Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 kwietnia 2025 12:34
  • Data zakończenia: 15 kwietnia 2025 13:01

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. woltomierza
B. omomierza
C. częstotliwościomierza
D. amperomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 2

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 2 160 zł
B. 2 320 zł
C. 4 160 zł
D. 4 320 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 3

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Komparator
B. Demultiplekser
C. Stabilizator
D. Multiplekser
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 4

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. oczyścić jałową gazą.
B. nałożyć krem.
C. obmyć strumieniem zimnej wody.
D. nałożyć maść.
Spłukanie oparzonej dłoni strumieniem zimnej wody jest kluczowym krokiem w udzielaniu pierwszej pomocy osobom, które doznały oparzenia substancją żrącą. Ten proces powinien trwać co najmniej 10-20 minut, co pozwala na usunięcie substancji chemicznej z powierzchni skóry oraz schłodzenie tkanek, co w efekcie ogranicza rozprzestrzenianie się uszkodzeń. Zimna woda działa także jako środek chłodzący, co zmniejsza ból i zapobiega dalszym uszkodzeniom skóry. Ważne jest, aby nie stosować lodu bezpośrednio na oparzenie, ponieważ może to prowadzić do dodatkowych uszkodzeń skóry. Ponadto, pierwsza pomoc w przypadku oparzeń chemicznych powinna być zgodna z wytycznymi lokalnych instytucji zdrowotnych oraz międzynarodowych standardów, takich jak wytyczne Światowej Organizacji Zdrowia. W przypadku oparzeń chemicznych, należy również niezwłocznie skontaktować się z profesjonalną pomocą medyczną, zwłaszcza w przypadku dużych powierzchni uszkodzenia lub specyficznych substancji chemicznych, aby zminimalizować ryzyko poważnych komplikacji zdrowotnych."

Pytanie 5

Kiedy instalacja systemu monitoringu realizowana jest przy użyciu przewodu współosiowego zakończonego złączami typu F, do podłączenia kamery analogowej należy użyć złącza typu

A. F/IEC żeński
B. F/IEC męski
C. F/chinch
D. F/BNC
Wybór niewłaściwej przejściówki do podłączenia kamery analogowej do instalacji monitoringu może prowadzić do wielu problemów, w tym do złej jakości obrazu czy niestabilności sygnału. Przejściówka F/chinch nie jest właściwym rozwiązaniem, ponieważ złącze chinch, choć popularne w zastosowaniach audio, nie jest standardowo stosowane w systemach wideo. Użycie takiej przejściówki może skutkować problemami z przesyłem sygnału oraz nieodpowiednią impedancją, co prowadzi do zniekształceń obrazu. Z kolei przejściówka F/IEC męski i F/IEC żeński nie są odpowiednie, ponieważ złącza IEC zazwyczaj wykorzystywane są w zastosowaniach związanych z przesyłem sygnałów elektrycznych, a nie wideo. Takie podejście może również sugerować zrozumienie, że różne złącza mogą być ze sobą zamienne, co jest błędne. W systemach monitoringu kluczowe jest użycie odpowiednich złącz, które zapewniają stabilne połączenia i minimalizują straty sygnału. Dlatego, aby uniknąć problemów z jakością obrazu, zawsze należy stosować standardowe złącza BNC, które są dedykowane do tego typu aplikacji, co pozwala na zachowanie integralności sygnału oraz zgodności z branżowymi standardami.

Pytanie 6

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. prądowe pozostanie na tym samym poziomie
B. napięciowe wzrośnie
C. napięciowe zmniejszy się
D. napięciowe zostanie niezmienne
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 7

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. maksymalna wartość napięcia tętnień
B. międzyszczytowa wartość napięcia tętnień
C. średnia wartość napięcia tętnień
D. skuteczna wartość napięcia tętnień
Wybór odpowiedzi dotyczącej skutecznej, maksymalnej lub średniej wartości napięcia tętnień jest mylący i nieadekwatny w kontekście opisanego problemu. Skuteczna wartość napięcia odnosi się do napięcia zmiennego, które dostarcza taką samą moc do obciążenia jak napięcie stałe. W przypadku tętnień, skuteczna wartość nie jest miarodajnym wskaźnikiem jakości napięcia, ponieważ nie uwzględnia ona zmienności sygnału w czasie, a jedynie jego efektywną moc. Z kolei maksymalna wartość odnosi się do najwyższego punktu napięcia w danym cyklu, co nie pozwala na pełne zrozumienie dynamiki sygnału. Średnia wartość napięcia również nie jest adekwatna, ponieważ nie odzwierciedla wahań napięcia, które mogą mieć negatywny wpływ na działanie urządzeń. W praktyce, projektując zasilacze impulsowe, kluczowe jest skupienie się na międzyszczytowej wartości tętnień, aby zapewnić ich stabilność i minimalizować wpływ na inne elementy układu. Często błędne wnioski wynikają z mylnego interpretowania definicji parametrów elektrycznych, co może prowadzić do niewłaściwego projektowania i nieoptymalnych rozwiązań w systemach zasilania.

