Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 kwietnia 2025 18:45
  • Data zakończenia: 13 kwietnia 2025 19:25

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W dokumentacji projektowej instalacji elektrycznej wielopiętrowego bloku mieszkalnego zaznaczono, że należy zastosować ochronniki przeciwprzepięciowe klasy C. Powinny one być zainstalowane w

A. linii zasilającej budynek.
B. rozdzielnicach mieszkaniowych.
C. puszkach instalacyjnych gniazd odbiorczych.
D. złączu budynku.
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 2

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 150 mA
B. 100 mA
C. 500 mA
D. 200 mA
Udzielenie odpowiedzi innej niż 200 mA może prowadzić do nieprawidłowej oceny stanu ciągłości przewodów ochronnych. Wartości takie jak 100 mA, 150 mA czy 500 mA nie są wystarczające lub nieadekwatne do przeprowadzenia rzetelnych pomiarów w kontekście ochrony przeciwporażeniowej. Wybór niższej wartości prądu, jak 100 mA, może skutkować sytuacją, w której nie zostaną wykryte niewielkie przerwy w ciągłości przewodu, co z kolei stwarza poważne zagrożenie dla bezpieczeństwa użytkowników. Z kolei wartość 150 mA, mimo że może wydawać się bardziej sensowna, wciąż nie spełnia wymagań dotyczących dokładności pomiarów, co może prowadzić do fałszywych odczytów. Zwiększenie prądu do 500 mA, choć teoretycznie może wydawać się korzystne, może w rzeczywistości prowadzić do uszkodzenia delikatnych elementów instalacji, a także może doprowadzić do niebezpiecznych sytuacji, takich jak przegrzanie przewodów. Kluczowe jest zrozumienie, że odpowiednie wartości prądu pomiarowego mają na celu nie tylko wykrycie ewentualnych usterek, ale także zapewnienie, że instalacja działa w sposób bezpieczny i niezawodny. Właściwe rozumienie norm oraz ich stosowanie jest niezbędne w praktyce inżynierskiej.

Pytanie 3

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. analogowy omomierz
B. amperomierz oraz woltomierz
C. cyfrowy watomierz
D. watomierz oraz amperomierz
Wykorzystanie watomierza cyfrowego do pomiaru rezystancji przewodów jest nieodpowiednie, ponieważ watomierz służy do pomiaru mocy elektrycznej, a nie do oceny rezystancji. Watomierz mierzy moc czynną, wyrażoną w watach, na podstawie pomiaru napięcia i natężenia prądu oraz współczynnika mocy. Użycie tego narzędzia w kontekście pomiaru rezystancji prowadzi do mylnych rezultatów, ponieważ nie uwzględnia ono specyfiki rezystancji, która jest niezależna od mocy. Podobnie, połączenie amperomierza i woltomierza również nie jest właściwe, gdyż te urządzenia mierzą natężenie prądu i napięcie, a do obliczenia rezystancji potrzebne jest odniesienie do wartości mierzonej bezpośrednio, co wymaga zastosowania omomierza. W przypadku watomierza i amperomierza, pomiar rezystancji wymagałby dodatkowego przeliczenia, co wprowadza niepotrzebne komplikacje i możliwość błędów. Coraz częściej w praktyce inżynierskiej wykorzystuje się zalecenia dotyczące stosowania omomierzy, które zapewniają dokładność i prostotę pomiarów. Zrozumienie tego, że każdy instrument ma swoje specyficzne zastosowanie, jest kluczowe dla przeprowadzania efektywnych i dokładnych pomiarów w elektrotechnice.

Pytanie 4

Którą z wymienionych czynności wykonuje się w czasie oględzin pracującego transformatora?

A. Konserwację przełącznika zaczepów.
B. Sprawdzenie poziomu oleju w olejowskazie konserwatora.
C. Czyszczenie izolatorów.
D. Konserwację styków i połączeń śrubowych.
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 5

Jaką największą wartość może mieć impedancja pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby skuteczna była ochrona przeciwporażeniowa przy uszkodzeniu izolacji, jeśli wiadomo, że wyłączenie zasilania tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy C10?

A. 2,3 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 4,6 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 6

Która z wymienionych czynności należy do oględzin wirnika maszyny komutatorowej?

