartości, to suma spadków napięć w układzie TN-S, która wynosi 9 V przy napięciu znamionowym 230 V, jest w porządku. To mniej niż 5% dla obwodów oświetleniowych i jakieś 3% dla siłowych, więc nie ma potrzeby, by wprowadzać zmiany w instalacji. Chociaż warto czasem rzucić okiem na te spadki, bo bezpieczeństwo urządzeń to ważna sprawa. Jeśli spadki zaczynają być większe, to warto pomyśleć o zwiększeniu przekroju przewodów, ale w tej sytuacji nie ma takiej potrzeby. Wiesz, jak się montuje silniki elektryczne, to tam kluczowe jest, by kable były dobrze dobrane, żeby nie tracić energii. Normy PN-IEC 60364 to dobry punkt wyjścia do sprawdzenia, czy wszystko jest zrobione jak należy.

Pytanie 33

Jaki jest minimalny stopień zabezpieczenia sprzętu oraz osprzętu używanego na placach budowy?

A. IP 55
B. IP 44
C. IP 67
D. IP 35
Odpowiedź IP 44 jest prawidłowa, ponieważ oznacza ona, że sprzęt i osprzęt instalacyjny są chronione przed ciałami stałymi o średnicy większej niż 1 mm oraz przed wodą, która będzie miała wpływ na działanie urządzenia w ograniczonym stopniu. To szczególnie ważne na placach budowy, gdzie sprzęt narażony jest na pył, brud oraz wilgoć. W praktyce oznacza to, że urządzenia z klasą IP 44 mogą być używane w warunkach, gdzie może wystąpić kontakt z wodą, na przykład w przypadku deszczu. Taki stopień ochrony jest zalecany w normach ISO oraz IEC, które regulują bezpieczeństwo i niezawodność urządzeń elektrycznych. W kontekście budowy, zastosowanie takich urządzeń minimalizuje ryzyko awarii, a także zapewnia bezpieczeństwo użytkowników i personelu. Przykładem mogą być skrzynki elektryczne, które są używane do zasilania narzędzi i maszyn na otwartej przestrzeni, gdzie ochrona przed wodą i kurzem jest kluczowa dla ich prawidłowego funkcjonowania.

Pytanie 34

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. spisu terminów oraz zakresów prób i pomiarów kontrolnych
B. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. opisu doboru urządzeń zabezpieczających
D. specyfikacji technicznej instalacji
Opis doboru urządzeń zabezpieczających nie jest konieczny w instrukcji eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowo-prądowymi, ponieważ taki dobór powinien być już wykonany na etapie projektowania instalacji. Instrukcja eksploatacji koncentruje się na użytkowaniu oraz utrzymaniu instalacji, nie zaś na jej projektowaniu. W praktyce oznacza to, że wszystkie istotne decyzje dotyczące doboru wyłączników, takich jak typ, charakterystyka oraz zasady działania, powinny być przedstawione w dokumentacji projektowej, zgodnie z normami takimi jak PN-IEC 60947-2, które regulują zasady stosowania urządzeń zabezpieczających. Przykładem może być sytuacja, w której instalacja elektryczna już funkcjonuje i wymaga okresowych przeglądów – w takim przypadku istotne jest, aby instrukcja eksploatacji zawierała informacje o terminach przeglądów oraz zasadach ich przeprowadzania, a nie szczegóły dotyczące wcześniejszego doboru sprzętu. To pozwala na efektywne zarządzanie instalacją oraz zapewnia zgodność z przepisami BHP i normami technicznymi.

Pytanie 35

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zwarcie w obwodzie wirnika
B. Zbyt wysoka temperatura uzwojeń
C. Zadziałanie przekaźnika termicznego
D. Przepalony bezpiecznik topikowy w jednej z faz
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 36

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 4 000 Ω
B. Około 830 Ω
C. 2 000 Ω
D. Około 1660 Ω
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 37

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. YADYn
B. OMYp
C. YDYt
D. LYg
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 38

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Dwufazowa z wirnikiem klatkowym
B. Synchroniczna
C. Dwufazowa z wirnikiem kubkowym
D. Prądu stałego
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.