Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 21 maja 2025 17:35
  • Data zakończenia: 21 maja 2025 18:15

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
B. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
C. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
D. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 2

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. rozcieńczaniu
B. roztwarzaniu
C. zagęszczaniu
D. liofilizacji
Zagęszczanie jest procesem, który polega na usunięciu części rozpuszczalnika z roztworu, co prowadzi do zwiększenia stężenia składników rozpuszczonych w tym roztworze. Proces ten jest szczególnie istotny w chemii analitycznej, gdzie precyzyjne przygotowanie próbek jest kluczowe dla uzyskania wiarygodnych wyników analiz. Przykładami zastosowania zagęszczania mogą być przygotowanie próbek do spektroskopii lub chromatografii, gdzie wymagane jest osiągnięcie odpowiedniego stężenia analitu. Dodatkowo, w przemyśle farmaceutycznym zagęszczanie jest stosowane w produkcji leków, gdzie stężenie substancji czynnej musi być dokładnie kontrolowane. Standardy branżowe, takie jak GMP (Good Manufacturing Practices), kładą duży nacisk na precyzyjne przygotowanie roztworów, co czyni zagęszczanie kluczowym krokiem w wielu procesach produkcyjnych i analitycznych.

Pytanie 3

Czułość bezwzględna wagi definiuje się jako

A. największe dozwolone obciążenie wagi
B. najmniejsze dozwolone obciążenie wagi
C. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
D. największą masę, która powoduje wyraźne wychylenie wskazówki
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 4

Miesięczne zapotrzebowanie laboratorium analitycznego na 2-propanol wynosi 500 cm3. Na jak długo wystarczy ta substancja?

A. 1 miesiąc
B. 5 miesięcy
C. 3 miesiące
D. 7 miesięcy
Odpowiedzi wskazujące na krótszy czas trwania zaopatrzenia w 2-propanol są wynikiem błędnych obliczeń dotyczących zapotrzebowania na tę substancję. Prawidłowe obliczenie czasu, na który wystarczy zapas, wymaga znajomości obu wartości: całkowitej ilości substancji chemicznej oraz miesięcznego zapotrzebowania. Użytkownicy, którzy wskazali okresy takie jak 3, 1 czy 7 miesięcy, nieprawidłowo oszacowali stosunek tych dwóch wartości. Na przykład, założenie, że 2500 cm3 wystarczy na 3 miesiące, sugeruje, że miesięczne zapotrzebowanie wynosiłoby 833,33 cm3, co nie jest zgodne z założonymi wartościami. Innym typowym błędem jest zakładanie, że zapas może trwać dłużej, niż wynika to z rzeczywistego zapotrzebowania, co prowadzi do nieefektywnego zarządzania stanami magazynowymi. W praktyce laboratoryjnej, wiedza o czasie wyczerpania się substancji chemicznej jest kluczowa dla planowania zakupów, aby uniknąć przestojów w pracy oraz zapewnić ciągłość procesów. Dlatego ważne jest, aby dokładnie zrozumieć obliczenia związane z zapotrzebowaniem na materiały i odpowiednio planować ich zakupy.

Pytanie 5

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na sucho
B. mikrofalową
C. UV
D. na mokro
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 6

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.

A. przemyć skórę dużą ilością wody.
B. podać do picia dużą ilość schłodzonej wody.
C. zastosować na skórę mydło w płynie.
D. polać skórę środkiem zobojętniającym.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 7

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 83,5%
B. 93,4%
C. 88,8%
D. 77,7%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 8

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 7,0000 g
B. 5,0000 g
C. 5,3000 g
D. 7,5000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 9

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. płócienne
B. chroniące przed substancjami chemicznymi
C. zapewniające izolację termiczną
D. zwykłe gumowe
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 10

