Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 3 czerwca 2025 18:27
  • Data zakończenia: 3 czerwca 2025 18:42

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. plastiku lub stali
B. miedzi lub żeliwa
C. aluminium lub miedzi
D. aluminium lub mosiądzu
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 2

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Zachodnia
B. Południowa
C. Wschodnia
D. Północna
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 3

Na podstawie projektu technicznego małej elektrowni wodnej wykonuje się

A. kosztorys inwestorski
B. pomiar powykonawczy
C. zgłoszenie do urzędu dozoru technicznego
D. protokół odbioru
Obmiar powykonawczy, protokół zdawczo-odbiorczy oraz zgłoszenie do urzędu dozoru technicznego to dokumenty o różnych celach i zadaniach, które nie są bezpośrednio związane z wstępnym oszacowaniem kosztów inwestycji. Obmiar powykonawczy, sporządzany po zakończeniu budowy, ma na celu dokładne określenie rzeczywistych ilości wykonanych prac oraz zużytych materiałów. Jego głównym celem jest analiza i porównanie z pierwotnym kosztorysem, jednak nie ma zastosowania w fazie projektowania. Protokół zdawczo-odbiorczy z kolei dokumentuje formalne zakończenie robót budowlanych oraz potwierdza, że prace zostały wykonane zgodnie z projektem i obowiązującymi normami. Jest to dokument niezbędny do odbioru technicznego, ale również nie odnosi się do kalkulacji kosztów. Zgłoszenie do urzędu dozoru technicznego to procedura mająca na celu zapewnienie, że obiekty energetyczne odpowiadają obowiązującym przepisom bezpieczeństwa. Chociaż jest ważnym krokiem w procesie uzyskiwania zgód na eksploatację, nie ma bezpośredniego związku z fazą kosztorysowania. Te różnice w funkcji i zastosowaniu dokumentów często prowadzą do błędnych wniosków, gdyż inwestorzy mogą mylić ich rolę w procesie realizacji inwestycji. Zrozumienie każdej z tych dokumentacji oraz ich odpowiednie zastosowanie w cyklu życia projektu jest kluczowe, aby uniknąć nieporozumień i nieefektywności w zarządzaniu kosztami oraz zgodności z regulacjami branżowymi.

Pytanie 4

Współczynnik wydajności pompy ciepła COP określa się jako

A. iloczyn uzyskanej mocy grzewczej i mocy elektrycznej pobranej
B. iloraz mocy grzewczej uzyskanej do mocy elektrycznej pobranej
C. suma mocy elektrycznej oraz grzewczej
D. różnica między pobraną mocą elektryczną a mocą grzewczą
Definicje zawarte w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ opierają się na nieprecyzyjnych koncepcjach dotyczących działania pomp ciepła. Suma mocy grzewczej i elektrycznej nie ma zastosowania w kontekście efektywności pompy ciepła, ponieważ nie odzwierciedla rzeczywistego przekształcenia energii. W rzeczywistości, pompa ciepła nie produkuje mocy elektrycznej, lecz wykorzystuje energię elektryczną do przesuwania ciepła, co czyni ten sposób analizy niewłaściwym. Różnica pomiędzy mocą pobraną a mocą grzewczą również nie jest adekwatna, ponieważ nie pokazuje, jak efektywnie pompa przekształca energię elektryczną w ciepło. Takie podejście można uznać za uproszczenie, które nie uwzględnia zasadniczej zasady działania tych urządzeń. Propozycja obliczania efektywności jako iloczynu uzyskanej mocy grzewczej i pobranej mocy elektrycznej także jest błędna, ponieważ nie odzwierciedla relacji między tymi dwoma wartościami. W przypadku pomp ciepła kluczowe jest zrozumienie, że COP jest miarą efektywności, a nie prostym produktem, co często prowadzi do mylnych interpretacji. Kluczowym błędem myślowym jest zatem nierozumienie, że efektywność pompy ciepła powinna być mierzona w kontekście energii przekształconej w użyteczne ciepło, a nie poprzez dodawanie lub mnożenie wartości mocy, które nie mają sensu w tym kontekście.

Pytanie 5

Producent zapewnia, że wyrób spełnia normy unijne poprzez umieszczenie na nim symbolu

A. EMC
B. TM
C. CE
D. ISO
Znak CE jest oznaczeniem, które świadczy o zgodności wyrobu z przepisami Unii Europejskiej, co oznacza, że produkt spełnia określone wymagania dotyczące zdrowia, bezpieczeństwa oraz ochrony środowiska. Oznaczenie to jest wymagane dla wielu grup produktów, takich jak urządzenia elektroniczne, zabawki, czy maszyny, i jest kluczowe dla zapewnienia, że wyroby te mogą być swobodnie wprowadzane na rynek krajów członkowskich UE. Przykładem zastosowania znaku CE jest wprowadzenie na rynek nowych sprzętów elektrycznych, które muszą przejść odpowiednie testy oraz certyfikacje, aby upewnić się, że nie emitują nadmiernych zakłóceń elektromagnetycznych oraz są bezpieczne w użytkowaniu. Znak CE jest również istotnym elementem, który zwiększa konkurencyjność produktów, ponieważ świadczy o przestrzeganiu europejskich norm i standardów. Właściwe oznakowanie CE jest zatem nie tylko regulacją prawną, ale także elementem budowania zaufania konsumentów do produktów pochodzących z UE, co przekłada się na ich lepszą sprzedaż i akceptację na rynku.