A. Pomiar rezystancji izolacji.
B. Sprawdzenie braku zwarć międzyzwojowych.
C. Sprawdzenie stanu wycinków komutatora.
D. Wyważenie.
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 7

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Instalacja dodatkowego gniazda elektrycznego
C. Zmiana rodzaju zastosowanych przewodów
D. Wymiana uszkodzonych źródeł światła
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 8

Który z wymienionych materiałów jest najlepszym przewodnikiem strumienia magnetycznego?

A. Miedź.
B. Stal.
C. Aluminium.
D. Brąz.
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 9

Które z wymienionych usterek mogą powodować nadmierną wibrację silnika indukcyjnego?

A. Skrzywienie wału, złe wyważenie wirnika, nadmierny luz na łożyskach.
B. Zbyt niskie napięcie, przerwa w jednej fazie, przeciążenie silnika.
C. Zwarcie w uzwojeniu wirnika, zamieniona kolejność faz.
D. Przerwa w uzwojeniu stojana, zatarcie łożysk, zbyt duża rezystancja uzwojeń wirnika.
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 10

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia: <br> 1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy<br> 2. zmywarka - 3,5 kW - obwód jednofazowy<br> 3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy<br> 4. pralka automatyczna - 4,5 kW - obwód jednofazowy<br><br/> Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 16 A, 20 A
B. 20 A, 16 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 11

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. wyłącznie przewód neutralny
B. przewody fazowe oraz ochronny
C. tylko przewody fazowe
D. wszystkie przewody czynne
Wybór tylko przewodów fazowych lub przewodu neutralnego do pomiaru prądu upływu jest niezgodny z zasadami diagnostyki elektrycznej. Ograniczając pomiar do samych przewodów fazowych, pomijamy istotny element równowagi prądów w obwodzie, co może prowadzić do błędnych wniosków o stanie instalacji. Przewód neutralny odgrywa kluczową rolę w bilansowaniu prądów w instalacji trójfazowej, a jego wyłączenie z pomiaru nie pozwala na pełne zrozumienie prądów upływowych, które mogą występować. Z kolei pomiar tylko przewodu neutralnego jest całkowicie niewłaściwy, ponieważ nie dostarcza informacji o prądach płynących przez przewody fazowe, które mogą być źródłem zagrożenia. Dlatego istotne jest, aby w pomiarach uwzględniać wszystkie przewody czynne, co jest zgodne z kryteriami bezpieczeństwa zawartymi w normach, takich jak IEC 60364. Nieprawidłowe zrozumienie roli każdego z przewodów w instalacji elektrycznej prowadzi do ryzykownych sytuacji, w których prądy upływowe mogą pozostać niezauważone, a co za tym idzie, zwiększa się ryzyko wystąpienia porażenia prądem elektrycznym. Każdy pracownik zajmujący się eksploatacją instalacji elektrycznych powinien być świadomy tych aspektów, aby zapewnić pełne bezpieczeństwo oraz zgodność z obowiązującymi normami technicznymi.

Pytanie 12

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. zerową klasę ochrony przed porażeniem
B. najwyższy poziom ochronności
C. brak zabezpieczenia przed kurzem i wilgocią
D. stosowanie separacji ochronnej
Wybór odpowiedzi dotyczących separacji ochronnej, zerowej klasy ochronności oraz najwyższego stopnia ochronności oparty jest na mylnym zrozumieniu klasyfikacji IP i jej zastosowania. Separacja ochronna odnosi się do metod stosowanych w budowie urządzeń w celu zapewnienia bezpieczeństwa użytkownika poprzez oddzielenie części pod napięciem od części dostępnych dla użytkownika. W przypadku oznaczenia IP00 nie ma mowy o jakiejkolwiek separacji, gdyż brak jakiejkolwiek ochrony przed pyłem i wodą oznacza, że użytkownik narażony jest na bezpośredni kontakt z potencjalnie niebezpiecznymi komponentami. Zerowa klasa ochronności przed porażeniem to również niepoprawna interpretacja – IP00 nie odnosi się bezpośrednio do porażenia prądem, ale do ochrony mechanicznej i wodnej. W rzeczywistości klasa ochronności przed porażeniem elektrycznym wyrażana jest innymi symbolami, takimi jak klasy I, II, III, które definiują różne poziomy ochrony. Wreszcie, najwyższy stopień ochronności odnosiłby się do oznaczenia IP68 lub wyższego, które wskazuje na wysoką odporność na zanurzenie w wodzie i pył. Pojmowanie oznaczeń IP jest fundamentalne w kontekście bezpieczeństwa i trwałości urządzeń, a błędne interpretacje mogą prowadzić do niewłaściwego użytkowania i poważnych zagrożeń.