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. pierwotną
B. ogólną
C. średnią
D. śladową
Odpowiedź 'średnia' jest poprawna, ponieważ w kontekście analizy próbek odnosi się do próbki, która jest reprezentatywną redukcją próbki ogólnej. Średnia próbka jest kluczowa w statystyce i analizach laboratoryjnych, gdyż zapewnia zrównoważony przegląd właściwości całej populacji. Na przykład, w badaniach chemicznych, średnia próbka powinna być przygotowana tak, aby uwzględniała różnorodność w składzie chemicznym analizowanej substancji. Przygotowanie średniej próbki może być realizowane poprzez odpowiednie mieszanie prób z różnych miejsc lub czasów, co jest zgodne z normami ISO dotyczącymi przygotowania próbek. W praktyce, stosowanie średnich próbek pomaga w minimalizacji błędów systematycznych i zwiększa wiarygodność wyników analiz, co jest kluczowe w kontekście kontrolowania jakości produktów w przemyśle oraz w badaniach naukowych. Ustalanie średniej próbki jest także niezbędne przy ocenie zmienności parametrów, co ma wpływ na dalsze podejmowanie decyzji w zakresie jakości czy bezpieczeństwa materiałów.

Pytanie 11

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. HCI
B. K2CrO4
C. H2SO4
D. H2CrO4
Wybór HCl lub K2CrO4 jako alternatywnych reagentów do przygotowania mieszaniny chromowej wykazuje kilka istotnych nieporozumień dotyczących zasad działania tych substancji i ich zastosowania w kontekście czyszczenia szkła laboratoryjnego. Kwas solny (HCl), będący mocnym kwasem, nie ma wystarczających właściwości utleniających, aby efektywnie wspomagać proces usuwania zanieczyszczeń z powierzchni szkła. Jego zastosowanie w tym kontekście może prowadzić do nieefektywnego czyszczenia, a w niektórych przypadkach może nawet powodować uszkodzenia szkła, zwłaszcza w obecności metali ciężkich. W przypadku K2CrO4, mimo że jest to źródło chromu, jego działanie w czyszczeniu szkła jest ograniczone w porównaniu do H2SO4. K2CrO4 jest stosunkowo mało reaktywny, a w połączeniu z kwasami nie tworzy tak aktywnych kompleksów, jak w przypadku H2SO4. Niewłaściwe podejście do wyboru reagentu może prowadzić do nieporozumień w laboratoriach, a także do niewłaściwego interpretowania skuteczności czyszczenia. Często błędne myślenie o roli poszczególnych reagentów w reakcjach chemicznych prowadzi do wyboru substancji, które nie są optymalne dla zamierzonego celu. Wiedza na temat chemicznych właściwości substancji oraz ich interakcji jest kluczowa dla prawidłowego doboru reagentów, co powinno być zgodne z najlepszymi praktykami w laboratoriach chemicznych.

Pytanie 12

Procedura przygotowania roztworu Zimmermana-Reinharda
70 g MnSO4·10H2O rozpuścić w 500 cm3 wody destylowanej, dodając ostrożnie 125 cm3 stężonego H2SO4 i 125 cm3 85% H3PO4, ciągle mieszając. Uzupełnić wodą destylowaną do objętości 1dm3.
Który zestaw ilości odczynników jest niezbędny do otrzymania 0,5 dm3 roztworu Zimmermana-Reinharda, zgodnie z podaną procedurą?

MnSO4·10H2O
[g]
Stężony H2SO4
[cm3]
85% H3PO4
[cm3]
Woda destylowana
[cm3]
A.35 g62,5 cm362,5 cm3ok. 370 cm3
B.35 g62,5 cm362,5 cm3ok. 420 cm3
C.70 g125 cm3125 cm3ok. 500 cm3
D.70 g125 cm3125 cm3ok. 800 cm3