Pytanie 6

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. przekształcania prądu stałego na prąd przemienny
B. kontrolowania procesu ładowania akumulatorów
C. ochrony systemu przed przetężeniem
D. ochrony akumulatorów przed całkowitym wyładowaniem
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 7

Aby w zbiorniku buforowym umożliwić dostarczanie na różnych poziomach czynnika o określonej temperaturze, trzeba zainstalować

A. odpowietrznik
B. regulator przepływu
C. zespół pompowy
D. stratyfikator
Stratyfikator jest urządzeniem wykorzystywanym w zbiornikach buforowych, które pozwala na efektywne zarządzanie różnymi poziomami temperatury czynnika. Działa on na zasadzie oddzielania warstw cieczy o różnych temperaturach, co umożliwia ich jednoczesne przechowywanie i pobieranie. Dzięki zastosowaniu stratyfikatora możliwe jest uzyskanie lepszej efektywności energetycznej, a także minimalizacja strat ciepła. W praktyce, stratyfikatory są stosowane w systemach ogrzewania i chłodzenia, gdzie kluczowe jest dostarczanie czynnika o odpowiedniej temperaturze do różnych odbiorników. Na przykład, w systemach ogrzewania budynków, stratyfikator pozwala na pobieranie ciepłej wody na górze zbiornika, podczas gdy zimniejsza woda pozostaje w dolnej warstwie. Takie podejście jest zgodne z dobrymi praktykami inżynieryjnymi, które promują efektywność energetyczną i optymalizację procesów technologicznych, co przekłada się na oszczędności kosztów eksploatacyjnych.

Pytanie 8

W instalacji grzewczej, jaki element kontroluje pracę sterownik solarny?

A. pompy obiegowej ciepłej wody użytkowej
B. pompy solarnej
C. zaworu zabezpieczającego
D. pompy obiegowej centralnego ogrzewania
Sterownik solarny w instalacji grzewczej ma za zadanie zarządzać pracą pompy solarnej, co jest kluczowe dla efektywnego wykorzystywania energii słonecznej. Jego głównym celem jest optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Gdy temperatura czynnika grzewczego w kolektorach przekracza określoną wartość, sterownik uruchamia pompę solarną, co pozwala na przesyłanie ciepła do zbiornika buforowego lub do instalacji grzewczej budynku. Przykładem praktycznego zastosowania może być system ogrzewania wody użytkowej, gdzie ciepło ze słońca jest efektywnie wykorzystane do podgrzewania wody, co redukuje koszty energii oraz wpływ na środowisko. Zgodnie z dobrymi praktykami branżowymi, zastosowanie automatyki w instalacjach solarnych znacząco zwiększa ich wydajność, minimalizując straty energii oraz maksymalizując korzyści ekonomiczne i ekologiczne.

Pytanie 9

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 10,5 t
B. 11,5 t
C. 12,5 t
D. 9,5 t
Odpowiedź 11,5 t jest prawidłowa, ponieważ maksymalny dopuszczalny nacisk na pojedynczą oś napędową pojazdu przewożącego ładunki wielkogabarytowe, w tym elementy siłowni wiatrowych, jest określany przez przepisy prawa drogowego i standardy techniczne. W Polsce, zgodnie z wytycznymi Głównego Inspektoratu Transportu Drogowego oraz Generalnej Dyrekcji Dróg Krajowych i Autostrad, dopuszczalne obciążenie osi dla pojazdów transportujących ładunki o nietypowych wymiarach i masie wynosi 11,5 t. W praktyce, znajomość tych norm jest kluczowa dla efektywnego planowania transportu, ponieważ przekroczenie dozwolonego nacisku może prowadzić do poważnych konsekwencji, takich jak uszkodzenia infrastruktury drogowej, nałożenie kar finansowych, a także zwiększenie ryzyka wypadków. Przygotowując transport elementów siłowni wiatrowych, ważne jest również zorganizowanie odpowiednich zezwoleń oraz współpraca z lokalnymi władzami drogowymi, co pozwala na bezpieczne i zgodne z przepisami przemieszczanie się po drogach.

Pytanie 10

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. obecne w nich aluminium prowadzi do degradacji glikolu
B. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła
C. brak jest odpowiednich złączek do połączenia z kolektorem
D. nie są odporne na wysokie temperatury
Rury PEX/Al/PEX, składające się z warstw polietylenu i aluminium, nie są odpowiednie do zastosowań w systemach solarnych ze względu na ich niską odporność na wysokie temperatury. W instalacjach solarnych, zwłaszcza w kolektorach, mogą występować temperatury znacznie przekraczające 100°C, co prowadzi do degradacji materiałów takich jak polietylen. Wysoka temperatura może powodować osłabienie struktury rury, co skutkuje ryzykiem wycieków i awarii całego systemu. Przykładem alternatywnych materiałów, które są bardziej odpowiednie do takich instalacji, są rury miedziane lub stalowe, które charakteryzują się wysoką odpornością na temperaturę i ciśnienie. Wybór właściwych materiałów jest kluczowy dla zapewnienia efektywności energetycznej i trwałości systemu solarnego, co jest zgodne z najlepszymi praktykami w branży instalacji OZE. Warto pamiętać, że zgodność z normami PN-EN 12976 dotyczącymi systemów solarnych może pomóc w uniknięciu problemów związanych z niewłaściwym doborem materiałów.

Pytanie 11

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 1,0
B. 3,0
C. 4,5
D. 4,0
Wybierając inne wartości współczynnika COP, można nieprawidłowo ocenić efektywność pompy ciepła. Odpowiedzi takie jak 4,0, 1,0 czy 4,5 mogą wynikać z typowych błędów myślowych związanych z interpretacją danych. Warto zauważyć, że współczynnik COP o wartości 1,0 oznaczałby, że moc grzewcza jest równa mocy elektrycznej, co jest nieefektywne i niepraktyczne w kontekście nowoczesnych rozwiązań grzewczych. Pompy ciepła są projektowane tak, aby przewyższały zużycie energii, dlatego COP powinien wynosić przynajmniej 3,0. Z kolei wartości takie jak 4,0 czy 4,5 sugerują, że pompa ciepła dostarczałaby jeszcze więcej energii cieplnej, co może być mylące, ponieważ takie wskaźniki wymagają specyficznych warunków pracy, często przy znacznie niższych temperaturach otoczenia. W realnych warunkach operacyjnych, na które wpływają zmienne takie jak temperatura zewnętrzna czy rodzaj medium grzewczego, osiągnięcie tak wysokiego COP może być niezwykle trudne. Praktyki branżowe podkreślają, że wartości COP należy analizować w kontekście specyficznych danych technicznych oraz warunków użytkowania, co czyni odpowiedź 3,0 najbardziej zbliżoną do rzeczywistości.