Pytanie 8

Jaką czynność należy zrealizować przed włączeniem sterownika PLC w systemie automatyki?

A. Odłączyć sygnały od sterownika
B. Odłączyć elementy wykonawcze od sterownika
C. Wprowadzić program do sterownika
D. Ustawić zegar wewnętrzny w sterowniku
Jak wprowadzasz program do sterownika PLC, to tak naprawdę robisz kluczowy krok przed jego uruchomieniem. To właśnie ten program definiuje, jak cały system automatyki ma działać. Bez odpowiedniego oprogramowania sterownik po prostu nie wykona żadnych operacji ani nie zareaguje na sygnały, które dostaje. Przykładowo, w systemach sterujących procesem produkcji, program mówi nam, jak sterować zaworami czy silnikami, żeby osiągnąć zamierzony efekt. Dobrze jest też, żeby wprowadzenie programu było zgodne z dokumentacją i procedurami firmy, bo to zapewnia, że wszystko będzie działać tak, jak powinno. Zgodnie z normami IEC 61131-3, które dotyczą programowania PLC, każdy program powinien być dobrze przetestowany w symulatorze przed wgraniem do rzeczywistego systemu. Dzięki temu można znaleźć błędy i poprawić logikę sterowania. Podsumowując, wprowadzenie programu to nie tylko praktyka, ale też kluczowy element, który zapewnia bezpieczeństwo i efektywność całego systemu automatyki.

Pytanie 9

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 100 kHz
B. 1 kHz
C. 0,1 kHz
D. 10 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 10

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. LPT
B. SATA
C. D-SUB 15
D. RS 232
Interfejs RS 232, znany jako Interfejs szeregowy, jest stosunkowo przestarzałym standardem komunikacyjnym, który służył głównie do łączenia urządzeń peryferyjnych, takich jak modemy, myszy czy drukarki. Mimo że RS 232 był powszechnie stosowany w przeszłości, jego ograniczenia w zakresie prędkości transferu i odległości sprawiają, że nie nadaje się on do podłączania nowoczesnych dysków twardych, które wymagają bardziej wydajnych interfejsów. LPT, czyli port równoległy, był także używany w kontekście podłączania drukarek, lecz jego zastosowanie nie obejmowało dysków twardych. LPT jest również ograniczony pod względem prędkości i wydajności, co czyni go nieodpowiednim wyborem. Z kolei D-SUB 15 to złącze, które najczęściej kojarzone jest z portem VGA używanym do podłączania monitorów. Nie jest to interfejs do komunikacji z dyskami twardymi i jego wykorzystanie w tym kontekście jest całkowicie nieadekwatne. W przeszłości wiele osób może było skłonnych do używania starszych standardów ze względu na ich dostępność, jednak z perspektywy nowoczesnej architektury komputerowej, takie podejście prowadzi do problemów z wydajnością i kompatybilnością. W rezultacie, wybór interfejsu SATA jest właściwy i zgodny z obecnymi standardami branżowymi, które promują efektywność i szybkość transferu danych.

Pytanie 11

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. odbieranie cyfrowej telewizji naziemnej
C. kompresję materiałów audio i wideo
D. transmisję informacji cyfrowych za pośrednictwem fal radiowych
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 12

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Wyregulować odbiornik
B. Zamienić przewód antenowy
C. Wyregulować ustawienie anteny
D. Oczyścić wszystkie złącza
Podjęcie działań w zakresie czyszczenia złącz, wymiany przewodu antenowego czy regulacji odbiornika, mimo że mogą być istotne w procesie konserwacji instalacji antenowej, nie są to pierwsze kroki, jakie należy podjąć w sytuacji zauważenia spadku poziomu sygnału. Często myślenie, że wyczyszczenie złączy lub wymiana przewodów jest najważniejsza, wynika z błędnego założenia, że problemy z jakością sygnału są bezpośrednio związane z ich stanem. Jednak w praktyce, zanim przejdziemy do bardziej skomplikowanych działań, takich jak wymiana komponentów, priorytetem powinna być ocena i ewentualna regulacja pozycji anteny. Wiele osób sądzi, że jeżeli sygnał jest słabszy, to znaczy, że komponenty muszą być uszkodzone, co nie zawsze jest prawdą. Często problemy te można rozwiązać prostą regulacją anteny, co jest zgodne z zasadami diagnostyki i naprawy systemów telewizyjnych. Ostatecznie, jeżeli po regulacji anteny sygnał nadal będzie słaby, można rozważyć inne opcje, takie jak czyszczenie złączy lub wymiana przewodu, ale te czynności powinny być przeprowadzane w odpowiedniej kolejności, aby uniknąć niepotrzebnych kosztów i problemów.