A. C.
B. B.
C. D.
D. A.
Wybierając inne opcje niż A, można napotkać na typowe błędy związane z proporcjami substancji chemicznych. Wiele osób może błędnie założyć, że wystarczy po prostu dodać mniejszą ilość reagentów, nie uwzględniając przy tym proporcji. Na przykład, zmniejszenie ogólnej objętości roztworu z 1 dm³ do 0,5 dm³ wymaga odpowiedniego zmniejszenia ilości każdego z reagentów o połowę, co jest kluczowe, aby zachować ich stosunek. Kiedy ktoś wybiera inną opcję, często ignoruje fakt, że każdy z reagentów ma swoje specyficzne właściwości chemiczne i ich zmiana może prowadzić do nieprzewidywalnych wyników. Ponadto, niepoprawne ilości reagentów mogą prowadzić do niebezpiecznych sytuacji w laboratorium, takich jak nieodpowiednie stężenie kwasów, co może wpłynąć na właściwości roztworu oraz procesy chemiczne. Inny błąd to zbytnia pewność siebie w obliczeniach, co może skutkować pominięciem ważnych szczegółów, takich jak waga molowa reagentów. Mylnie interpretując instrukcje, można również nie zauważyć, że każdy krok w procedurze ma na celu nie tylko przygotowanie roztworu, ale również bezpieczeństwo pracy w laboratorium. Pamiętajmy, że przestrzeganie dokładnych proporcji jest kluczem do sukcesu w chemii, ponieważ nawet niewielkie różnice mogą prowadzić do znaczących zmian w wynikach eksperymentu.

Pytanie 13

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 19,6%
B. 36,8%
C. 78,3%
D. 39,2%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 14

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Azotan(V) srebra
B. Tlenek rtęci(II)
C. Glukozę
D. Azbest
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 15

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
B. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
C. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
D. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 16

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Posypanie miejsca solą kuchenną
D. Zaklejenie miejsca plastrem
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 17

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodę
B. chlorek cynku i wodorotlenek sodu
C. tlenek cynku i wodorotlenek sodu
D. cynk i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 18

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 27,740 g
B. 27,745 g
C. 22,740 g
D. 22,745 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 19

Czego brakuje w zestawie pokazanym na ilustracji?

A. stojak, łącznik i łapa
B. stojak, łącznik oraz termometr
C. bagietka, termometr oraz siatka
D. stojak, termometr oraz siatka
Odpowiedź 'statyw, łącznik i łapa' jest poprawna, ponieważ te elementy są niezbędne do stabilizacji i prawidłowego montażu sprzętu laboratoryjnego. Statyw jest kluczowym elementem w każdej pracowni chemicznej lub fizycznej, umożliwiającym bezpieczne trzymanie różnych akcesoriów, takich jak naczynia reakcyjne czy przyrządy pomiarowe. Łącznik służy do łączenia różnych elementów sprzętu, co pozwala na bardziej złożone konfiguracje, które mogą być wymagane w trakcie eksperymentów. Łapa natomiast zapewnia pewne uchwycenie i stabilizację, co jest szczególnie ważne w przypadku użycia szkła laboratoryjnego, które jest wrażliwe na uszkodzenia. W praktyce, zastosowanie tych elementów pozwala na przeprowadzanie doświadczeń w sposób bezpieczny oraz efektywny, co jest zgodne z najlepszymi praktykami w laboratoriach. Użycie statywów i uchwytów jest standardem w każdym laboratorium, co podkreśla ich fundamentalne znaczenie w pracy naukowej.

Pytanie 20

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. parownica z łyżeczką porcelanową
B. zlewka z bagietką
C. krystalizator ze szpatułką metalową
D. moździerz z tłuczkiem
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 21

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla człowieka
B. dla środowiska
C. chemiczne
D. fizyczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 22

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną i wodociągowo-kanalizacyjną
B. wodociągową i grzewczą
C. elektryczną, próżniową oraz hydrantową
D. elektryczną oraz chłodniczą
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 23

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 5,00 g
B. 0,05 g
C. 7,50 g
D. 0,75 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 24

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. rozpuszczanie i rozcieńczanie
C. mineralizację suchą
D. wymywanie lub wymianę jonową
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 25

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(V) z azotu
B. kwasu azotowego(IV) z azotu
C. kwasu azotowego(III) z azotu
D. kwasu azotowego(II) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 26

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. ze szkła borokrzemowego
B. z polietylenu
C. ze szkła krzemowego
D. ze szkła sodowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 27

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. ciekłej
B. stałej
C. gazowej
D. półciekłej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 28

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. powietrza
B. ciepła
C. tlenu
D. światła
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 29