Pytanie 12

Elektrownie wodne, które czerpią energię z ruchu wody, nazywamy elektrowniami

A. cieplnymi
B. przepływowymi
C. regulacyjnymi
D. szczytowo-pompowymi
Wybór odpowiedzi regulacyjne, cieplne i szczytowo-pompowe wskazuje na nieporozumienia związane z funkcjonowaniem różnych typów elektrowni wodnych. Elektrownie regulacyjne są projektowane do zarządzania przepływem wody w rzekach w sposób kontrolowany, co pozwala na utrzymanie stałego poziomu wody w zbiornikach, ale nie koncentrują się na bezpośrednim wykorzystaniu naturalnego przepływu wody, jak ma to miejsce w elektrowniach przepływowych. Z kolei elektrownie cieplne polegają na spalaniu paliw kopalnych do generowania ciepła, które jest następnie przekształcane w energię elektryczną, co jest całkowicie odmiennym procesem od wykorzystania energii wodnej. Elektrownie szczytowo-pompowe z kolei działają na zasadzie magazynowania energii, podnosząc wodę do wyższych zbiorników w czasie niskiego zapotrzebowania na energię, a następnie uwalniając ją do wytwarzania energii w okresach szczytowego zapotrzebowania. Takie różnice w mechanizmach działania tych elektrowni mogą prowadzić do błędów w klasyfikacji i zrozumieniu ich funkcji. Zrozumienie podstawowych różnic między tymi typami elektrowni jest kluczowe w kontekście rozwoju i zarządzania systemami energetycznymi, co jest zgodne z najlepszymi praktykami w zakresie zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 13

Głównym celem instalacji fotowoltaicznej typu on-grid jest produkcja energii elektrycznej

A. w lokalizacjach, gdzie nie ma dostępu do sieci elektrycznych
B. na potrzeby własne oraz do sieci elektrycznej
C. wyłącznie na potrzeby własne, bez podłączenia do sieci
D. do przechowywania w akumulatorach
Instalacja fotowoltaiczna typu on-grid jest zaprojektowana przede wszystkim do wytwarzania energii elektrycznej, która może być wykorzystywana zarówno do zaspokajania własnych potrzeb energetycznych użytkownika, jak i do zasilania sieci elektrycznej. W przypadku tego systemu energię elektryczną wytwarza się na podstawie promieniowania słonecznego, a nadmiar wyprodukowanej energii jest przesyłany do lokalnej sieci energetycznej. Dzięki temu użytkownik może korzystać z energii z paneli słonecznych, a jednocześnie wygenerować dodatkowy zysk poprzez sprzedaż nadwyżki energii. Wiele krajów stosuje systemy net meteringu, które pozwalają na rozliczanie energii, co sprawia, że instalacje on-grid stają się ekonomicznie opłacalne. Dodatkowo, te instalacje są zgodne z aktualnymi standardami branżowymi, co zapewnia ich efektywność oraz bezpieczeństwo. Przykładem może być instalacja domowa, gdzie energia z paneli zasila urządzenia elektryczne, a nadmiar energii jest oddawany do sieci, co przyczynia się do zmniejszenia rachunków za energię i korzystania z odnawialnych źródeł energii.

Pytanie 14

Do przeglądu technicznego instalacji solarnej nie wlicza się

A. kontroli zabezpieczeń antykorozyjnych
B. odczytu oraz oceny wydajności solarnej
C. weryfikacji ochrony przed zamarzaniem
D. napełniania instalacji cieczą solarną
Napełnianie instalacji cieczą solarną nie jest częścią przeglądu technicznego instalacji solarnej, ponieważ ten proces odbywa się zazwyczaj w momencie uruchamiania systemu. Ciecz solarna, która jest stosowana w systemach solarnych, ma za zadanie transportować ciepło z kolektorów do zasobnika. W trakcie przeglądów technicznych koncentrujemy się na ocenie funkcjonalności i efektywności systemu, a nie na procesach, które mają miejsce na początku jego eksploatacji. Przegląd techniczny powinien obejmować takie elementy jak kontrola ochrony antykorozyjnej, co jest istotne dla długowieczności komponentów, a także odczyt oraz ocenę uzysku solarnego, co pozwala na ocenę wydajności całego systemu. Dodatkowo, kontrola ochrony przed zamarzaniem jest kluczowa w kraju takim jak Polska, gdzie zimowe temperatury mogą wpływać na działanie instalacji. Te działania są zgodne z normami branżowymi i praktykami, które mają na celu zapewnienie niezawodności i efektywności systemów solarnych w dłuższej perspektywie czasowej.

Pytanie 15

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 20 kW
B. 40 kW
C. 30 kW
D. 10 kW
Montaż instalacji fotowoltaicznej nie wymaga pozwolenia na budowę, jeśli jej wysokość nie przekracza 3 m, a moc elektryczna jest mniejsza niż 40 kW. Odpowiedź 40 kW jest zatem prawidłowa, ponieważ zgodnie z przepisami prawa budowlanego w Polsce, instalacje o mocy do 40 kW mogą być zrealizowane na podstawie zgłoszenia zamiast pozwolenia. To z kolei ułatwia proces instalacji, co jest szczególnie korzystne dla małych systemów, które często są stosowane w gospodarstwach domowych lub małych przedsiębiorstwach. Na przykład, instalacja o mocy 30 kW może pokryć zapotrzebowanie na energię w przeciętnym domu jednorodzinnym, co skutkuje znacznymi oszczędnościami na rachunkach za energię elektryczną. Dodatkowo, stosowanie instalacji fotowoltaicznych o mocy poniżej 40 kW jest zgodne z zasadami zrównoważonego rozwoju i wspiera transformację energetyczną, redukując emisję dwutlenku węgla. Warto także zaznaczyć, że przed przystąpieniem do montażu warto zasięgnąć porady specjalistów oraz sprawdzić lokalne regulacje, aby upewnić się, że instalacja spełnia wszelkie wymagania techniczne i prawne.