Pytanie 13

W którym układzie sieciowym występuje bezpiecznik iskiernikowy włączony między punkt neutralny strony wtórnej transformatora zasilającego ten układ, a uziom roboczy?

A. IT
B. TN-C
C. TN-S
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 14

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
B. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
C. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 15

Do której z wymienionych grup urządzeń elektrycznych zalicza się przekładniki pomiarowe?

A. Do prądnic tachometrycznych.
B. Do wzmacniaczy maszynowych.
C. Do indukcyjnych sprzęgieł dwukierunkowych.
D. Do transformatorów.
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 16

Ile wynosi znamionowa sprawność silnika trójfazowego o danych: P = 2,2 kW (mocy mechanicznej), U<sub>N</sub> = 400 V, I<sub>N</sub> = 4,6 A, cos φ = 0,82?

A. 0,49
B. 0,84
C. 0,69
D. 0,39
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 17

Na izolatorach wsporczych instaluje się przewody

A. kabelkowe
B. szynowe
C. uzbrojone
D. rdzeniowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 18

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 3 A i 4 bieguny
B. 19 A i 3 bieguny
C. 9 A i 4 bieguny
D. 4 A i 3 bieguny
Podejmując decyzję o wyborze wyłącznika elektrycznego, kluczowe jest zrozumienie charakterystyki prądowej oraz liczby biegunów, co ma bezpośredni wpływ na bezpieczeństwo i funkcjonalność instalacji. Odpowiedzi wskazujące na prąd znamionowy 19 A, 4 A czy 9 A są błędne, ponieważ sugerują zastosowanie wyłączników do obciążeń, które wykraczają poza specyfikacje podane dla modelu S194 B3. Przykładowo, wyłącznik o prądzie 19 A byłby przeznaczony do bardziej intensywnych zastosowań, typowych dla dużych instalacji przemysłowych, co jest nieadekwatne w kontekście tego modelu. Natomiast prąd 4 A czy 9 A także wskazuje na zastosowania, które mogą być zbyt wysokie dla standardowego wyłącznika trójfazowego w małych instalacjach. Przy ocenie odpowiedzi warto zwrócić uwagę na zasady doboru wyłączników, które powinny być dostosowane do specyficznych potrzeb obwodu elektrycznego. W praktyce wykorzystywanie wyłączników o nieodpowiednich parametrach może prowadzić do ich nieprawidłowego działania, co z kolei zwiększa ryzyko uszkodzenia podłączonych urządzeń oraz może stwarzać zagrożenie pożarowe. Wszelkie decyzje w tym zakresie powinny być podejmowane na podstawie dokładnej analizy parametrów technicznych oraz zgodności z normami, np. normami IEC 60947 dotyczącymi wyłączników.

Pytanie 19

W której jednostce miary wyraża się moment siły z jaką należy dokręcać zaciski śrubowe aparatów elektrycznych?

A. Pa
B. Nˑm
C. kg
D. kgˑm2
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 20

Jaką największą wartość może mieć impedancja pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby skuteczna była ochrona przeciwporażeniowa przy uszkodzeniu izolacji, jeśli wiadomo, że wyłączenie zasilania tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B10?

A. 7,7 Ω
B. 8,0 Ω
C. 4,6 Ω
D. 2,3 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 21

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: I<sub>N</sub>25 A; I<sub>ΔN</sub>0,030 A; 230 V~; I<sub>m</sub> 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 0,03 A
B. 230 A
C. 25 A
D. 1000 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 22

Jako uzupełniający środek ochrony przeciwporażeniowej w instalacji mieszkaniowej należy zastosować wyłącznik różnicowoprądowy o prądzie różnicowym

A. 30 mA
B. 300 mA
C. 10 mA
D. 100 mA
Jak dobrze wiesz, wybór wyłącznika różnicowoprądowego o prądzie na przykład 100 mA, 300 mA czy nawet 10 mA może mieć spore znaczenie dla bezpieczeństwa elektrycznego w naszych domach. Te wyłączniki na 100 mA i 300 mA są bardziej zaprojektowane do ochrony sprzętu niż do ochrony ludzi przed porażeniem prądem. Ich wysoki próg zadziałania to problem, bo mogą nie zauważyć małych nieszczelności, które mogą być niebezpieczne dla człowieka. Zazwyczaj stosuje się je w obwodach, gdzie nie chodzi głównie o chronienie ludzi. Z drugiej strony, wyłącznik na 10 mA, chociaż świetny w miejscach z wysokim ryzykiem, jak szpitale, może być za czuły w normalnych warunkach domowych i powodować niepotrzebne wyłączenia. Dlatego ważne jest, żeby wybierać wyłączniki zgodne z normami i przepisami, by naprawdę zapewnić bezpieczeństwo w instalacjach elektrycznych.

Pytanie 23

Jaką największą wartość może mieć impedancja pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby skuteczna była ochrona przeciwporażeniowa przy uszkodzeniu izolacji, jeśli wiadomo, że wyłączenie zasilania tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 6,6 Ω
C. 3,8 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 24

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. żółty
B. zielony
C. niebieski
D. szary
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 25

Poślizg silnika indukcyjnego będzie równy 1, gdy

A. wirnik silnika zostanie dopędzony.
B. silnik pozostanie na biegu jałowym.
C. wirnik silnika będzie zatrzymany.
D. silnik zasilony zostanie przeciwprądem.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 26

Który z wymienionych silników elektrycznych charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej?

A. Synchroniczny.
B. Obcowzbudny prądu stałego.
C. Szeregowy prądu stałego.
D. Asynchroniczny klatkowy.
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 27

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 3,0%
B. 3,4%
C. 6,8%
D. 8,3%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 28

Przewód oznaczony symbolem PEN to przewód

A. uziemiający
B. ochronno-neutralny
C. wyrównawczy
D. ochronny
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia roli różnych typów przewodów w instalacjach elektrycznych. Przewód ochronno-neutralny, oznaczony jako PEN, nie jest tożsamy z przewodem uziemiającym (PE), który ma na celu jedynie ochronę przed porażeniem elektrycznym, łącząc obudowy urządzeń elektrycznych z ziemią. Z kolei przewód neutralny (N) służy do prowadzenia prądu roboczego, a jego funkcje nie obejmują zabezpieczeń przed awariami elektrycznymi. Odpowiedź wskazująca przewód ochronny (PE) jest również błędna, ponieważ przewód ochronny nie przewodzi prądu roboczego, lecz jedynie zapewnia uziemienie. Oznaczenie przewodu wyrównawczego, które również jest błędne, odnosi się do przewodów łączących różne części instalacji w celu zminimalizowania różnic potencjałów, ale nie wypełnia funkcji przewodu PEN. Często błędne odpowiedzi wynikają z mylenia funkcji przewodów w systemach TN, TT i IT, co składa się na brak zrozumienia zasad projektowania instalacji elektrycznych. Właściwe rozróżnienie między tymi przewodami jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Zrozumienie ich funkcji pozwala nie tylko na poprawne projektowanie, ale także na skuteczne przeprowadzanie audytów i konserwacji instalacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 29

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Czerwony
C. Niebieski
D. Żółty
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 30

Ile klawiszy i ile zacisków posiada klasyczny pojedynczy łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski.
B. Dwa klawisze i cztery niezależne zaciski.
C. Jeden klawisz i cztery niezależne zaciski.
D. Dwa klawisze i trzy niezależne zaciski.
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 31

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. metody zabezpieczenia przed porażeniem prądem elektrycznym
B. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
C. ciągłości przewodów ochronnych i neutralnych
D. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 32

Które urządzenia elektryczne są wyposażeniem przyłącza obiektu budowlanego?