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
C. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
D. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
W analizowanych odpowiedziach występuje szereg nieprawidłowości dotyczących obliczeń proporcji składników eluentu. W przypadku pierwszej odpowiedzi, ilości toluenu, acetonu i kwasu mrówkowego nie odpowiadają wymaganym proporcjom 10:4:1. Obliczenia są zbyt małe, co prowadzi do niewłaściwego tworzenia roztworu. W drugiej odpowiedzi, chociaż objętości są zwiększone, proporcje nadal nie odpowiadają wymaganym wartościom. Wartości 200 cm³ toluenu, 80 cm³ acetonu i 20 cm³ kwasu mrówkowego są zgodne z wymogami stosunku, co czyni tę odpowiedź poprawną, ale inne odpowiedzi nie tylko nie spełniają wymogów, ale także mogą wprowadzać w błąd osoby, które bazują na tych informacjach. Dodatkowo, w trzeciej odpowiedzi objętość toluenu jest zbyt mała, a acetonu zbyt duża, co może prowadzić do nieefektywnej separacji w trakcie chromatografii. Warto pamiętać, że dokładne obliczenia są kluczowe w pracy laboratoryjnej, ponieważ wpływają na jakość i powtarzalność wyników analiz. Zastosowanie niewłaściwych proporcji eluentu może skutkować zafałszowaniem danych i błędnymi wynikami interpretacyjnymi w badaniach chemicznych.

Pytanie 30

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na mokro
B. topnienia próbki
C. wyprażenia próbki do stałej masy
D. mineralizacji próbki na sucho
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 31

W urządzeniu Soxhleta wykonuje się

A. ługowanie
B. sublimację
C. krystalizację
D. dekantację
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 32

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
B. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
C. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
D. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 33

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 0,1 mol/dm3
C. 0,01 mol/dm3
D. 1 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 34

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. mikroanalityczną.
B. hydrostatyczną.
C. automatyczną.
D. precyzyjną.
Waga precyzyjna to urządzenie laboratoryjne, które charakteryzuje się wysoką dokładnością i precyzją pomiarów masy. Na zdjęciu widoczna jest waga, która posiada cyfrowy wyświetlacz oraz przyciski kalibracji i tarowania, co jest typowe dla wag precyzyjnych. Tego rodzaju wagi znajdują zastosowanie w wielu dziedzinach, takich jak chemia, biotechnologia czy farmacja, gdzie dokładne ważenie substancji jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Wagi precyzyjne są często wykorzystywane do ważenia małych ilości reagentów, co jest istotne w procesach analitycznych. W branży laboratoryjnej stosuje się standardy, takie jak ISO/IEC 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących, co podkreśla znaczenie precyzyjnego ważenia. Dzięki zastosowaniu technologii cyfrowej, wagi te oferują również możliwość podłączenia do komputerów oraz oprogramowania, co ułatwia dokumentację i analizę danych.

Pytanie 35

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. techniczny
B. czysty do analizy
C. spektralnie czysty
D. czysty
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 36

Jakie jest znaczenie skrótu: cz. na etykiecie reagentu chemicznego?

A. Czystość chemiczna
B. Czysty
C. Czystość do analizy
D. Czystość spektralna
Skrót 'cz.' na etykiecie odczynnika chemicznego oznacza 'czysty'. Jest to termin powszechnie używany w chemii, który wskazuje, że dany odczynnik jest odpowiedniej jakości i spełnia określone standardy czystości. Czystość odczynnika jest kluczowym aspektem w badaniach analitycznych, gdyż zanieczyszczenia mogą wpływać na wyniki pomiarów oraz jakość przeprowadzanych reakcji chemicznych. Na przykład w spektroskopii czy chromatografii ważne jest, aby stosowane substancje były jak najbardziej czyste, aby uniknąć interferencji. W praktyce, odczynniki oznaczone jako czyste są używane w laboratoriach do analizy chemicznej, syntezy chemicznej oraz w innych zastosowaniach, gdzie zanieczyszczenia mogą prowadzić do błędnych wyników. Standardy takie jak ASTM i ISO dostarczają wytycznych dotyczących jakości odczynników, co pomaga w zapewnieniu ich odpowiedniej czystości.