Pytanie 13

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Mostek RLC
B. Oscyloskop
C. Waromierz
D. Multimetr
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 14

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. trójkątny
B. prostokątny
C. sinusoidalny
D. impulsowy
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 15

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. rutera
B. kamery
C. serwera DNS
D. przełącznika
Błędne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego roli poszczególnych urządzeń w sieci. Przełącznik to urządzenie, które działa na poziomie warstwy drugiej modelu OSI, odpowiedzialne za przekazywanie ramek danych w obrębie lokalnej sieci. Nie ma on funkcji bramy, ponieważ nie obsługuje komunikacji pomiędzy różnymi sieciami. Kamery, z drugiej strony, to urządzenia końcowe, które przesyłają dane za pomocą protokołów sieciowych, ale również nie pełnią roli bramy. Serwer DNS działa na poziomie tłumaczenia nazw domenowych na adresy IP, co jest niezbędne do lokalizowania zasobów w sieci, jednak jego funkcjonalność również nie obejmuje działania jako brama. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji przełącznika z funkcjami rutera oraz nieznajomość podstawowych zadań serwera DNS. Aby skutecznie zarządzać siecią, należy zrozumieć, że ruter jest odpowiedzialny za komunikację zewnętrzną, a inne urządzenia, takie jak przełączniki, kamery czy serwery DNS, pełnią uzupełniające role, lecz nie mogą działać jako brama bezposrednia.

Pytanie 16

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. BNC
B. RJ-45
C. JACK
D. DIN
BNC to złącze, które było powszechnie używane w starszych technologiach sieciowych, takich jak koaksjalne sieci Ethernet (10BASE2). Obecnie jest rzadko stosowane w nowoczesnych instalacjach, ponieważ zostało wypierane przez bardziej efektywne technologie, takie jak Ethernet z wtykami RJ-45. W przypadku Jacka, mamy do czynienia z złączem audio, które nie ma zastosowania w kontekście łączenia kart sieciowych. Złącza DIN również nie są stosowane w standardowych połączeniach sieciowych, lecz były wykorzystywane w starszych rozwiązaniach audio i MIDI. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków to niezrozumienie różnicy między typami złączy oraz ich zastosowaniem w różnych kontekstach technologicznych. Warto zawsze znać specyfikacje i normy, które definiują, jakie złącza i kable są odpowiednie dla danej aplikacji, co jest kluczowe dla projektowania i wykonywania instalacji sieciowych. Prawidłowy dobór komponentów wpływa na wydajność i stabilność całej sieci.

Pytanie 17

Aby zmierzyć tłumienie w światłowodzie jednomodowym, które urządzenie powinno zostać użyte?

A. wobuloskop
B. oscyloskop
C. fotometr
D. reflektometr
Reflektometria optyczna to technika pomiarowa, która jest kluczowa w ocenie tłumienności światłowodów jednomodowych. Reflektometr, wykorzystujący metodę czasu przelotu (OTDR), umożliwia dokładne pomiary strat sygnału w światłowodzie, co jest istotne dla zapewnienia jakości transmisji danych. Dzięki tej metodzie można identyfikować miejsca uszkodzeń, zagięć i innych anomalii, które mogą wpływać na wydajność sieci. Przykładowo, w trakcie instalacji nowych światłowodów, reflektometr pozwala na szybkie zlokalizowanie ewentualnych problemów, co przyspiesza proces serwisowania i minimalizuje przestoje w komunikacji. Dobre praktyki w branży telekomunikacyjnej zalecają regularne korzystanie z reflektometrów podczas konserwacji sieci, aby utrzymać optymalną jakość sygnału oraz spełniać standardy branżowe, takie jak ITU-T G.652. Reflektometr jest więc niezbędnym narzędziem w pracy techników zajmujących się sieciami optycznymi.

Pytanie 18

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Zwiększa i przekształca częstotliwość sygnału z anteny.
B. Dostarcza antenie napięcie stałe.
C. Tłumi i zmienia częstotliwość sygnału antenowego.
D. Dostarcza antenie napięcie przemienne.
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 19

W analizowanym układzie przeprowadzono pomiar rezystancji Rx. Zgodnie z normami wartość rezystancji R<sub>x</sub>=(10,06±0,03) Ω. Który z wyników pomiarowych nie jest zgodny z normą?

A. Rx = 10,03 Ω
B. Rx = 10,06 Ω
C. Rx = 10,09 Ω
D. Rx = 10,00 Ω
Odpowiedź Rx = 10,00 Ω jest prawidłowa, ponieważ wartość ta znajduje się poza dopuszczalnym zakresem błędu pomiarowego określonego przez normę. Zgodnie z danymi, rezystancja Rx powinna wynosić 10,06 Ω z tolerancją ±0,03 Ω, co oznacza, że akceptowalne wartości rezystancji mieszczą się w przedziale od 10,03 Ω do 10,09 Ω. Wartość 10,00 Ω jest poniżej dolnej granicy normy, co czyni ją niezgodną z wymaganiami. W praktyce, takie pomiary są istotne w kontekście zapewnienia jakości produktów elektronicznych, gdzie każda jednostka musi spełniać określone specyfikacje. Normy takie jak IEC 60068-2-6 dostarczają wytycznych dotyczących testowania i określania tolerancji, co jest kluczowe w procesach produkcyjnych. Właściwe zrozumienie tolerancji w pomiarach rezystancji jest niezbędne do analizy i oceny właściwości materiałów oraz zapewnienia ich niezawodności w zastosowaniach inżynieryjnych.

Pytanie 20

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Temperatura otoczenia
B. Grubość ścian oraz stropów
C. Poziom wilgotności powietrza
D. Liczba użytkowników
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 21

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. krwawienie podskórne
C. poparzenie dłoni
D. uszkodzenie wzroku
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 22

Aby zweryfikować ciągłość instalacji, należy użyć

A. watmierz
B. amperomierza
C. omomierza
D. woltomierza
Amperomierz, watomierz i woltomierz to urządzenia pomiarowe o różnych zastosowaniach, które nie są odpowiednie do sprawdzania ciągłości instalacji elektrycznej. Amperomierz jest używany do pomiaru natężenia prądu w obwodzie, co pozwala na ocenę, ile prądu przepływa przez dany element. W przypadku sprawdzania ciągłości instalacji, mierzenie natężenia nie dostarcza informacji na temat istnienia przerw w obwodzie. Z kolei watomierz mierzy moc elektryczną (w watach) i jest przydatny w ocenie efektywności urządzeń, ale również nie ma zastosowania w kontekście ciągłości przewodów. Woltomierz, który mierzy napięcie, również nie jest odpowiedni, ponieważ nie może wykryć, czy przewód jest ciągły - może jedynie wskazać, czy w danym momencie na przewodzie jest obecne napięcie. Typowe błędy myślowe prowadzące do wyboru tych urządzeń związane są z myleniem pojęć związanych z pomiarem prądu, mocy oraz napięcia z błędami w obwodzie. W praktyce, do sprawdzania ciągłości instalacji konieczne jest użycie omomierza, który dostarcza dokładnych informacji o rezystancji, a tym samym o ewentualnych przerwach w obwodzie. Nieodpowiednie dobieranie narzędzi pomiarowych może prowadzić do poważnych błędów w ocenie stanu instalacji, co w konsekwencji grozi awariami lub zagrożeniem dla bezpieczeństwa użytkowników.

Pytanie 23

Jaką rolę odgrywa router w sieci komputerowej?

A. Konwertera danych analogowych
B. Łącznika segmentów sieci
C. Węzła komunikacyjnego
D. Konwertera danych cyfrowych
Wydaje się, że odpowiedzi dotyczące łączenia segmentów sieci, konwersji danych analogowych czy cyfrowych, nie tylko nie oddają rzeczywistej funkcji routera, ale również prowadzą do typowych nieporozumień w kontekście architektury sieciowej. Router jako węzeł komunikacyjny nie jest po prostu łącznikiem segmentów sieci, ponieważ jego rola wykracza poza to, co typowo rozumiemy jako switch czy hub. Routery operują na warstwie trzeciej modelu OSI, gdzie decydują o kierunkach, w jakie pakiety danych powinny być przesyłane, bazując na adresach IP, co jest zupełnie inne od działania urządzeń, które jedynie przesyłają sygnały w obrębie lokalnej sieci. Konwertery danych, zarówno analogowych, jak i cyfrowych, dotyczą przetwarzania sygnałów, co jest zadaniem zupełnie innych urządzeń, takich jak modemy czy bramy (gateways). Tak więc, mylenie routera z konwerterami czy switchami prowadzi do zrozumienia jego funkcji w sposób uproszczony i nieprawidłowy. Aby poprawnie zrozumieć rolę routerów w sieci komputerowej, warto zapoznać się z protokołami routingu, takimi jak OSPF czy BGP, które regulują zasady wymiany informacji między routerami, co jest kluczowe w bardziej złożonych architekturach sieciowych.