A. Wyłącznik różnicowoprądowy i ograniczniki przepięć.
B. Zabezpieczenia przedlicznikowe i licznik energii elektrycznej.
C. Transformator słupowy z rozłącznikiem.
D. Zabezpieczenia nadprądowe poszczególnych obwodów.
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 33

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Luźne połączenie w listwie neutralnej
B. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
C. Zbyt duża moc urządzenia
D. Zbyt duży przekrój uszkodzonego przewodu
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 34

Najmniejszy błąd pomiaru natężenia prądu o wartości 30 mA miliamperomierzem cyfrowym z wyświetlaczem do 2 miejsc po przecinku wystąpi przy użyciu miernika o dokładności

A. ±1,5% + 3 cyfry.
B. ±2,5% + 1 cyfra.
C. ±2,0% + 2 cyfry.
D. ±1,0% + 4 cyfry.
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 35

Które z oznaczeń literowych dotyczy przewodu przeznaczonego do zasilania odbiorników przenośnych?

A. LY
B. OMY
C. YAKY
D. YDY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 36

Które z wymienionych zaleceń <u>nie dotyczy</u> wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
B. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
C. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
D. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
Zalecenie dotyczące zasilania gniazd wtyczkowych w każdym pomieszczeniu z osobnego obwodu jest niezgodne z dobrymi praktykami instalacyjnymi i może prowadzić do nieefektywności w systemie elektrycznym. W rzeczywistości, podział gniazd na osobne obwody dla każdego pomieszczenia zwiększałby koszty zarówno materiałowe, jak i robocze. Przy projektowaniu instalacji elektrycznej kluczowe jest zapewnienie odpowiedniej równowagi między jakością a kosztami. Ponadto, standardy instalacji elektrycznych, takie jak PN-IEC 60364, zalecają grupowanie gniazd wtyczkowych w obwody, co pozwala na lepsze zarządzanie obciążeniem i unikanie przeciążeń. Osobne obwody dla gniazd w każdym pomieszczeniu mogą prowadzić do problemów z dostępnością energii elektrycznej w przypadku awarii jednego z obwodów. W praktyce, w budynkach mieszkalnych gniazda wtyczkowe są najczęściej grupowane według pomieszczeń, a ich zasilanie z jednego obwodu jest powszechne. Taki system zwiększa elastyczność użytkowania i zmniejsza ryzyko wystąpienia przerw w dostawie energii w całym budynku. Ważne jest również, aby pamiętać, że obwody gniazdowe powinny być odpowiednio zabezpieczone przed przeciążeniem, co można osiągnąć przez zastosowanie odpowiednich zabezpieczeń nadprądowych w rozdzielnicy. Takie podejście jest zgodne z obowiązującymi normami i zapewnia bezpieczne oraz funkcjonalne środowisko mieszkalne.

Pytanie 37

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193C25
B. S191B25
C. S191C25
D. S193B25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 38

Które z poniższych elementów <u><strong>nie są częścią</strong></u> dokumentacji technicznej urządzeń elektrycznych?

A. Instrukcja obsługi urządzenia
B. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 39

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. co najmniej raz na 5 lat
B. raz na rok
C. co najmniej raz na 10 lat
D. raz na pół roku
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 40

Która z wymienionych przyczyn odpowiada za zwęglenie izolacji na końcu przewodu fazowego w pobliżu zacisku w puszce rozgałęźnej?

A. Za duży przekrój zastosowanego przewodu.
B. Wzrost napięcia zasilającego spowodowany przepięciem.
C. Poluzowanie się śruby zacisku w puszce.
D. Zbyt mała wartość prądu roboczego.
Poluzowanie się śruby zacisku w puszce rozgałęźnej to jedna z najczęstszych przyczyn zwęglenia izolacji przewodów. Gdy śruba zacisku nie jest odpowiednio dokręcona, może dojść do niewłaściwego kontaktu między przewodem a zaciskiem. Taki luźny kontakt generuje dodatkowe ciepło, co w dłuższej perspektywie prowadzi do degradacji materiałów izolacyjnych. W praktyce, w sytuacji gdy przewód nie jest stabilnie zamocowany, może wystąpić także arczenie, co dodatkowo zwiększa ryzyko uszkodzenia izolacji. Z tego powodu, podczas instalacji elektrycznych, kluczowe jest przestrzeganie standardów dotyczących momentu dokręcenia oraz regularna kontrola stanu złącz. Należy również zwrócić uwagę na jakość używanych materiałów, które powinny spełniać normy PN-EN 60947-1 oraz PN-IEC 60364. Regularne przeglądy mogą pomóc w identyfikacji potencjalnych problemów zanim staną się one poważne, a tym samym zwiększyć bezpieczeństwo instalacji.