Pytanie 37

Aby otrzymać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Aby przygotować roztwór AgNO3 o stężeniu 0,1 mol/dm3, kluczowe jest dokładne obliczenie masy soli do odważenia. Masa molowa AgNO3 wynosi 169,8 g/mol, co oznacza, że 1 mol roztworu zawiera 169,8 g substancji. Dla stężenia 0,1 mol/dm3 obliczamy masę: 0,1 mol/dm3 * 169,8 g/mol = 16,98 g. Jednak w przypadku 100 cm3 roztworu potrzebujemy 1/10 tej masy, co daje 1,698 g. Właściwe wykonanie tego kroku jest zgodne z dobrą praktyką laboratoryjną, która podkreśla znaczenie precyzyjnego przygotowania roztworów, aby zapewnić powtarzalność wyników. Ważne jest również, aby całkowicie rozpuścić substancję w wodzie destylowanej przed uzupełnieniem do kreski w kolbie miarowej, co pozwoli uniknąć błędów związanych z niedostatecznym wymieszaniem. Tego typu procedury są standardem w laboratoriach chemicznych, co czyni je praktycznym doświadczeniem dla studentów oraz profesjonalistów w dziedzinie chemii.

Pytanie 38

Proces, w którym woda jest usuwana z zamrożonego materiału poprzez sublimację lodu
(czyli bezpośrednie przejście do stanu pary z pominięciem stanu ciekłego) nazywa się

A. asocjacja
B. pasteryzacja
C. homogenizacja
D. liofilizacja
Liofilizacja to naprawdę ciekawy proces. W skrócie, chodzi o to, że z zamrożonego materiału usuwa się wodę poprzez sublimację, czyli jakby bezpośrednie przejście lodu w parę. To szczególnie ważne w branży spożywczej i farmaceutycznej, bo dzięki temu produkty utrzymują swoje właściwości, smak i wartości odżywcze. Możemy zobaczyć to w przypadku suszonych owoców, liofilizowanej kawy czy nawet leków, które muszą być stabilne. To, co mi się podoba, to że liofilizacja pozwala na długoterminowe przechowywanie bez konserwantów, co jest super zdrowe. W farmacji z kolei, to standard w produkcji niektórych leków, co sprawia, że łatwiej je transportować i podawać, bo rozpuszczają się w wodzie tuż przed użyciem. Po prostu świetna sprawa!

Pytanie 39

Destylacja to metoda

A. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
B. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
C. transformacji ciała z formy ciekłej w stałą
D. syntezy substancji zachodząca w obecności katalizatora
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 40

Po połączeniu 50 cm3 wody z 50 cm3 alkoholu etylowego, objętość otrzymanej mieszanki jest poniżej 100 cm3. Zjawisko to jest spowodowane

A. desorpcją
B. kontrakcją
C. adsorpcją
D. ekstrakcją
Kontrakcja to zjawisko, które zachodzi w wyniku interakcji cząsteczek dwóch różnych cieczy, w tym przypadku wody i alkoholu etylowego. Gdy te dwa płyny są mieszane, cząsteczki alkoholu wchodzą w interakcję z cząsteczkami wody, co prowadzi do efektywnego zajmowania mniejszej objętości niż suma objętości poszczególnych cieczy. To zjawisko jest ściśle związane z różnicami w gęstości oraz strukturze cząsteczek, co skutkuje zmniejszeniem przestrzeni pomiędzy nimi. Kompaktowanie cząsteczek może być wykorzystane w praktyce podczas przygotowywania roztworów o określonym stężeniu, gdzie precyzyjne obliczenia objętości są kluczowe. Znajomość zjawiska kontrakcji jest istotna w przemyśle chemicznym i farmaceutycznym, gdzie odpowiednie proporcje składników zapewniają pożądane właściwości produktów. Na przykład, przy produkcji alkoholi, takich jak wino czy piwo, zrozumienie kontrakcji jest niezbędne do uzyskania optymalnych smaków i aromatów, co wpływa na jakość końcowego produktu.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły