Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 08:07
  • Data zakończenia: 7 kwietnia 2025 08:36

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kabel wyposażony w wtyki RJ45 jest wykorzystywany między innymi do połączenia

A. komputera z monitorem
B. komputera z ruterem
C. kamery z rejestratorem video
D. czujnika ruchu z centralką alarmową
Kable z wtykami RJ45 to coś, co znajdziesz w większości sieci komputerowych, zwłaszcza tych, które korzystają z Ethernetu. Dzięki nim możemy łączyć różne urządzenia, jak komputery, routery czy switch’e, a to jest naprawdę ważne w dzisiejszych czasach, kiedy każdy ma różne urządzenia w swoim domu czy biurze. Wtyki RJ45 działają na różnych standardach, takich jak 10BASE-T, 100BASE-TX czy 1000BASE-T, co oznacza, że mogą przesyłać dane z prędkościami od 10 Mbps do 1 Gbps. W domach czy biurach, gdzie jest sporo sprzętu, takie połączenia są kluczowe, bo zapewniają stabilne i szybkie połączenie internetowe, co jest niezbędne do pracy zdalnej czy przy przesyłaniu dużych plików. Można sobie wyobrazić sytuację, że komputer podłączony kablem RJ45 do routera ma konkretne, stabilne połączenie, co super ułatwia pracę, zwłaszcza przy wideokonferencjach. A jeśli chodzi o miejsca, które muszą być super niezawodne, jak serwerownie, tam zazwyczaj korzysta się z lepszych kabli, na przykład kategorii 6, które mają lepsze możliwości i są bardziej odporne na zakłócenia.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie jest zadanie konwertera satelitarnego?

A. przesyłanie sygnału z odbiornika satelitarnego do satelity
B. regulacja napięcia w obwodzie antenowym
C. dopasowywanie reaktancji anteny satelitarnej
D. przekazywanie sygnału z satelity do odbiornika satelitarnego
Wybór odpowiedzi, która sugeruje, że konwerter satelitarny wyrównuje napięcie w obwodzie antenowym, jest nieprawidłowy, ponieważ konwerter nie jest odpowiedzialny za zarządzanie napięciem w antenie. Jego kluczową rolą jest konwersja sygnału, a nie regulacja parametrów elektrycznych. W rzeczywistości napięcie w obwodzie antenowym jest często optymalizowane przez inne komponenty, takie jak wzmacniacze sygnału lub zasilacze, które są odpowiedzialne za dostarczanie właściwego napięcia do elementów aktywnych systemu antenowego. Podobnie, sugestia, że konwerter dostarcza sygnał z odbiornika satelitarnego do satelity, jest błędna, ponieważ konwertery działają w kierunku przeciwnym, tj. z satelity do odbiornika. Odbiornik nie ma możliwości wysyłania sygnałów do satelity, gdyż to satelita jest odpowiedzialny za nadawanie sygnału do wielu odbiorców na Ziemi. Koncepcja dopasowania reaktancji anteny również nie odnosi się do funkcji konwertera. Odpowiednie dopasowanie reaktancji jest kwestią projektowania anteny i obwodów RF, które mają na celu minimalizację strat sygnału i zapewnienie maksymalnej efektywności odbioru. Wszelkie nieporozumienia wynikają najczęściej z pomylenia funkcji poszczególnych komponentów systemu satelitarnego oraz braku zrozumienia ich specyficznych zadań w całej infrastrukturze komunikacyjnej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Montaż wtyku F na kablu koncentrycznym polega na

A. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
D. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
W analizowanych odpowiedziach pojawiają się różne błędne koncepcje dotyczące montażu wtyku F na przewodzie koncentrycznym. Nacięcie powłoki zewnętrznej, jak sugerują niektóre z odpowiedzi, nie jest odpowiednią metodą, ponieważ może prowadzić do uszkodzenia struktury przewodu i obniżenia jakości sygnału. Usunięcie folii, które jest wspomniane w odpowiedziach, powinno dotyczyć tylko izolacji, a nie materiału ochronnego, który jest istotny dla właściwego przewodzenia sygnału. Użycie terminu 'nacięcie' sugeruje również, że można usunąć warstwę izolacyjną w sposób, który nie jest zgodny z dobrymi praktykami. Oplot pełni kluczową funkcję w ochronie przed zakłóceniami i powinien być właściwie przygotowany do montażu. Z kolei pominięcie etapu ułożenia oplotu wzdłuż przewodu prowadzi do nieprawidłowego połączenia wtyku, co może skutkować złym jakościowo sygnałem. Przykłady błędów myślowych mogą wynikać z braku zrozumienia roli poszczególnych elementów kabla koncentrycznego oraz procesu montażu. Ważne jest, aby podczas pracy z instalacjami koncentrycznymi stosować właściwe narzędzia oraz przestrzegać standardów branżowych, co pozwoli na uzyskanie trwałych i niezawodnych połączeń.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Czym jest przerwanie w procesorze?

