Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 30 maja 2025 08:03
  • Data zakończenia: 30 maja 2025 08:04

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. YDYp
B. LgY
C. YDY
D. DY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 2

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 3

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 450/750 V
B. 100/100 V
C. 300/300 V
D. 300/500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 4

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Brak ochrony przed wilgocią i pyłem.
C. Najwyższy poziom ochrony.
D. Wykorzystanie separacji ochronnej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 5

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Stal
B. Aluminium
C. Brąz
D. Miedź

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 6

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Metoda ułożenia przewodów
B. Przekrój poprzeczny przewodów
C. Rodzaj materiału izolacyjnego
D. Długość zamontowanych przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Długość ułożonych przewodów nie ma bezpośredniego wpływu na dopuszczalną obciążalność długotrwałą przewodów w instalacji elektrycznej. Dopuszczalna obciążalność jest przede wszystkim związana z innymi parametrami, takimi jak przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów. Długość przewodów może wpływać na spadek napięcia w instalacji, ale nie zmienia zasadniczo obciążalności przewodów pod względem ich zdolności do przewodzenia prądu. W praktyce oznacza to, że przy zachowaniu odpowiednich standardów, takich jak normy PN-IEC 60364, można stosować dłuższe odcinki przewodów, o ile są one odpowiednio dobrane pod względem innych parametrów. Przykładowo, przy projektowaniu obwodów elektrycznych w budynkach mieszkalnych, istotniejsze jest zapewnienie odpowiedniego przekroju żył oraz zastosowanie właściwych materiałów izolacyjnych, aby zapewnić bezpieczeństwo i wydajność instalacji.

Pytanie 7

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. we wszystkich pomieszczeniach.
B. w łazienkach.
C. w holach.
D. w sypialniach.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 8

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, płaskoszczypce, pion, poziomica
B. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
C. Wiertarka, piła do cięcia, poziomica, wkrętarka
D. Cęgi do izolacji, pion, piła do cięcia, obcinaczki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 9

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. nałożenie oleju elektroizolacyjnego
B. zabezpieczenie klinami ochronnymi
C. wyłożenie izolacją żłobkową
D. nałożenie lakieru elektroizolacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe wyłożenie żłobków izolacją żłobkową przed umieszczeniem uzwojenia w silniku indukcyjnym jest kluczowe dla zapewnienia efektywności i bezpieczeństwa pracy silnika. Izolacja żłobkowa stanowi barierę między uzwojeniem a żłobkiem, chroniąc przed zwarciami oraz poprawiając trwałość elementów. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe lub poliuretanowe, uzyskujemy wysoką odporność na działanie wysokich temperatur i wilgoci. Przykładem zastosowania tych materiałów jest przemysł motoryzacyjny, gdzie silniki są narażone na ekstremalne warunki. Ponadto, zgodnie z normami IEC 60034 dotyczącymi silników elektrycznych, odpowiednia izolacja żłobków jest niezbędna do zachowania parametrów pracy silnika oraz spełnienia wymogów bezpieczeństwa. W praktyce, stosowanie wysokiej jakości izolacji przekłada się na mniejsze straty energii oraz wydłużenie żywotności silnika, co jest kluczowe z punktu widzenia efektywności kosztowej i ekologicznej.

Pytanie 10

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. prasę hydrauliczną
C. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
D. cęgi do zdejmowania izolacji oraz wkrętak

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 11

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. układu tablic informacyjnych i ostrzegawczych
C. doboru oraz oznaczenia przewodów
D. wartości natężenia oświetlenia w miejscach pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 12

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 16 mm2
B. 12 mm2
C. 10 mm2
D. 20 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 13

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. żółty
B. niebieski
C. szary
D. zielony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 14

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 3 szt.
B. 13 szt.
C. 6 szt.
D. 10 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 15

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 16

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Dwubiegunowy
B. Świecznikowy
C. Jednobiegunowy
D. Krzyżowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 17

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zwarcia w obwodzie elektrycznym
B. uszkodzenia podłączonego urządzenia elektrycznego
C. przeciążenia obwodu elektrycznego
D. zagrożenia porażeniem prądem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 18

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Weryfikacja braku zwarć międzyzwojowych
D. Pomiar rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 19

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 1 godzinę
B. 2 godziny
C. 4 godziny
D. 3 godziny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czas, przez jaki działa oświetlenie ewakuacyjne, powinien wynosić co najmniej 2 godziny. To ważne, żeby ludzie w budynku mogli bezpiecznie się ewakuować, gdy coś się dzieje, na przykład, gdy zasilanie przestaje działać. Są różne normy, takie jak EN 1838 czy PN-EN 50172, które określają te kwestie. W praktyce to oznacza, że światło ewakuacyjne musi świecić przez wystarczająco długi czas, żeby każdy mógł dotrzeć do wyjścia, zwłaszcza w dużych budynkach, gdzie można sporo przejść. Przykładem może być biurowiec, w którym regularnie sprawdzają oświetlenie ewakuacyjne, by mieć pewność, że wszystko działa jak trzeba. Regularna konserwacja tych systemów jest naprawdę ważna dla bezpieczeństwa całego budynku.

Pytanie 20

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. posiadająca uprawnienia SEP, co rok
B. przeszkolona, co 6 miesięcy
C. mająca uprawnienia SEP, co 6 miesięcy
D. przeszkolona, co rok

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że stacjonarne urządzenia różnicowoprądowe powinny być sprawdzane przez osobę przeszkoloną co sześć miesięcy, jest zgodna z obowiązującymi normami i najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony przed skutkami porażenia prądem. Osoby przeszkolone mają odpowiednią wiedzę na temat działania tych urządzeń, potrafią ocenić ich stan techniczny oraz zidentyfikować ewentualne problemy. Przykładowo, w przypadku stacjonarnych urządzeń różnicowoprądowych, takich jak wyłączniki różnicowoprądowe, regularne testowanie przycisku kontrolnego pozwala na upewnienie się, że urządzenie działa prawidłowo i jest w stanie zareagować na zwarcia lub inne niebezpieczne sytuacje. Zgodnie z normami, takimi jak PN-EN 60947-2, zaleca się przeprowadzanie takich kontroli co najmniej dwa razy w roku, co potwierdza konieczność przeszkolenia personelu odpowiedzialnego za te działania.

Pytanie 21

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Klasę III
B. Klasę I
C. Klasę II
D. Klasę 0

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Klasę I" jest prawidłowa, ponieważ symbol przedstawiony na zdjęciu jednoznacznie wskazuje na tę klasę ochronności. Klasa I opraw oświetleniowych charakteryzuje się tym, że są one wyposażone w uziemienie, co jest kluczowe dla bezpieczeństwa użytkowników. Uziemienie zapewnia, że w przypadku wystąpienia awarii, prąd będzie odprowadzany do ziemi, minimalizując ryzyko porażenia elektrycznego. W praktyce, oprawy tej klasy stosowane są w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w obiektach przemysłowych, gdzie warunki eksploatacji są trudniejsze. Warto zauważyć, że zgodnie z normą IEC 60598-1, wszystkie oprawy oświetleniowe klasy I muszą posiadać odpowiednie połączenie z przewodem ochronnym. W konsekwencji, stosowanie opraw klasy I w odpowiednich warunkach zwiększa bezpieczeństwo, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 22

Który przewód oznacza symbol PE?

A. Ochronno-neutralny
B. Ochronny
C. Uziemiający
D. Wyrównawczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 23

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji.
C. Chwilową moc obciążenia.
D. Prąd upływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 24

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. YKY
B. LNY
C. YDY
D. NYM

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód YKY jest specjalnie zaprojektowany do stosowania na zewnątrz budynków. Głównym atutem tego przewodu jest jego izolacja i powłoka ochronna, które zapewniają odporność na warunki atmosferyczne, takie jak deszcz, śnieg czy promieniowanie UV. Dzięki zastosowaniu polwinitowej izolacji oraz dodatkowej powłoki ochronnej, przewód YKY spełnia wymagania norm dotyczących instalacji zewnętrznych. Ważne jest, aby podczas montażu przewodów na zewnątrz budynków stosować materiały certyfikowane i przetestowane pod kątem wytrzymałości na ekstremalne warunki środowiskowe. Przewód YKY jest również odporny na uszkodzenia mechaniczne, co czyni go idealnym wyborem do stosowania na otwartej przestrzeni, gdzie mogą występować różnego rodzaju zagrożenia fizyczne. Z mojego doświadczenia wynika, że przewody te są powszechnie używane w instalacjach ogrodowych, oświetleniowych oraz w miejscach, gdzie wymagana jest niezawodność i trwałość przez długi czas.

Pytanie 25

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
B. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
D. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YDYt 3×2,5 w miejsce ADYt 3×2,5 prowadzi do wzrostu wartości prądu dopuszczalnego długotrwale oraz poprawy rezystancji izolacji. Przewód YDYt charakteryzuje się lepszymi parametrami technicznymi, w tym wyższą dopuszczalną temperaturą pracy oraz lepszą odpornością na czynniki zewnętrzne, co zwiększa jego bezpieczeństwo i trwałość. Standardy PN-IEC 60228 oraz PN-EN 50525 wskazują, że przewody YDYt mają lepszą wydajność w warunkach długotrwałego obciążenia, co pozwala na ich zastosowanie w instalacjach, gdzie przewidywane są większe obciążenia prądowe. Przykładem mogą być instalacje w budynkach mieszkalnych lub przemysłowych, gdzie przewody te mogą być używane do zasilania urządzeń wymagających większych mocy. Dodatkowo, poprawa rezystancji izolacji wpływa na zmniejszenie ryzyka wystąpienia zwarć oraz uszkodzeń instalacji, co jest kluczowe w kontekście bezpieczeństwa użytkowania. Warto również zauważyć, że wyższa jakość przewodów wpływa na ich żywotność oraz zmniejsza koszty eksploatacyjne związane z potrzebą częstych napraw lub wymiany.

Pytanie 26

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA

A. Wyłącznik 3.
B. Wyłącznik 4.
C. Wyłącznik 2.
D. Wyłącznik 1.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 27

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Zamieniono zacisk przewodu fazowego z neutralnym
B. Nie podłączono przewodu ochronnego
C. Nie podłączono przewodu neutralnego
D. Zamieniono zacisk przewodu ochronnego z neutralnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamiana zacisku przewodu ochronnego z neutralnym jest poważnym błędem w instalacji elektrycznej. W systemach elektrycznych, przewód ochronny (PE) ma na celu zapewnienie bezpieczeństwa poprzez odprowadzanie prądu awaryjnego w przypadku uszkodzenia izolacji urządzenia. Jeśli ten przewód zostanie zamieniony z przewodem neutralnym (N), to w przypadku zwarcia prąd zamiast do ziemi popłynie przez przewód neutralny, co może prowadzić do poważnych zagrożeń, w tym do porażenia prądem. Wyłączniki różnicowoprądowe są zaprojektowane do wykrywania różnicy prądu przepływającego między przewodem fazowym a neutralnym; jeśli coś pójdzie nie tak, a prąd zacznie płynąć przez przewód ochronny, wyłącznik zadziała, co może być objawem niepoprawnego podłączenia. W praktyce, przed podłączeniem gniazda wtyczkowego, należy zawsze upewnić się, że przewody są prawidłowo oznaczone i podłączone zgodnie z aktualnymi normami, takimi jak PN-IEC 60364, aby zminimalizować ryzyko błędów montażowych.

Pytanie 28

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Uchwytem izolacyjnym pod obciążeniem
B. Za pomocą kombinerek w braku napięcia
C. Przy użyciu kombinerek, pod napięciem
D. Uchwytem izolacyjnym bez obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 29

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B10
B. B16
C. C16
D. C10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 30

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70

Ilustracja do pytania
A. zwarcie międzyprzewodowe między punktami 5 – 6.
B. uszkodzenie przewodu między punktami 2 – 3.
C. niepewne zamocowanie puszki rozgałęźnej do podłoża.
D. przerwa w przewodzie neutralnym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na zwarcie międzyprzewodowe między punktami 5 – 6 jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji układu wykazała wartość 0 Ω. W normalnych warunkach, gdy łącznik jest otwarty, oczekiwalibyśmy, że rezystancja będzie nieskończona, co wskazuje na brak przepływu prądu. W przypadku stwierdzenia rezystancji równej 0 Ω, mamy do czynienia z niepożądanym połączeniem, czyli zwarciem, które prowadzi do ciągłego zasilania żarówki. Takie sytuacje mogą występować w wyniku uszkodzenia izolacji przewodów lub błędów w instalacji elektrycznej. W praktyce, aby zapobiegać takim usterkom, zaleca się regularne przeglądy i pomiary instalacji, zgodnie z normami PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa elektrycznego. Prawidłowa diagnoza i naprawa zwarć są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji.

Pytanie 31

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 1,15 Ω
B. 0,56 Ω
C. 3,83 Ω
D. 2,30 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 32

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Impedancję pętli zwarcia oraz pomiar prądu upływu
B. Rezystancję przewodów ochronnych i rezystancję uziemienia
C. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
D. Rezystancję izolacji przewodów oraz rezystancję uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.

Pytanie 33

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Megaomomierza
C. Megawoltomierza
D. Omomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 34

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
B. Silnik będzie pracował w stanie jałowym
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Silnik będzie zasilany prądem przeciwnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ujemny poślizg silnika indukcyjnego występuje, gdy wirnik jest dopędzany powyżej prędkości synchronicznej, co oznacza, że wirnik obraca się szybciej niż pole magnetyczne wytwarzane przez stojan. W takiej sytuacji silnik działa w trybie generacyjnym, co jest wykorzystywane w aplikacjach, gdzie odzyskuje się energię, na przykład w systemach hamowania regeneracyjnego w pojazdach elektrycznych. W praktyce, jeśli wirnik osiągnie prędkość większą niż wartość synchroniczna, to wytwarzane przez niego napięcie indukowane jest dodatnie w stosunku do napięcia zasilającego, co prowadzi do odwrotnego kierunku przepływu prądu. Ta zasada jest istotna w zastosowaniach takich jak elektrownie wiatrowe, gdzie turbiny mogą pracować zarówno jako silniki, jak i generatory. Zrozumienie zjawiska poślizgu jest kluczowe dla inżynierów projektujących systemy napędowe oraz dla operatorów utrzymujących ich działanie w optymalnych warunkach.

Pytanie 35

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. LY
B. YDY
C. YAKY
D. OMY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 36

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. złącze
B. rozdzielnica główna
C. wewnętrzna linia zasilająca
D. przyłącze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyłącze jest końcowym elementem sieci zasilającej, który zapewnia połączenie między siecią elektroenergetyczną a instalacją elektryczną obiektu budowlanego. To właśnie przyłącze dostarcza energię elektryczną do budynku, co czyni je kluczowym elementem całej infrastruktury zasilającej. W ramach przyłącza odbywa się nie tylko wprowadzenie energii, ale także realizacja podstawowych funkcji zabezpieczających, takich jak wyłączniki nadprądowe, które chronią instalację przed przeciążeniem. Przykładowo, w budynkach jednorodzinnych przyłącze zazwyczaj składa się z kabla przyłączeniowego, złącza oraz rozdzielnicy, która odpowiada za dalsze rozdzielenie energii do poszczególnych obwodów. W kontekście przepisów, przyłącze musi spełniać normy określone w dokumentach takich jak PN-IEC 60364, które regulują zasady projektowania i wykonania instalacji elektrycznych. Zrozumienie roli przyłącza jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i wykonywaniem instalacji elektrycznych.

Pytanie 37

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd obciążeniowy
B. Obciążenie prądowe i czas reakcji
C. Prąd różnicowy oraz czas reakcji
D. Napięcie w sieci oraz prąd różnicowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 38

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Wymienić wszystkie przewody na nowe o większym przekroju
B. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
C. Polakierować uszkodzoną izolację przewodu
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 39

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód neutralny
B. Przewód uziemiający
C. Przewód fazowy
D. Przewód ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 40

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Synchroniczny
B. Asynchroniczny klatkowy
C. Obcowzbudny prądu stałego
D. Szeregowy prądu stałego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.