Pytanie 16

W przypadku modułów ogniw fotowoltaicznych połączonych szeregowo, całkowite zacienienie jednego ogniwa skutkuje

A. zmniejszeniem mocy modułu o 50%
B. zmniejszeniem mocy modułu do zera
C. odłączeniem modułu
D. dwukrotnym wzrostem napięcia modułu
Zrozumienie skutków zacienienia ogniw fotowoltaicznych jest naprawdę istotne, gdy chodzi o efektywność całego systemu. Jeśli ktoś myśli, że spadek mocy modułu wynosi 50% albo że napięcie wzrasta dwukrotnie, to jest w dużym błędzie. To trochę ignoruje podstawowe zasady, jak działa układ szeregowy. Przy spadku mocy o 50% system nie działa tak, bo prąd musi być taki sam we wszystkich ogniwach. Kiedy jedno ogniwo przestaje działać przez cień, to wydajność całego systemu spada do zera, bez znaczenia, jak mocne są inne ogniwa. A to, że napięcie może być wyższe, kiedy ogniwo jest zacienione, to też nie jest prawda; w pełni zacienione ogniwo nie może mieć większego napięcia niż w normalnej pracy. Co do odłączenia modułu, to też nie jest typowe – moduł jest w obiegu, ale jego wydajność jest równa zeru. Dlatego tak ważne jest, żeby projektanci instalacji fotowoltaicznych naprawdę uwzględniali potencjalne cienie i korzystali z takich rozwiązań jak diody bypass, które mogą zmniejszyć straty energii przy częściowym zacienieniu.

Pytanie 17

Po zakończeniu robót związanych z zamknięciem wykopu należy przeprowadzić odbiór

A. gwarancyjnego
B. końcowego
C. częściowego
D. inwestorskiego
Odpowiedź częściowa jest prawidłowa, ponieważ odbiór częściowy jest kluczowym elementem procesu budowlanego, umożliwiającym kontrolę jakości wykonanych prac na różnych etapach projektu. Po zakończeniu robót zakrywania wykopu, dokonanie odbioru częściowego pozwala inspektorom i kierownikom budowy na weryfikację, czy prace zostały zrealizowane zgodnie z projektem oraz normami budowlanymi. Na tym etapie można sprawdzić, czy zastosowane materiały są odpowiadające wymaganiom technicznym, jak również ocenić, czy wykonane czynności nie stwarzają zagrożenia dla dalszych prac. Praktyczne zastosowanie odbioru częściowego jest szczególnie widoczne w dużych projektach budowlanych, gdzie każdy etap wymaga szczegółowej analizy i dokumentacji, co zwiększa przejrzystość inwestycji i minimalizuje ryzyko późniejszych usterek. W kontekście dobrych praktyk budowlanych, odbiór częściowy jest nie tylko procedurą kontrolną, ale także sposobem na zapewnienie ciągłości i bezpieczeństwa prac budowlanych. Dodatkowo, dokumentacja z odbioru częściowego jest istotna w razie przyszłych roszczeń lub kontroli zewnętrznych.

Pytanie 18

Jakiego rodzaju złączkę powinno się zastosować do łączenia paneli słonecznych?

A. WAGO
B. UDW2
C. MC4
D. URI
Złączki MC4 są standardem w branży fotowoltaicznej, a ich zastosowanie w łączeniu paneli słonecznych jest powszechnie uznawane za najlepszą praktykę. Wyróżniają się one wysoką odpornością na warunki atmosferyczne oraz łatwością montażu, co czyni je idealnym rozwiązaniem dla instalacji PV. Złączki te są zaprojektowane tak, aby zapewnić szczelne i bezpieczne połączenia, co minimalizuje ryzyko korozji i utraty wydajności systemu. Dzięki zastosowaniu złączek MC4, można osiągnąć wysoką wydajność energetyczną oraz długoterminową niezawodność instalacji. Przykładem ich zastosowania jest łączenie modułów w systemach grid-tied, gdzie istotne jest, aby połączenia były stabilne i odporne na działanie promieni UV oraz niskich temperatur. Dodatkowo, złącza MC4 są kompatybilne z szeroką gamą produktów na rynku, co zwiększa ich uniwersalność i ułatwia integrację z innymi komponentami systemu fotowoltaicznego. Używanie złączek MC4 jest zgodne z normami międzynarodowymi, takimi jak IEC 62852, co dodatkowo potwierdza ich wysoką jakość i bezpieczeństwo.

Pytanie 19

Aby poprawnie połączyć instalację z rur miedzianych w technologii lutowania miękkiego, należy wykorzystać zestaw narzędzi, który zawiera:

A. obcinak krążkowy do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
B. obcinak krążkowy do rur, gratownik, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
C. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
D. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
Wybór zestawu narzędzi składającego się z obcinaka krążkowego do rur, gratownika, czyścika do rur, szczotki do rur miedzianych oraz palnika gazowego z butlą jest kluczowy dla prawidłowego wykonania połączenia instalacji z rur miedzianych w technologii lutowania miękkiego. Obcinak krążkowy jest niezbędny do precyzyjnego cięcia rur miedzianych, co zapewnia ich idealne dopasowanie. Gratownik służy do usuwania zadziorów powstałych podczas cięcia, co zapobiega uszkodzeniom uszczelek i zwiększa trwałość połączeń. Czyścik do rur oraz szczotka do rur miedzianych pozwalają na dokładne oczyszczenie powierzchni, co jest niezbędne dla uzyskania dobrego połączenia lutowniczego. Palnik gazowy z butlą umożliwia dostarczenie odpowiedniej temperatury do lutowania, co jest kluczowe dla uzyskania solidnych i trwałych połączeń. Stosowanie się do tych zasad oraz wybór odpowiednich narzędzi jest zgodne z normami branżowymi, które zalecają zachowanie prawidłowych procedur montażowych, co znacząco wpływa na bezpieczeństwo i efektywność instalacji.

Pytanie 20

Podczas wymiany rotametru w instalacji grzewczej zasilanej energią słoneczną, w jaki sposób powinien być on zamontowany?