A. zatrzymanie działania programu po wystąpieniu błędu w oprogramowaniu
B. zmiana aktualnie obsługiwanego programu na inny o tym samym priorytecie
C. wstrzymanie aktualnie obsługiwanego programu, aby zrealizować zadanie o wyższym priorytecie
D. przejście procesora w tryb uśpienia po zidentyfikowaniu błędnych danych wejściowych
Przerwanie w procesorze to mechanizm, który pozwala na tymczasowe zawieszenie aktualnie wykonywanego programu w celu obsługi zadania o wyższym priorytecie. Taki mechanizm jest kluczowy w systemach operacyjnych czasu rzeczywistego, gdzie nieprzerwana obsługa krytycznych zadań jest niezbędna dla zapewnienia stabilności i bezpieczeństwa operacji. Przykładem może być sytuacja w systemie sterowania silnikiem, gdzie priorytetowe zadanie, takie jak reakcja na awarię, musi być wykonane natychmiastowo, nawet kosztem dłużej trwającego przetwarzania mniej krytycznych zadań. Ważne jest, aby procesory i systemy operacyjne implementowały odpowiednie algorytmy do zarządzania priorytetami, takie jak algorytm Round-robin czy FIFO, co zapewnia sprawną i efektywną obsługę zadań. Przerwania wspierają także złożoną synchronizację i komunikację między procesami, co jest fundamentem dla współczesnych architektur komputerowych. W praktyce, znając zasady działania przerwań, inżynierowie mogą skuteczniej projektować systemy, które są odporne na błędy i mają zapewnioną wydajność operacyjną.

Pytanie 9

Jakim narzędziem wykonuje się pobielanie końcówek przewodów elektrycznych?

A. opalarki
B. nagrzewnicy
C. zgrzewarki
D. lutownicy
Zgrzewarka i nagrzewnica są narzędziami, które w kontekście instalacji elektrycznych, mają zupełnie inne zastosowania. Zgrzewarka, na przykład, służy głównie do łączenia elementów metalowych poprzez ich podgrzewanie, ale nie jest odpowiednia do pobielania końcówek przewodów. W przypadku przewodów elektrycznych użycie zgrzewarki mogłoby prowadzić do uszkodzenia izolacji lub niewłaściwego połączenia, które nie zapewni odpowiednich parametrów elektrycznych. Nagrzewnica natomiast jest urządzeniem służącym do ogrzewania powietrza w pomieszczeniach lub do podgrzewania materiałów, ale nie ma zastosowania w procesie lutowania czy pobielania przewodów. Opalarka, choć używana do podgrzewania różnych materiałów, również nie jest odpowiednia do tego celu. Jej zastosowanie w kontekście instalacji elektrycznych może rodzić zagrożenie, gdyż nieprecyzyjne nagrzewanie może prowadzić do uszkodzeń komponentów elektrycznych. Kluczowym błędem, który można zauważyć w tych odpowiedziach, jest mylenie podstawowych funkcji tych narzędzi oraz ich zastosowań. W branży elektrycznej istotne jest posiadanie wiedzy na temat odpowiednich narzędzi i technik, co pozwala na bezpieczne i efektywne wykonanie prac przy instalacjach elektrycznych, zgodnie z obowiązującymi normami i standardami.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Na diagramie blokowym struktury wewnętrznej mikroprocesora symbol ALU oznacza

A. zewnętrzną pamięć operacyjną
B. rejestr akumulatora
C. jednostkę arytmetyczno-logiczną
D. mikroprocesor wykonany w technologii krzemowo-aluminiowej
Odpowiedź 'jednostka arytmetyczno-logiczna' (ALU) jest prawidłowa, ponieważ ALU stanowi kluczowy komponent mikroprocesora odpowiedzialny za wykonywanie operacji arytmetycznych, takich jak dodawanie i odejmowanie, oraz operacji logicznych, takich jak AND, OR i NOT. ALU przyjmuje dane wejściowe, wykonuje na nich odpowiednie operacje, a następnie zwraca wyniki. Przykładowo, w procesach obliczeniowych, takich jak obliczanie wartości matematycznych lub przetwarzanie logiki warunkowej w programach, ALU odgrywa nieodzowną rolę. Standardy projektowania mikroprocesorów, takie jak architektura von Neumanna, uwzględniają ALU jako centralny element, co podkreśla jego znaczenie w nowoczesnych systemach komputerowych. Również w kontekście programowania niskopoziomowego, zrozumienie działania ALU pozwala na efektywniejsze pisanie kodu maszynowego i optymalizację algorytmów obliczeniowych.

Pytanie 12

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. sieci komputerowej
B. systemu alarmowego
C. telewizji dozorowej
D. instalacji antenowej
Instalacja antenowa to obszar, w którym miernik bitowej stopy błędów (BER) odgrywa kluczową rolę w ocenie jakości sygnałów transmisyjnych. BER jest wskaźnikiem określającym stosunek liczby błędnie odebranych bitów do całkowitej liczby bitów przesłanych w czasie określonym. W kontekście instalacji antenowych, szczególnie w systemach telekomunikacyjnych i satelitarnych, niska stopa błędów jest kluczowym parametrem gwarantującym niezawodność i jakość odbioru sygnału. Przykładowo, w przypadku telewizji satelitarnej, jeśli BER przekracza akceptowalny poziom, może to prowadzić do przerw w odbiorze sygnału. Właściciele instalacji antenowych mogą korzystać z mierników BER do szybkiej diagnozy problemów, takich jak niewłaściwe ustawienie anteny, zły jakościowo kabel czy interferencje z innymi źródłami sygnału. Dobre praktyki branżowe zalecają regularne monitorowanie BER, aby zapewnić ciągłość i jakość usług. Warto także nadmienić, że standardy takie jak DVB-S2 dla telewizji satelitarnej definiują konkretne wartości BER, które muszą być spełnione, aby system mógł działać poprawnie.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Stacja bazowa jest częścią systemu

A. telewizji kablowej
B. nawigacyjnego
C. sterowania mikroprocesorowego
D. alarmowego
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 150 mV
B. 100 mV
C. 300 mV
D. 1000 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 17

Aby przesłać sygnał telewizyjny z anteny zbiorczej w budynku wielorodzinnym, należy zastosować kabel

A. koncentryczny o impedancji falowej 75 Ω
B. symetryczny o impedancji falowej 300 Ω
C. koncentryczny o impedancji falowej 300 Ω
D. symetryczny o impedancji falowej 75 Ω
Wybór innych rodzajów kabli, takich jak kabel symetryczny o impedancji falowej 300 Ω, jest nieprawidłowy w kontekście transmisji sygnałów telewizyjnych. Kable te, chociaż mogą być stosowane w innych zastosowaniach, takich jak w telekomunikacji czy w systemach audio, nie odpowiadają wymaganiom dla sygnałów telewizyjnych. Impedancja 300 Ω jest typowa dla kabli symetrycznych, używanych w aplikacjach, gdzie ważna jest ich zdolność do eliminacji zakłóceń, ale nie jest to właściwy wybór dla sygnałów telewizyjnych, które wymagają kabla o impedancji 75 Ω. Użycie kabli koncentrycznych o impedancji 300 Ω mogłoby prowadzić do znacznych strat sygnału oraz problemów z odbiorem z powodu niewłaściwego dopasowania impedancji. Ponadto, kable koncentryczne o impedancji 75 Ω charakteryzują się wyższą odpornością na zakłócenia i lepszym tłumieniem, co jest niezbędne w gęsto zabudowanych obszarach, gdzie sygnał telewizyjny musi być przesyłany na dużą odległość. Wybór niewłaściwego typu kabla może prowadzić do poważnych problemów z jakością obrazu oraz stabilnością sygnału, co jest krytyczne w systemach telewizyjnych, zwłaszcza w kontekście rosnącej liczby transmisji w wysokiej rozdzielczości.

Pytanie 18

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. radiowego
B. telewizyjnego
C. optycznego
D. internetowego
Wybór protokołów optycznego, telewizyjnego lub radiowego jako alternatywnych odpowiedzi na pytanie o TCP świadczy o pewnym nieporozumieniu odnośnie do roli i funkcji różnych protokołów komunikacyjnych. Protokół optyczny, który nawiązuje do technologii przesyłania danych za pomocą światłowodów, nie jest bezpośrednio związany z TCP, który jest protokołem transportowym. W kontekście sieci komputerowych, protokoły optyczne mogą być wykorzystywane do fizycznego przesyłania sygnałów, jednak nie odpowiadają za zarządzanie transmisją danych, co jest kluczowym zadaniem TCP. Podobnie, protokoły telewizyjne koncentrują się na przesyłaniu sygnałów audio-wideo, co również nie jest w obszarze odpowiedzialności TCP. Z kolei protokoły radiowe, wykorzystywane głównie w komunikacji bezprzewodowej, różnią się znacznie od internetowych protokołów transportowych, takich jak TCP. Kluczowym aspektem TCP jest jego zdolność do zapewnienia integralności danych oraz ich uporządkowanej dostawy przez sieć, co jest nieosiągalne dla wyżej wymienionych technologii, które mają inne cele. Zrozumienie różnicy między tymi protokołami jest niezbędne dla prawidłowego projektowania systemów komunikacyjnych oraz rozwiązywania problemów związanych z przesyłaniem informacji w różnych kontekstach.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Zerowanie omomierza to proces polegający na

A. ustawieniu "0 Ohm" przy rozwartych zaciskach pomiarowych
B. dostosowaniu rezystancji bocznika
C. do wyboru odpowiedniego zakresu do przewidywanej wartości pomiarowej
D. ustawieniu "0 Ohm" przy zwartych zaciskach pomiarowych
Zerowanie omomierza to kluczowy proces kalibracji, który zapewnia dokładność pomiarów rezystancji. Ustawienie '0 Ohm' przy zwartych zaciskach pomiarowych oznacza, że omomierz jest w stanie określić, że rezystancja wewnętrzna urządzenia oraz wszelkie inne wpływy zewnętrzne są minimalne. Takie działanie eliminuje błędy pomiarowe, które mogą wynikać z oporu drutu, złączy czy innych komponentów. W praktyce, zanim przystąpimy do pomiaru rezystancji elementów, takich jak oporniki czy cewki, zawsze powinniśmy wykonać zerowanie omomierza. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie kalibracji urządzeń pomiarowych, aby zapewnić ich poprawne działanie i dokładność w pomiarze. Jeśli omomierz nie zostanie odpowiednio zerowany, wyniki mogą być znacząco zafałszowane, co prowadzi do błędnych ocen stanu urządzeń elektronicznych. Z tego względu, przestrzeganie procedur zerowania jest niezbędne dla każdego technika czy inżyniera pracującego z pomiarami elektrycznymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 80 V
B. 160 V
C. 40 V
D. 120 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 27

Wskaż, którego urządzenia dotyczą dane przedstawione we fragmencie dokumentacji technicznej.

StandardyIEEE 802.11b/g/n
Technika modulacjiCCK, OFDM
Częstotliwość pracy [GHz]2.4 - 2.4835
Moc wyjściowa [dBm]do 20
Chipset radiowyAtheros
Max. szybkość transmisji11n: 150Mbps
11g: 54Mbps
11b: 11Mbps
Czułość130M: -68dBm@10% PER
108M: -68dBm@10% PER
54M: -68dBm@10% PER
11M: -85dBm@8% PER
6M: -88dBm@10% PER
1M: -90dBm@8% PER
Tryby pracyAP router
WISP router + AP
Serwer DHCPTak
DDNSTak
Wbudowane zabezpieczeniaWPA/WPA2: 64/128/152 BIT WEP;
TKIP/AES

Tablica dostępu / odmowy dostępu
definiowana
po adresach MAC kart klienckich,
Filtrowanie dostępu do Internetu
poprzez filtry adresów IP, MAC
oraz poszczególnych portów protokołu
TCP/IP
Typ antenydipolowa (dipol ćwierćfalowy) o zysku
3dBi,
możliwe jest dołączenie anteny
zewnętrznej
Złącze antenySMA R/P
Porty LANIEEE802.3 (10BASE-T), IEEE802.3u
(100BASE-TX)
Ilość portów LAN1 port WAN (RJ-45)
4 porty LAN 10/100 Mb (RJ-45, UTP/STP)
Kontrolki LEDPower, System, WLAN, WAN, Act/Link (4
x Ethernet)
Temperatura pracy0 °C do 50°C
Wymiary [mm]192 x 130 x 33
Napięcie zasilania230 V AC/9 V DC

A. Rejestratora NVR
B. Karty Wi-Fi
C. Routera Wi-Fi
D. Kamery IP
Wybór odpowiedzi "Routera Wi-Fi" jest naprawdę dobrym wyborem, bo w tym fragmencie dokumentacji widać wyraźnie, że pasuje do cech routerów. Routery Wi-Fi mają super istotną rolę w tym, jak działa sieć, łączą różne urządzenia i dają nam dostęp do internetu, łącząc się z naszym dostawcą. Zresztą, w dokumentacji wymienione są różne tryby pracy, jak AP router czy WISP router + AP, co pokazuje, że routery mogą działać w różnych sytuacjach w sieci. A to, że mają funkcje jak serwer DHCP, który przydziela adresy IP automatycznie, to już standard w nowoczesnych sieciach. Zabezpieczenia sieci, takie jak WPA/WPA2, WEP czy TKIP/AES, są niezwykle ważne, bo chronią nasze dane przesyłane przez sieć, a to bezpieczeństwo staje się coraz bardziej istotne w naszych domach i biurach. Generalnie, routery Wi-Fi pozwalają na korzystanie z internetu na wielu urządzeniach naraz, co jest bardzo wygodne, a przy tym dbają o dobrą ochronę danych.

Pytanie 28

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
B. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
C. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
D. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
Wybór innej kolejności czynności montażowych może prowadzić do wielu problemów związanych z jakością sygnału oraz ogólną funkcjonalnością anteny satelitarnej. Ustawienie kąta elewacji i azymutu przed zamocowaniem anteny w odpowiednim miejscu jest błędnym podejściem, ponieważ może okazać się, że antena nie jest stabilnie umocowana, co może prowadzić do jej przemieszczania się pod wpływem wiatru lub innych czynników atmosferycznych. Zmontowanie anteny, a następnie instalacja kablowej bez wcześniejszego zamocowania anteny jest kolejnym błędem, ponieważ może spowodować problemy z właściwym podłączeniem kabli, co w konsekwencji wpłynie na jakość odbioru sygnału. W praktyce, każde z tych działań powinno być przeprowadzane w odpowiedniej kolejności, aby zminimalizować ryzyko błędów. Ignorowanie tej zasady może prowadzić do sytuacji, w której konieczne będzie wielokrotne dostosowywanie i korygowanie ustawień anteny, co zabiera czas i zwiększa koszty związane z montażem. Co więcej, takie podejście może narazić na szwank gwarancję produktów, jeżeli nie zostaną one zainstalowane zgodnie z instrukcją producenta. Dlatego ważne jest, aby przestrzegać ustalonej kolejności montażu, co jest elementem dobrej praktyki w branży instalacji satelitarnych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby zestroić impedancję anteny z impedancją kabla, należy zastosować

A. symetryzator
B. detektor
C. zwrotnicę
D. głowicę UKF
Symetryzator to ważne urządzenie, które pozwala na dopasowanie impedancji anteny do impedancji przewodu. Dlaczego to jest takie istotne? Bo odpowiednie dopasowanie pomaga w lepszym przesyłaniu sygnału, co ma ogromne znaczenie w telekomunikacji. Zwykle impedancja anten wynosi 50 albo 75 omów, a nadajniki oraz odbiorniki też powinny mieć podobne wartości, żeby uniknąć strat sygnału. Symetryzatory, takie jak baluny czy transformator impedancji, przekształcają sygnały z symetrycznych na niesymetryczne i odwrotnie. To szczególnie przydatne w różnych zastosowaniach, np. w antenach dipolowych, które wymagają symetrycznego zasilania. W radiokomunikacji, dobrze dopasowana impedancja wpływa na zasięg i jakość sygnału, co z mojego doświadczenia jest mega istotne. Używanie symetryzatorów jest zgodne z najlepszymi praktykami inżynieryjnymi, co z kolei prowadzi do lepszej efektywności energetycznej i mniejszych zakłóceń.

Pytanie 32

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. podwyższenie napięcia zasilającego
B. spadek mocy wyjściowej
C. zmniejszenie pasma przenoszenia
D. wzrost mocy wyjściowej
Wzrost rezystancji obciążenia we wzmacniaczach rezystancyjnych prowadzi do spadku mocy wyjściowej, co wynika z prawa Ohma oraz zasady zachowania energii. W praktyce, gdy rezystancja obciążenia rośnie, prąd przepływający przez obciążenie maleje, co z kolei przekłada się na spadek mocy, która jest definiowana jako iloczyn napięcia i prądu (P = U * I). Przykładem takiego zachowania może być wzmacniacz audio podłączony do głośnika. Jeśli głośnik ma wysoką impedancję (duża rezystancja), to z uwagi na ograniczenie prądu, moc wyjściowa wzmacniacza zmniejsza się. Dla zastosowań w audio, aby uzyskać optymalne wzmocnienie, zmiany rezystancji obciążenia powinny być kontrolowane, aby uniknąć niepożądanych efektów, takich jak zniekształcenia dźwięku. W praktyce inżynierowie często dostosowują parametry układów, aby zapewnić odpowiednią współpracę ze standardowymi obciążeniami, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 33

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 2
B. 4
C. 8
D. 6
Wybór niewłaściwej liczby żył do podłączenia czujnika ruchu jest powszechnym problemem, który wynika z misunderstandingu dotyczącego funkcji poszczególnych żył. Wiele osób myśli, że czujnik ruchu może działać na dwóch lub czterech żyłach, co jest nieprawidłowe w kontekście urządzeń z wejściem antysabotażowym. Odpowiedzi sugerujące mniejszą liczbę żył nie uwzględniają kluczowych funkcji, takich jak zasilanie oraz monitorowanie sabotażu, które są niezbędne do zapewnienia pełnej funkcjonalności. Użycie tylko dwóch żył ogranicza możliwości czujnika do prostego zasilania, co uniemożliwia mu komunikację z systemem alarmowym oraz nie pozwala na wykrywanie prób jego usunięcia lub manipulacji. Natomiast wybór czterech żył nie pokrywa się z wymaganiami dla urządzeń z antysabotem, które wymagają dodatkowych obwodów zabezpieczających. Warto podkreślić, że standardy branżowe, takie jak EN 50131, wyraźnie wskazują na potrzebę stosowania odpowiedniej liczby żył, aby zapewnić niezawodność systemów zabezpieczeń. W związku z tym, wybierając niewłaściwą liczbę żył, można narażać system na poważne luki w bezpieczeństwie, co w praktyce może prowadzić do nieefektywnej ochrony obiektów.

Pytanie 34

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tensometry
B. diody
C. termistory
D. tyrystory
Wybór tyrystorów, diod czy tensometrów jest niepoprawny, ponieważ te elementy mają zupełnie inne właściwości i zastosowania niż termistory. Tyrystory to elementy półprzewodnikowe służące do kontrolowania przepływu prądu w obwodach elektrycznych, a ich działanie opiera się na zjawisku przełączania, co sprawia, że są one stosowane głównie w układach mocy i sterowania silnikami. Dioda, z drugiej strony, ma za zadanie przewodzić prąd w jednym kierunku, działając jako zawór dla elektronów, co czyni ją kluczowym elementem w wielu układach elektronicznych, ale nie ma ona zdolności do monitorowania temperatury. Tensometry to czujniki, które mierzą odkształcenia mechaniczne, a nie zmiany temperatury, i są stosowane w pomiarach siły czy ciśnienia, co również nie ma związku z funkcjonalnością termistorów. Typowe błędy myślowe, prowadzące do nieprawidłowych odpowiedzi, obejmują mylenie funkcji tych elementów i brak zrozumienia, że każdy z nich ma swoje ściśle określone zastosowanie w elektronice. Kluczowe jest zrozumienie zasad działania termistorów oraz ich roli w systemach pomiarowych i zabezpieczających, aby móc poprawnie identyfikować ich znaczenie w kontekście innych elementów elektronicznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaką maksymalną liczbę urządzeń sieciowych da się podłączyć do komputerowej sieci, której maska podsieci wynosi 255.255.255.248?

A. 6 urządzeń
B. 8 urządzeń
C. 2 urządzenia
D. 4 urządzenia
Adres maski podsieci 255.255.255.248 oznacza, że mamy do czynienia z maską o długości 29 bitów. W systemie CIDR (Classless Inter-Domain Routing) każda z wartości w masce podsieci 255.255.255.248 odpowiada 8 bitom dla każdego z pierwszych trzech oktetów (255), a ostatni oktet (248) to 11111000 w systemie binarnym. Z tego wynika, że w ostatnim oktetcie mamy 3 bity przeznaczone na adresy hostów. Zasada obliczania liczby dostępnych adresów hostów w danej podsieci jest następująca: 2^n - 2, gdzie n to liczba bitów przeznaczonych na hosty. W naszym przypadku mamy 3 bity, więc obliczamy 2^3 - 2 = 8 - 2 = 6. Odejmujemy dwa adresy, ponieważ jeden adres jest przeznaczony na adres sieci, a drugi na adres rozgłoszeniowy. Taka konfiguracja pozwala na wykorzystanie 6 adresów IP dla urządzeń w tej podsieci, co jest zgodne z praktykami stosowanymi w projektowaniu sieci.

Pytanie 37

Która forma transmisji sygnału jest najbardziej odporna na zakłócenia elektromagnetyczne?

A. skrętki nieekranowanej
B. kabla koncentrycznego
C. światłowodu
D. skrętki ekranowanej
Transmisja sygnału za pośrednictwem światłowodu jest uważana za najbardziej odporną na zakłócenia elektromagnetyczne, co wynika z samej natury światłowodów. Sygnał przesyłany w światłowodach oparty jest na zjawisku całkowitego wewnętrznego odbicia światła, co sprawia, że sygnał nie jest narażony na zakłócenia elektromagnetyczne, jakie mogą wpływać na transmisję w przewodach miedzianych. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne źródła zakłóceń, takie jak w pobliżu dużych maszyn przemysłowych czy nadajników radiowych. Przykładem zastosowania światłowodów są sieci telekomunikacyjne oraz systemy informacyjne w dużych miastach, gdzie niezawodność i jakość transmisji danych są kluczowe. Zgodnie z normami ITU-T G.652 oraz G.657, światłowody zapewniają wysoką przepustowość i niskie tłumienie sygnału, co czyni je standardem w nowoczesnych instalacjach telekomunikacyjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby zweryfikować ciągłość kabla sygnałowego w systemie kontroli dostępu, jakie urządzenie należy wykorzystać?

A. omomierza
B. watomierza
C. woltomierza
D. amperomierza
Omomierz jest narzędziem, które służy do pomiaru oporu elektrycznego, co czyni go idealnym do sprawdzania ciągłości połączeń elektrycznych, w tym kabli sygnałowych. W kontekście instalacji systemów kontroli dostępu, ciągłość kabla jest kluczowa, ponieważ wszelkie przerwy lub uszkodzenia mogą prowadzić do awarii systemu lub nieprawidłowego działania. Przykładowo, w przypadku zastosowania omomierza, możemy zmierzyć opór na końcach kabla. Jeśli opór wynosi zero lub bardzo blisko zera omów, oznacza to, że kabel jest ciągły i nie ma przerwań. W sytuacji, gdy pomiar wykazuje wysoką wartość oporu, może to wskazywać na uszkodzenie kabla, co wymaga jego wymiany lub naprawy. Normy branżowe, takie jak IEC 60364, zalecają regularne sprawdzanie ciągłości połączeń, co jest istotne dla zapewnienia niezawodności systemów zabezpieczeń. Dlatego omomierz jest podstawowym narzędziem w diagnostyce i konserwacji instalacji elektrycznych, w tym systemów kontroli dostępu.

Pytanie 40

Jaką jednostką określa się moc czynną?

A. var
B. W
C. VA
D. V
Jednostką mocy czynnej jest wat (W), który jest powszechnie stosowaną jednostką w elektrotechnice i energetyce. Moc czynna to ta część mocy, która jest rzeczywiście wykorzystana do wykonania pracy w obwodach elektrycznych, a jej wartość można obliczyć jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego między nimi (P = U * I * cos(φ)). W praktyce oznacza to, że moc czynna odzwierciedla efektywność działania urządzeń elektrycznych, takich jak silniki, grzejniki czy oświetlenie. Wyższa moc czynna oznacza lepsze wykorzystanie energii elektrycznej. Przykładem jest silnik elektryczny, który może mieć moc podaną w watach – informuje to użytkownika o maksymalnej mocy, jaką może dostarczyć. Standardy takie jak IEC 60038 definiują wartości nominalne dla mocy w różnych zastosowaniach, co jest kluczowe w projektowaniu instalacji elektrycznych, zapewniając ich bezpieczeństwo i efektywność działania.