Pytanie 24

Aby odpowiednio dopasować impedancję w systemie antenowym, konieczne jest zastosowanie

A. rozdzielacza.
B. symetryzatora.
C. zwrotnicy antenowej.
D. wzmacniacza antenowego.
Rozgałęźnik, zwrotnica antenowa oraz wzmacniacz antenowy są urządzeniami, które pełnią różne funkcje w systemach antenowych, ale żadne z nich nie jest przeznaczone do dopasowania impedancji. Rozgałęźnik służy do dzielenia sygnału na kilka odbiorników, co może wprowadzać dodatkowe straty sygnału i nie rozwiązuje problemu dopasowania impedancji. Użycie rozgałęźnika w instalacji antenowej bez odpowiedniego dopasowania impedancji może prowadzić do znacznego pogorszenia jakości odbioru sygnału. Zwrotnica antenowa jest stosowana do kierunkowego podziału sygnału, na przykład do oddzielania kanałów telewizyjnych z różnych częstotliwości, ale podobnie jak rozgałęźnik, nie zajmuje się dopasowaniem impedancji. Wzmacniacz antenowy z kolei ma na celu zwiększenie poziomu sygnału, ale jeśli impedancja nie jest odpowiednio dopasowana, to wzmacniacz może jedynie wzmocnić zakłócenia i inne niepożądane sygnały. Często popełnianym błędem jest mylenie tych urządzeń z symetryzatorem, co prowadzi do nieefektywnego projektowania instalacji antenowych. Właściwe zrozumienie funkcji każdego z tych elementów jest kluczowe dla osiągnięcia optymalnej jakości sygnału w systemach antenowych, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 25

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. wykonanych z elastycznych tworzyw sztucznych
B. izolowanych
C. zasilanych akumulatorowo
D. odpornych na wysoką temperaturę
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 26

Aby oczyścić soczewkę lasera w napędzie CD, należy zastosować

A. izopropanol
B. wodę destylowaną
C. benzynę ekstrakcyjną
D. denaturat
Wykorzystanie benzyny ekstrakcyjnej do czyszczenia soczewek lasera jest niewłaściwe, ponieważ jest to substancja o silnych właściwościach rozpuszczających, która może prowadzić do uszkodzenia materiałów plastikowych używanych w soczewkach. Dodatkowo, benzyna ekstrakcyjna jest substancją łatwopalną i stosowanie jej w bliskiej odległości od komponentów elektronicznych zwiększa ryzyko pożaru. Denaturat, będący alkoholem etylowym z dodatkiem substancji denaturujących, może pozostawiać resztki, które są trudne do usunięcia i mogą negatywnie wpłynąć na jakość działania napędu. Na koniec, woda destylowana, mimo że jest czysta, jest niewłaściwa do czyszczenia soczewek, ponieważ nie ma właściwości rozpuszczających, co czyni ją mniej skuteczną w usuwaniu zanieczyszczeń oleistych. Ponadto, woda może pozostać na elektronice, co prowadzi do korozji lub uszkodzenia komponentów. Wybór nieodpowiednich substancji do czyszczenia soczewek lasera prowadzi do ich uszkodzenia, co może skutkować pogorszeniem jakości odczytu, a nawet całkowitym uszkodzeniem napędu. Dlatego kluczowe jest stosowanie odpowiednich środków czyszczących, które są zgodne z zaleceniami producentów sprzętu oraz powszechnie uznawanymi standardami branżowymi.

Pytanie 27

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. zmniejszenie pasma przenoszenia
B. wzrost mocy wyjściowej
C. spadek mocy wyjściowej
D. podwyższenie napięcia zasilającego
Wzrost rezystancji obciążenia we wzmacniaczach rezystancyjnych prowadzi do spadku mocy wyjściowej, co wynika z prawa Ohma oraz zasady zachowania energii. W praktyce, gdy rezystancja obciążenia rośnie, prąd przepływający przez obciążenie maleje, co z kolei przekłada się na spadek mocy, która jest definiowana jako iloczyn napięcia i prądu (P = U * I). Przykładem takiego zachowania może być wzmacniacz audio podłączony do głośnika. Jeśli głośnik ma wysoką impedancję (duża rezystancja), to z uwagi na ograniczenie prądu, moc wyjściowa wzmacniacza zmniejsza się. Dla zastosowań w audio, aby uzyskać optymalne wzmocnienie, zmiany rezystancji obciążenia powinny być kontrolowane, aby uniknąć niepożądanych efektów, takich jak zniekształcenia dźwięku. W praktyce inżynierowie często dostosowują parametry układów, aby zapewnić odpowiednią współpracę ze standardowymi obciążeniami, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 28

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Aktywuje filtr fal odbitych w odbiorniku.
B. Pogarsza warunki pracy odbiornika.
C. Poprawia warunki funkcjonowania odbiornika.
D. Modyfikuje zakres częstotliwości filtra w.cz.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 29

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. MIFARE
B. RCP
C. FIREWARE
D. HDMI
Wybór odpowiedzi związanych z HDMI, FIREWARE czy RCP wskazuje na pomylenie różnych standardów technologicznych, które nie odnoszą się do kontekstu bezdotykowej kontroli dostępu. HDMI (High-Definition Multimedia Interface) to standard interfejsu do przesyłania cyfrowego sygnału audio i wideo, a nie kart dostępu. Jego zastosowanie koncentruje się na przesyłaniu danych pomiędzy urządzeniami multimedialnymi, a nie na identyfikacji czy kontroli dostępu. FIREWARE, z drugiej strony, to termin, który nie jest standardem, lecz może być mylnie interpretowany jako związany z oprogramowaniem sprzętowym (firmware) w kontekście urządzeń elektronicznych. Choć oprogramowanie sprzętowe jest kluczowe w zarządzaniu funkcjami urządzeń, to nie ma związku z bezdotykowymi systemami kontroli dostępu, które wykorzystują technologie RFID. RCP (Remote Control Protocol) to protokół, który umożliwia zdalne sterowanie urządzeniami, jednak nie ma zastosowania w kontekście kart dostępu ani RFID. Typowym błędem w podejściu do tego pytania jest mylenie zastosowań standardów technologicznych, co prowadzi do niepoprawnych wniosków. Kluczowe jest zrozumienie, jaki jest cel każdego z tych standardów i ich odpowiednie zastosowanie w praktyce, aby unikać takich pomyłek.

Pytanie 30

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. czasowych
B. programowalnych
C. pamięci statycznych
D. pamięci dynamicznych
Wybór odpowiedzi dotyczącej pamięci, niezależnie czy to dynamiczne, statyczne, czy jakieś czasowe, to błąd. Te układy mają zupełnie inną funkcję niż programowalne układy logiczne. Pamięci dynamiczne (czyli DRAM) i statyczne (SRAM) to układy, które służą do przechowywania danych, a nie do wykonywania operacji logicznych. Zwykle używamy ich w komputerach i innych urządzeniach elektronicznych. Z kolei układy czasowe, jak te nasze zegarowe, zajmują się synchronizowaniem operacji w systemach digitalnych, ale nie mają tej fajnej możliwości programowania logiki jak PLD. Często mylimy te wszystkie funkcje i skupiamy się na tym, co już znamy, nie myśląc o ich rzeczywistym zastosowaniu. W praktyce rozróżnienie tych układów jest niezwykle ważne dla skutecznego projektowania systemów elektronicznych. Programowalne układy logiczne dają nam swobodę w projektowaniu, podczas gdy pamięci mają już ustaloną funkcję i nie możemy ich zmieniać po wyprodukowaniu.

Pytanie 31

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PVC o impedancji 50 Ω
B. z PE o impedancji 50 Ω
C. z PVC o impedancji 75 Ω
D. z PE o impedancji 75 Ω
Odpowiedzi z impedancją 50 Ω są niewłaściwe w kontekście instalacji antenowej telewizji, ponieważ ta wartość nie jest standardem dla większości systemów odbioru telewizyjnego. Przewody o impedancji 50 Ω są powszechnie stosowane w aplikacjach radiowych, takich jak radiokomunikacja czy anteny do systemów WLAN. Zastosowanie takich przewodów w systemach telewizyjnych prowadzi do nieefektywnego odbioru sygnału, co może skutkować zniekształceniami obrazu czy brakiem sygnału. Ponadto, wybór przewodu o materiałach PVC jest również niewłaściwy dla instalacji zewnętrznych, ponieważ PVC nie oferuje tak wysokiej odporności na działanie promieni UV oraz wilgoci jak PE. Użytkowanie przewodu z PVC w trudnych warunkach atmosferycznych może prowadzić do szybkiego uszkodzenia izolacji, co negatywnie wpływa na jakość sygnału. Ważne jest, aby podczas planowania instalacji antenowej kierować się zasadami inżynierii i obowiązującymi normami, aby uniknąć typowych błędów, takich jak stosowanie niewłaściwych materiałów i impedancji, co prowadzi do nieoptymalnych wyników odbioru.

Pytanie 32

Kabel wyposażony w wtyki RJ45 jest wykorzystywany między innymi do połączenia

A. czujnika ruchu z centralką alarmową
B. komputera z ruterem
C. kamery z rejestratorem video
D. komputera z monitorem
Odpowiedzi, które sugerują, że kable RJ45 mogą być używane do łączenia komputera z monitorem, czujnika ruchu z centrale alarmową czy kamery z rejestratorem wideo, pokazują brak pełnego zrozumienia, do czego służą te kable. Kiedy łączymy komputer z monitorem, zazwyczaj używa się innego rodzaju złączy, takich jak HDMI, VGA czy DisplayPort, które są stworzone specjalnie do przesyłania sygnału wideo. To jest zupełnie inna bajka niż transmisja danych w sieciach komputerowych, co pokazuje, dlaczego RJ45 jest do tego nieodpowiedni. Podobnie, czujniki ruchu i centrale alarmowe zazwyczaj działają na innych zasadach i korzystają z protokołów bezprzewodowych, a nie z kabli do transmisji danych. Kamery IP mogą używać RJ45 do połączenia z siecią, ale podłączenie do rejestratora wideo jest zazwyczaj realizowane przez dedykowane porty. Myślę, że kluczowe jest zrozumienie, że RJ45 jest głównie dla sieci komputerowych, a nie do innych połączeń, które wymagają różnych technologii.

Pytanie 33

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia mocy
B. większego zużycia energii
C. przeciążenia oraz zniszczenia instalacji
D. wzrostu napięcia źródła zasilania
Rozumiem, że zwiększony pobór energii, wzrost napięcia zasilającego oraz większy pobór mocy wydają się mieć sens, ale to nie do końca tak działa w przypadku zmiany bezpieczników. Bezpiecznik nie kontroluje poboru energii, a tylko ochrania obwód przed przeciążeniem. Kiedy wstawisz bezpiecznik o wyższej wartości, urządzenia mogą się kręcić z większym prądem, ale to nie zawsze oznacza, że pobór energii wzrośnie. Co do wzrostu napięcia zasilającego, to też nie jest efekt zmiany bezpiecznika – napięcie zasilające jest ustalone przez źródło. A to, że pobór mocy wzrasta przy wyższym prądzie, to już inna bajka, ale nie jest bezpośrednio związane z bezpiecznikiem. Pamiętaj, że niewłaściwy bezpiecznik może namieszać w systemie elektrycznym i dlatego tak ważne jest trzymanie się zasad doboru zabezpieczeń wedle ich wartości znamionowych. Zmiany w zabezpieczeniach powinny być dobrze przemyślane, bo chodzi o bezpieczeństwo ludzi i trwałość instalacji. Z doświadczenia wiem, że zawsze warto przestrzegać norm i zasad branżowych, żeby uniknąć problemów i zagrożeń.

Pytanie 34

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. określić rezystancję falową kabla i w razie potrzeby ją skorygować
B. zmierzyć impedancję falową kabla koncentrycznego
C. oczyścić oraz pomalować antenę, a następnie ją ustawić
D. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 35

Którą z poniższych czynności <u><strong>nie uznaje się</strong></u> za element konserwacji systemów alarmowych?

A. Sprawdzanie czujników
B. Zamiana akumulatora
C. Weryfikacja powiadamiania
D. Montaż manipulatora
Montaż manipulatora to czynność, która nie należy do konserwacji instalacji alarmowych. Konserwacja odnosi się do działań mających na celu utrzymanie systemu w sprawności i zapewnienie jego prawidłowego funkcjonowania. Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania rutynowe, które pomagają w ocenie stanu systemu oraz w zapobieganiu ewentualnym awariom. Na przykład, regularne testowanie czujników pozwala na wykrycie ich ewentualnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników. Wymiana akumulatora, natomiast, jest niezbędna, aby zapewnić ciągłość działania systemu w przypadku przerwy w zasilaniu. Standardy branżowe, takie jak PN-EN 50131, wskazują na znaczenie regularnej konserwacji dla systemów zabezpieczeń, co podkreśla rolę tych czynności w zapewnieniu niezawodności i efektywności systemów alarmowych.

Pytanie 36

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. zwrotnica głośnikowa
B. limiter
C. equalizer
D. komparator głośnikowy
Komparator głośnikowy, equalizer oraz limiter pełnią inne role w systemach audio i nie są odpowiednie do rozdzielania tonów niskich, średnich i wysokich. Komparator głośnikowy jest urządzeniem, które zazwyczaj służy do porównywania sygnałów audio, jednak nie jest zaprojektowany do efektywnego zarządzania częstotliwościami w systemach głośnikowych. Jego zastosowanie w kontekście rozdzielania tonów jest mylące, ponieważ nie oferuje funkcji filtracji i nie wpływa na kierowanie sygnału do odpowiednich głośników. Również equalizer, mimo że dostosowuje poziomy częstotliwości, nie dzieli sygnału na różne pasma w sposób, który jest wymagany do efektywnego używania głośników tonów niskich, średnich i wysokich. Equalizer jedynie pozwala na regulację głośności poszczególnych częstotliwości, co może poprawić brzmienie, ale nie rozdziela sygnału. Z kolei limiter służy do ograniczania maksymalnego poziomu sygnału audio, co ma na celu zapobieganie przesterowaniom. Ograniczanie sygnału nie jest związane z filtrowaniem częstotliwości i nie ma zastosowania w kontekście kierowania sygnałów do odpowiednich głośników. Zrozumienie tych różnic jest kluczowe, aby nie wprowadzać się w błąd podczas projektowania lub optymalizacji systemów audio. Fikcyjne przypisanie tych funkcji do zwrotnic prowadzi do niewłaściwego wykorzystania sprzętu, co negatywnie wpływa na jakość dźwięku oraz efektywność nagłośnienia.

Pytanie 37

Jaki sposób postępowania z wykorzystanymi kineskopami telewizorów jest zgodny z normami ochrony środowiska?

A. Wrzucenie do pojemnika na szkło.
B. Zabranie ich bezpośrednio na wysypisko.
C. Przekazanie do firmy zajmującej się utylizacją niebezpiecznych odpadów.
D. Wrzucenie do pojemnika na odpady plastikowe.
Przekazanie zużytych kineskopów telewizorów do firmy zajmującej się utylizacją niebezpiecznych odpadów jest zgodne z przepisami ochrony środowiska, ponieważ kineskopy zawierają substancje chemiczne, takie jak ołów, kadm i rtęć, które są szkodliwe dla zdrowia ludzi i środowiska. Firmy zajmujące się utylizacją niebezpiecznych odpadów mają odpowiednie procedury oraz technologie, które pozwalają na bezpieczne i zgodne z prawem usunięcie tych substancji. Przykładem dobrych praktyk jest zgodność z normą ISO 14001, która określa wymagania dotyczące systemów zarządzania środowiskowego, co zapewnia, że odpady są traktowane w sposób minimalizujący wpływ na środowisko. Utylizacja przez profesjonalne firmy nie tylko chroni środowisko, ale także pomaga w recyklingu materiałów, co sprzyja zrównoważonemu rozwojowi i zmniejsza ilość odpadów składowanych na wysypiskach. Przykładowo, szkło z kineskopów może być przetworzone na nowe produkty szklane, a metale odzyskane z ich wnętrza mogą być ponownie wykorzystane w różnych gałęziach przemysłu.

Pytanie 38

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. Główny Urząd Miar
B. Główny Układ Mikroprocesorowy
C. technologię realizacji układów scalonych
D. metodę wykonania układów cyfrowych
Główny Urząd Miar (GUM) jest centralnym organem administracji państwowej w Polsce, odpowiedzialnym za metrologię, czyli naukę o pomiarach. Jego zadania obejmują nie tylko legalizację przyrządów pomiarowych, ale również wydawanie wzorców miar oraz certyfikowanie laboratoriów pomiarowych. Dzięki GUM zapewniona jest zgodność pomiarów z obowiązującymi normami i standardami, co jest kluczowe w wielu dziedzinach, takich jak przemysł, medycyna, a także handel. Przykładowo, przed rozpoczęciem działalności gospodarczej w branży spożywczej, przedsiębiorcy muszą upewnić się, że ich urządzenia ważące są legalizowane przez GUM, aby zapewnić rzetelność transakcji. Działania GUM mają na celu nie tylko ochronę interesów konsumentów, ale także wspieranie rozwoju technologii pomiarowej, co przyczynia się do poprawy jakości produktów i usług na rynku. W kontekście międzynarodowym, GUM współpracuje z organizacjami takimi jak Międzynarodowa Organizacja Miar (OIML), co dodatkowo wzmacnia znaczenie metrologii w Polsce.

Pytanie 39

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji siedzącej z podparciem głowy
B. Na plecach z uniesionymi nogami
C. Na brzuchu z głową odchyloną na bok
D. W pozycji bocznej ustalonej
Wybór nieprawidłowej pozycji dla poszkodowanego może prowadzić do poważnych konsekwencji zdrowotnych. Ułożenie w pozycji siedzącej i podtrzymywanie głowy nie jest optymalne, ponieważ może utrudnić swobodny przepływ powietrza oraz zwiększa ryzyko asfiksji, szczególnie jeśli osoba zacznie wymiotować. Natomiast ułożenie na brzuchu z głową odchyloną na bok jest niewłaściwe, gdyż może prowadzić do ucisku na klatkę piersiową i ograniczać ruchy oddechowe, co w przypadku nieprzytomności stwarza dodatkowe zagrożenie. Podobnie, umieszczenie poszkodowanego na plecach z uniesionymi nogami może być szkodliwe, ponieważ w takiej pozycji osoba może bez trudu wpaść w stan duszności, a w razie wymiotów grozi jej zachłyśnięcie. Kluczowym błędem myślowym jest niedocenienie znaczenia drożności dróg oddechowych oraz stabilności ciała. Utrzymując poszkodowanego w odpowiedniej, ale niewłaściwej pozycji, możemy narażać go na dodatkowe urazy i komplikacje zdrowotne. Dlatego w przypadku nieprzytomności, ale zachowanej świadomości oddechowej, najbezpieczniejszym rozwiązaniem jest zawsze pozycja boczna ustalona, która jest zgodna z wytycznymi i najlepszymi praktykami w zakresie pierwszej pomocy.

Pytanie 40

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor bipolarny
B. Tyrystor
C. Tranzystor unipolarny
D. Trymer
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.