A. poziomo w kierunku przeciwnym do przepływu.
B. pionowo w kierunku przeciwnym do przepływu.
C. poziomo w zgodzie z kierunkiem przepływu.
D. pionowo w zgodzie z kierunkiem przepływu.
Montaż rotametru w pionie, zgodnie z kierunkiem przepływu, to naprawdę istotna sprawa, jeśli chcemy, żeby to urządzenie działało jak należy. Rotametry to takie fajne sprzęty, które mierzą przepływ cieczy albo gazu przez rurę, a ich konstrukcja pozwala na odczytwanie przepływu w zależności od tego, gdzie znajduje się pływak. Gdy rotametr jest zamontowany tak, jak trzeba, pływak ma luz i może swobodnie się poruszać, co daje dokładne pomiary. W branży mówi się, że zgodność z normami, jak ISO 5167, jest kluczowa, żeby uniknąć błędów w pomiarze. W instalacjach słonecznych, gdzie temperatura może się zmieniać, dobry montaż rotametru jest niezbędny do monitorowania efektywności systemu. Warto również pamiętać o regularnym sprawdzaniu kalibracji, żeby mieć pewność, że wyniki są miarodajne.

Pytanie 21

Jak powinny być przechowywane rury miedziane?

A. w pomieszczeniach bez dostępu do powietrza
B. pod zadaszeniem na drewnianym podeście
C. na otwartym terenie budowy bez ochrony
D. w czystych i suchych pomieszczeniach
Przechowywanie rur miedzianych w pomieszczeniach bez dostępu powietrza, pod wiatą na podeście drewnianym czy na placu budowy bez zadaszenia to praktyki, które mogą prowadzić do poważnych problemów z jakością i trwałością tych materiałów. Magazynowanie w pomieszczeniach bez dostępu powietrza nie jest zalecane, ponieważ brak wentylacji może prowadzić do kondensacji wilgoci, co sprzyja korozji. Miedź jest szczególnie podatna na różne formy degradacji, gdy jest narażona na wilgoć oraz ograniczoną cyrkulację powietrza. Z kolei umieszczanie rur na placu budowy bez zadaszenia naraża je na warunki atmosferyczne, takie jak deszcz, śnieg czy zmienne temperatury, co może prowadzić do nieodwracalnych uszkodzeń. Przechowywanie na podeście drewnianym, chociaż może zapewnić pewien poziom ochrony przed bezpośrednim kontaktem z ziemią, nie eliminuje ryzyka związanego z wilgocią oraz zanieczyszczeniami. Dodatkowo, brak odpowiednich zabezpieczeń może skutkować uszkodzeniami mechanicznymi rur podczas transportu czy manipulacji. Warto pamiętać, że przestrzeganie zasad właściwego magazynowania materiałów budowlanych jest kluczowe dla ich późniejszej użyteczności oraz trwałości, a standardy branżowe, takie jak normy ISO, kładą duży nacisk na utrzymanie odpowiednich warunków przechowywania, co ma na celu minimalizację strat i zapewnienie jakości.

Pytanie 22

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. ze stali ocynkowanej
B. z polipropylenu
C. ze stali nierdzewnej
D. Alu-PEX
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 23

Zbyt wysokie natężenie przepływu medium w instalacji słonecznego ogrzewania

A. spowoduje obniżenie ciśnienia w systemie
B. spowoduje częstsze uruchamianie zaworu bezpieczeństwa
C. spowoduje zwiększenie oporów przepływu płynu solarnego
D. będzie skutkować szybszym zużywaniem się płynu solarnego
Ustawienie zbyt dużego natężenia przepływu czynnika w słonecznej instalacji grzewczej prowadzi do wzrostu oporów przepływu płynu solarnego. Zjawisko to można wyjaśnić na podstawie zasad dynamiki płynów, gdzie przy wyższej prędkości przepływu czynnika, jego tarcie o ścianki rur oraz inne elementy instalacji rośnie, co skutkuje zwiększonym oporem. W praktyce oznacza to, że system będzie musiał pracować ciężej, aby pokonać te opory, co może prowadzić do wyższych kosztów energii oraz szybszego zużycia komponentów. Z tego powodu kluczowe jest odpowiednie dobieranie przepływów w systemach solarnych, aby zapewnić efektywność energetyczną. W praktycznym zastosowaniu, osoby projektujące takie systemy powinny stosować się do norm i wytycznych, takich jak EN 12976 (systemy solarne) oraz klasyfikacji hydraulicznych, aby zapewnić optymalne działanie instalacji. Dobrą praktyką jest także monitorowanie i regulacja natężenia przepływu, aby dostosować je do zmieniających się warunków eksploatacyjnych.

Pytanie 24

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 40%
B. 30%
C. 50%
D. 20%
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 25

Anemometr jest urządzeniem wykorzystywanym do pomiarów

A. natężenia dźwięku
B. wilgotności powietrza
C. prędkości przepływu powietrza
D. natężenia oświetlenia
Anemometr to urządzenie pomiarowe, które służy do określenia prędkości przepływu powietrza. Działa na zasadzie pomiaru siły, z jaką powietrze oddziałuje na wirnik lub łopatki, co pozwala na dokładną kalkulację prędkości wiatru. Istnieje wiele typów anemometrów, w tym anemometry wirnikowe, ultradźwiękowe oraz termiczne, które znajdują zastosowanie w różnych branżach, takich jak meteorologia, inżynieria lądowa i budownictwo. Na przykład, w meteorologii anemometry są kluczowe do monitorowania warunków pogodowych, co jest istotne dla prognozowania i odczytów klimatycznych. W kontekście budownictwa, anemometry są wykorzystywane do oceny wentylacji w budynkach, co jest zgodne z normami dotyczącymi efektywności energetycznej i komfortu użytkowników. Używanie anemometrów zgodnie z obowiązującymi standardami, takimi jak normy ISO 7240-20, zapewnia dokładność i niezawodność pomiarów, co jest niezbędne w profesjonaliźmie branżowym.

Pytanie 26

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 30o
B. 45o
C. 90o
D. 60o
Ustawienie kolektorów słonecznych pod kątem 30 stopni jest optymalne do maksymalizacji efektywności w sezonie letnim, zwłaszcza w krajach o umiarkowanym klimacie. Kąt ten zapewnia, że kolektory są skierowane bardziej bezpośrednio w stronę słońca, co zwiększa ich zdolność do absorbowania promieniowania słonecznego. Pod kątem 30 stopni kolektory są w stanie osiągnąć wyższą wydajność, zwłaszcza gdy słońce jest wysoko na niebie w letnich miesiącach. Praktyczne zastosowanie tego kąta można zobaczyć w wielu nowoczesnych instalacjach, które stosują go jako standard, co potwierdzają badania dotyczące wydajności energetycznej. Warto również zauważyć, że dostosowanie kąta do lokalnych warunków geograficznych oraz pory roku jest kluczowe dla uzyskania maksymalnych korzyści. Zgodnie z normami branżowymi, dobrze zainstalowane systemy solarne powinny być projektowane z myślą o optymalizacji kąta nachylenia, co w efekcie prowadzi do zwiększenia oszczędności energii i redukcji kosztów eksploatacyjnych.

Pytanie 27

Podstawą do stworzenia szczegółowego kosztorysu instalacji pompy ciepła są

A. aprobacje techniczne
B. harmonogramy prac
C. katalogi nakładów rzeczowych
D. atestacje higieniczne
Podstawą opracowania kosztorysu szczegółowego instalacji pompy ciepła są katalogi nakładów rzeczowych, które stanowią kluczowe narzędzie dla inżynierów i kosztorysantów. Katalogi te zawierają szczegółowe informacje na temat kosztów materiałów, robocizny i innych nakładów, co pozwala na precyzyjne oszacowanie całkowitego kosztu inwestycji. Przykładowo, przy instalacji pompy ciepła ważne jest uwzględnienie kosztów nie tylko samej pompy, ale także materiałów niezbędnych do montażu, takich jak rury, izolacje, czy armatura. Korzystanie z aktualnych katalogów, takich jak KNR (Katalogi Nakładów Rzeczowych) lub ZK (Zbiory Kosztorysowe), zapewnia, że kosztorys będzie zgodny z rynkowymi standardami i rzeczywistymi cenami, co jest niezbędne dla efektywnego zarządzania budżetem projektu. Dobre praktyki w tej dziedzinie obejmują również regularne aktualizowanie danych w kosztorysach oraz analizowanie cen rynkowych, co umożliwia dostosowanie kosztorysu do zmieniających się warunków rynkowych.

Pytanie 28

Jaki wskaźnik efektywności energetycznej COP będzie miała pompa ciepła, która w listopadzie dostarczyła 2 592 kWh ciepła do ogrzania budynku, przy moc elektrycznej wynoszącej 0,9 kW?

A. 2,0
B. 3,0
C. 4,0
D. 5,0
Wybór niepoprawnej odpowiedzi często wynika z niepełnego zrozumienia koncepcji COP oraz błędnych założeń dotyczących obliczeń efektywności energetycznej. W przypadku wskaźników efektywności, kluczowe jest zrozumienie, że COP to stosunek dostarczonego ciepła do zużytej energii elektrycznej. Odpowiedzi takie jak 3,0, 2,0 czy 5,0 wskazują na błędne interpretacje tej zasady. Na przykład, wartość 3,0 sugeruje, że pompa ciepła dostarcza tylko 3 jednostki ciepła na każdą jednostkę energii elektrycznej, co jest znacznie niższe niż obliczona wartość 4,0. Takie podejście może prowadzić do niewłaściwej oceny efektywności urządzenia oraz jego opłacalności. Poprawne zrozumienie mechanizmu działania pomp ciepła oraz ich klasyfikacji według COP jest kluczowe dla podejmowania decyzji o inwestycjach w technologie grzewcze. Zastosowanie nieprawidłowych wartości COP mogłoby skutkować wyborem mniej efektywnych systemów grzewczych, co z kolei zwiększałoby koszty operacyjne oraz negatywnie wpływało na środowisko. Należy zatem zwracać uwagę na szczegółowe obliczenia i potwierdzać je poprzez analizy rzeczywistych danych operacyjnych pomp ciepła.

Pytanie 29

Palnik widoczny na ilustracji może być używany w kotłach przystosowanych do peletów oraz ziaren. Jakiego rodzaju palnik to jest?

A. rynnowy
B. rusztowy
C. zasypowy
D. retortowy
Palnik retortowy to typ palnika, który jest szczególnie dedykowany do spalania paliw stałych, takich jak pelet i ziarna zbóż. Jego konstrukcja umożliwia efektywne i kontrolowane spalanie, co przekłada się na wysoką efektywność energetyczną oraz niską emisję zanieczyszczeń. Retorty charakteryzują się komorą spalania, w której paliwo jest podawane w sposób ciągły, co zapewnia stabilność procesu. Zastosowanie palników retortowych w kotłach na pelet i ziarna zbóż pozwala na osiągnięcie optymalnej temperatury spalania, co minimalizuje ryzyko powstawania niepełnego spalania. Dodatkowo, palniki te często są wyposażone w systemy automatycznego podawania paliwa oraz regulacji powietrza, co ułatwia ich obsługę i zwiększa komfort użytkowania. W praktyce, instalacje z palnikami retortowymi są często wykorzystywane w systemach ogrzewania budynków jednorodzinnych oraz przemysłowych, gdzie kluczowe są zarówno efektywność, jak i ekologia.

Pytanie 30

Możliwość ogrzewania oraz chłodzenia przy użyciu jednego urządzenia jest efektem zastosowania

A. ogniwa wodorowego
B. ogniwa fotowoltaicznego typu CIGS
C. rewersyjnej pompy ciepła
D. próżniowego kolektora słonecznego
Rewersyjna pompa ciepła to urządzenie, które w zależności od potrzeb użytkownika może zarówno ogrzewać, jak i chłodzić pomieszczenia. Działa na zasadzie wymiany ciepła z otoczeniem, wykorzystując cykl termodynamiczny, który pozwala na odwrócenie kierunku przepływu czynnika chłodniczego. W trybie ogrzewania, pompa ciepła pobiera ciepło z zewnątrz (nawet przy niskich temperaturach) i przekształca je, aby podnieść temperaturę w budynku. Natomiast w trybie chłodzenia, proces jest odwrotny, co pozwala na usuwanie ciepła z wnętrza budynku. Dzięki tej uniwersalności, rewersyjne pompy ciepła znajdują szerokie zastosowanie w nowoczesnym budownictwie, w tym w domach jednorodzinnych, biurach oraz obiektach przemysłowych. Standardy dotyczące efektywności energetycznej, takie jak SEER i HSPF, mają na celu oceny wydajności systemów HVAC, w tym pomp ciepła, co potwierdza ich znaczenie w zrównoważonym rozwoju. W praktyce, instalacja pompy ciepła może prowadzić do znacznego obniżenia kosztów ogrzewania i chłodzenia, a także redukcji emisji CO2, co jest zgodne z globalnymi trendami proekologicznymi.

Pytanie 31

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
B. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła
C. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
D. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
Czujnik pływakowy jest kluczowym elementem zabezpieczającym kotły na biomasę przed niskim poziomem wody. Jego prawidłowe umiejscowienie ma znaczący wpływ na efektywność działania systemu grzewczego. Montaż czujnika na zasilaniu instalacji c.o. 10 cm powyżej najwyższej części kotła pozwala na wczesne wykrywanie spadku poziomu wody, co jest istotne dla zapobiegania uszkodzeniom kotła oraz niebezpieczeństwom związanym z pracą na sucho. W przypadku, gdy poziom wody w kotle spadnie poniżej poziomu czujnika, urządzenie może automatycznie wyłączyć system, co zapobiega dalszym szkodom. Dodatkowo, przestrzeganie zasady montażu czujnika powyżej najwyższej części kotła jest zgodne z dobrą praktyką inżynieryjną oraz normami bezpieczeństwa, takimi jak PN-EN 12952, które określają wymagania dotyczące bezpieczeństwa kotłów. Przykładem zastosowania czujnika pływakowego może być system zasilania biomasą, gdzie efektywne zarządzanie wodą w kotle wpływa na optymalizację zużycia paliwa oraz wydajność energetyczną całego układu.

Pytanie 32

Podczas wymiany separatora powietrza w grupie solarnej należy go zamontować na

A. powrocie z kolektora przed zaworem odcinającym
B. powrocie z kolektora za zaworem odcinającym
C. zasilaniu kolektora za pompą
D. zasilaniu kolektora przed pompą
Montaż separatora powietrza w niewłaściwych miejscach, takich jak zasilanie kolektora przed pompą, może prowadzić do poważnych problemów z wydajnością systemu grzewczego. Umiejscowienie separatora na zasilaniu przed pompą oznacza, że woda z kolektora, która może zawierać powietrze, będzie napotykać na dodatkowy opór, co może skutkować zmniejszoną efektywnością przepływu. W takiej konfiguracji powietrze może pozostawać w instalacji, co zwiększa ryzyko awarii oraz obniża wydajność całego systemu. Podobnie, montaż separatora na powrocie z kolektora przed zaworem odcinającym jest błędem, ponieważ w sytuacji, gdy zachodzi potrzeba konserwacji, nie można odciąć przepływu wody, co uniemożliwia bezpieczne wyjęcie separatora z instalacji. Z kolei umiejscowienie separatora na zasilaniu kolektora za pompą nie jest zalecane, ponieważ może to prowadzić do problemów z usuwaniem powietrza, gdyż separator nie będzie w stanie efektywnie działać w obecności wody pod ciśnieniem. Dlatego kluczowe jest zrozumienie, że miejsce montażu separatora powietrza ma zasadnicze znaczenie dla całego systemu i powinno być zgodne z zaleceniami producentów oraz praktykami branżowymi w celu zapewnienia optymalnej wydajności oraz trwałości instalacji.

Pytanie 33

Przy wyborze miejsca należy wziąć pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. instalacji biogazowej
B. urządzenia do pompy ciepła
C. turbiny hydroelektrycznej
D. wiatraka elektrowni
Wybór lokalizacji dla elektrowni wiatrowej powinien uwzględniać wytwarzanie infradźwięków, ponieważ te urządzenia generują dźwięki o częstotliwości poniżej 20 Hz, które są trudne do usłyszenia, ale mogą mieć wpływ na otoczenie. Zjawisko to może być istotne w kontekście oddziaływania na lokalne ekosystemy i mieszkańców. Przykładowo, infradźwięki mogą wpływać na zwierzęta, które są wrażliwe na dźwięki w tym zakresie, co może prowadzić do zmian w ich zachowaniu lub migracji. Dlatego przed rozpoczęciem budowy elektrowni wiatrowej, przeprowadza się analizy akustyczne, które oceniają potencjalny wpływ na środowisko oraz ludzi. W praktyce, zgodnie z przepisami ochrony środowiska, powinny być stosowane normy dotyczące poziomu hałasu, które mają na celu minimalizację tych efektów. Dobrą praktyką jest także angażowanie społeczności lokalnych w proces planowania, co może zwiększyć akceptację dla inwestycji oraz zminimalizować obawy związane z infradźwiękami.

Pytanie 34

Jakie elementy powinny być użyte do zamontowania panelu fotowoltaicznego na dachu o nachyleniu?

A. śruby rzymskie
B. profil wielorowkowy oraz kołki rozporowe
C. profil wielorowkowy oraz kotwy krokwiowe
D. stelaż z trójkątnych ram
Wybór profilu wielorowkowego i kotw krokwiowych do montażu paneli fotowoltaicznych na dachu spadzistym jest uzasadniony ich właściwościami technicznymi oraz zastosowaniem w praktyce. Profile wielorowkowe, charakteryzujące się dużą nośnością oraz możliwością dostosowania do różnych kątów nachylenia dachu, umożliwiają stabilne mocowanie paneli. Kotwy krokwiowe, z kolei, zapewniają solidne połączenie z konstrukcją dachu, co minimalizuje ryzyko uszkodzeń w wyniku działania wiatru czy obciążeń związanych z opadami. W zgodzie z normami PN-EN 1991-1-4 dotyczącymi obciążeń wiatrem, zastosowanie tych elementów jest nie tylko skuteczne, ale i bezpieczne. Praktyczne przykłady zastosowania obejmują zarówno instalacje na dachach o niewielkim kącie nachylenia, jak i bardziej stromych powierzchniach, co czyni ten zestaw mocujący uniwersalnym i efektywnym rozwiązaniem w branży OZE.

Pytanie 35

Odległość gruntowa pomiędzy sondami pionowymi nie może być mniejsza niż

A. 24 m
B. 18 m
C. 6 m
D. 12 m
Odpowiedź 6 m jest poprawna, ponieważ zgodnie z aktualnymi normami i najlepszymi praktykami w inżynierii geotechnicznej, odległość między sondami pionowymi powinna wynosić co najmniej 6 m. Taka odległość pozwala na uzyskanie reprezentatywnych próbek gruntu, co jest kluczowe dla przeprowadzenia dokładnych badań geotechnicznych. W praktyce oznacza to, że jeśli sondy są umieszczone zbyt blisko siebie, mogą wystąpić zjawiska interferencji, które mogą zniekształcić wyniki badań. Na przykład, w przypadku przeprowadzania badań nośności gruntu, zbyt mała odległość między sondami może prowadzić do błędnych ocen parametrów gruntowych, co w konsekwencji wpłynie na bezpieczeństwo i stabilność projektowanych obiektów budowlanych. W związku z tym, zachowanie odpowiedniej odległości jest kluczowe dla zapewnienia dokładności wyników oraz ich interpretacji w kontekście projektowania i budowy infrastruktury. W praktyce, wiele instytucji i organizacji branżowych zaleca stosowanie tej odległości jako standardu w projektach geotechnicznych.

Pytanie 36

Z informacji zawartych w dokumentacji wynika, że roczne wydatki na energię elektryczną w obiekcie użyteczności publicznej wynoszą 6000 zł. Inwestor postanowił zamontować na dachu budynku system paneli fotowoltaicznych, aby obniżyć te wydatki. Dzięki temu koszty zużycia energii elektrycznej będą niższe o 75%. Jaką kwotę będzie płacił za energię elektryczną po przeprowadzeniu tej inwestycji?

A. 5975 zł
B. 5925 zł
C. 4500 zł
D. 1500 zł
Poprawna odpowiedź to 1500 zł, ponieważ inwestor decydując się na montaż paneli fotowoltaicznych, zmniejsza swoje roczne koszty energii elektrycznej o 75%. To oznacza, że po wdrożeniu systemu będzie płacił jedynie 25% pierwotnej kwoty rachunków. Wyliczenie jest proste: 25% z 6000 zł to 1500 zł (6000 zł x 0,25 = 1500 zł). Instalacja paneli fotowoltaicznych to nie tylko sposób na redukcję kosztów, ale również na zredukowanie śladu węglowego budynku, co jest zgodne z trendami zrównoważonego rozwoju i efektywności energetycznej. Panele fotowoltaiczne przekształcają energię słoneczną w energię elektryczną, co może znacząco obniżyć zależność od zewnętrznych dostawców energii. Przed podjęciem decyzji o inwestycji warto przeprowadzić analizę techniczną i ekonomiczną, aby oszacować potencjalne oszczędności oraz czas zwrotu z inwestycji, co jest kluczowe w kontekście długoterminowego planowania finansowego budynków użyteczności publicznej.

Pytanie 37

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. grzewczego
B. monowalentnego
C. chłodzenia pasywnego
D. urlopowego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 38

Rury wykonane z PVC są oznaczane literami

A. PB
B. PP
C. PCV
D. PE
Rury wykonane z polichlorku winylu, oznaczane jako PCV, są powszechnie stosowane w różnych zastosowaniach inżynieryjnych i budowlanych. Polichlorek winylu jest materiałem o wysokiej odporności chemicznej oraz trwałości, co czyni go idealnym wyborem do transportu wody, kanalizacji, a także systemów elektrycznych, gdzie rury PCV są wykorzystywane jako osłony przewodów. Zgodnie z normami EN 1452 i EN 1401, rury PCV muszą spełniać określone standardy dotyczące ich wytrzymałości i szczelności, co zapewnia ich niezawodne działanie przez wiele lat. Dodatkowo, rury te są łatwe w montażu i mają niską wagę, co ułatwia transport oraz instalację. Przykładem zastosowania rur PCV jest ich wykorzystanie w systemach wodociągowych oraz w instalacjach sanitarnych, gdzie ich właściwości odpornościowe na korozję oraz działanie chemikaliów są niezwykle istotne.

Pytanie 39

Całkowita moc identycznych pomp ciepła połączonych w kaskadzie wynosi

A. połowę mocy jednej z pomp
B. jest równa mocy pojedynczej pompy
C. sumę mocy wszystkich poszczególnych pomp
D. większa dla jednej z pomp
Fajnie, że wybrałeś odpowiedź, która mówi, że moc kaskadowo połączonych pomp ciepła to suma mocy każdej z nich. To naprawdę tak działa! Każda pompa dodaje swoją moc, więc jak masz pięć pomp po 5 kW, to mamy 25 kW mocy całkowitej. Kaskadowe połączenia są super, bo pozwalają lepiej wykorzystać moc i dostosować system do potrzeb. Widziałem to w dużych instalacjach grzewczych, gdzie trzeba osiągnąć wyższą moc, a jednocześnie zmieścić się w małej przestrzeni. A jak mowa o efektywności energetycznej, to takie połączenia z odnawialnymi źródłami energii to bardzo dobry pomysł!

Pytanie 40

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. na przyłączach pionów do przewodów rozprowadzających
B. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
C. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
D. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
Zawór bezpieczeństwa jest kluczowym elementem w instalacji centralnego ogrzewania, szczególnie w systemach zamkniętych. Montaż zaworu bezpieczeństwa bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej jest zgodny z zasadami inżynierii cieplnej oraz normami bezpieczeństwa. Głównym celem zaworu bezpieczeństwa jest ochrona instalacji przed nadmiernym ciśnieniem, które może prowadzić do uszkodzeń kotła, wymiennika ciepła oraz innych komponentów systemu. Przy odpowiednim umiejscowieniu zaworu, możliwe jest natychmiastowe uwolnienie nadmiaru ciśnienia, co minimalizuje ryzyko awarii. Przykładowo, w instalacjach, w których występują duże różnice temperatur, zawór ten jest niezbędny, aby zapobiec zjawisku przegrzewania i ewentualnemu wybuchowi. Dobrą praktyką jest regularne sprawdzanie stanu technicznego zaworu oraz jego funkcjonalności, aby zapewnić nieprzerwaną i bezpieczną pracę instalacji.