Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 23 maja 2025 21:20
  • Data zakończenia: 23 maja 2025 22:00

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. zaniku napięcia
B. przepięć w sieci energetycznej
C. wyładowań atmosferycznych
D. przeciążenia instalacji elektrycznej
Wybór odpowiedzi wskazujących na inne przyczyny, takie jak wyładowania atmosferyczne, zanik napięcia czy przepięcia w sieci energetycznej, nie uwzględnia specyfiki działania wyłącznika nadmiarowoprądowego. Wyładowania atmosferyczne są zjawiskiem naturalnym, które wpływa na sieć zasilającą, jednak główną rolą wyłącznika nadmiarowoprądowego jest ochrona przed nadmiernym prądem, a nie bezpośrednio przed skutkami wyładowań atmosferycznych. W takich przypadkach stosuje się inne urządzenia, jak np. odgromniki, które są zaprojektowane do ochrony instalacji przed przepięciami związanymi z burzami. Zanik napięcia to inny problem, który dotyczy przerwy w dostawie energii, ale wyłącznik nadmiarowoprądowy nie jest przeznaczony do monitorowania ani zarządzania tym zjawiskiem. Z kolei przepięcia w sieci energetycznej, wynikające z nagłych skoków napięcia, również wymagają zastosowania odmiennych rozwiązań, takich jak ograniczniki przepięć. W efekcie, wybór tych odpowiedzi może wynikać z niepełnego zrozumienia działania poszczególnych urządzeń zabezpieczających instalacje elektryczne. Aby zapewnić bezpieczeństwo i niezawodność działania systemu elektrycznego, konieczne jest stosowanie odpowiednich zabezpieczeń zgodnie z normami oraz zasadami inżynieryjnymi, w tym prawidłowe dobieranie urządzeń do specyficznych zagrożeń związanych z daną instalacją.

Pytanie 2

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Brązowego
B. Szarego
C. Czarnego
D. Niebieskiego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 3

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. zwarcia międzyelektrodowe
B. przerwę w torze zasilania
C. usterkę toru odchylania poziomego
D. uszkodzenie toru odchylania poziomego
Wybór odpowiedzi związanej z uszkodzeniem toru odchylania poziomego jest błędny, ponieważ objawy samoczynnego wyłączania się telewizora z kineskopem nie są typowe dla tego rodzaju awarii. Uszkodzenie toru odchylania poziomego prowadziłoby raczej do zniekształcenia obrazu, takiego jak zniekształcenie geometrii ekranowej, a nie do nagłego wyłączania się urządzenia. W przypadku toru odchylania poziomego, problemy mogą objawiać się jako smużenie obrazu albo niewłaściwe odchylenie wiązki elektronów, co nie prowadzi do rozbłysku kolorów na ekranie. Ponadto, zwarcia międzyelektrodowe są bardziej prawdopodobne, gdyż skutkują one nagłą zmianą w pracy kineskopu, co może powodować krótkotrwałe rozbłyski. Podobnie, odpowiedzi dotyczące przerwy w torze zasilania nie są adekwatne, ponieważ przerwy w zasilaniu prowadziłyby do całkowitego wyłączenia telewizora, a nie do jego nieregularnego wyłączania się po krótkim czasie. Typowym błędem myślowym jest zakładanie, że zjawisko rozbłysku na ekranie jest związane z problemami z zasilaniem lub torami odchylania, kiedy w rzeczywistości jest to rezultat zwarcia w kineskopie. Dlatego kluczowe jest zrozumienie specyfiki problemu i umiejętność różnicowania objawów związanych z różnymi rodzajami uszkodzeń w telewizorach kineskopowych.

Pytanie 4

Obudowa wzmacniacza dystrybucyjnego z oznaczeniem IP64 gwarantuje

A. całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron
B. ochronę przed wnikaniem pyłu w ilościach wpływających na pracę urządzenia oraz ochronę przed strumieniem wody z każdego kierunku
C. ochronę przed wnikaniem pyłu w ilościach, które mogą zakłócać funkcjonowanie urządzenia oraz ochronę przed kroplami opadającymi pod dowolnym kątem, ze wszystkich stron
D. pełną ochronę przed wnikaniem pyłu oraz zabezpieczenie przed strumieniem wody z każdego kierunku
Obudowy oznaczone kodem IP64, choć zapewniają wysoki poziom ochrony, mają swoje ograniczenia, które należy zrozumieć, aby uniknąć błędnych wniosków. Odpowiedzi, które sugerują, że obudowa ta oferuje całkowitą ochronę przed wnikaniem wody w sposób równy wszelkim strumieniom, są mylące. Kod IP64 oznacza, że urządzenie jest odporne na krople wody padające pod kątem, co nie oznacza jednak, że jest odporne na silne strumienie wody, jak to jest w przypadku obudów klasy IP65 lub wyższej. Ponadto, twierdzenie, że obudowa IP64 zapewnia ochronę przed pyłem 'w ilościach zakłócających pracę urządzenia' jest w rzeczywistości nieprecyzyjne. Klasa '6' oznacza, że pył nie ma jakiejkolwiek możliwości przeniknięcia do wnętrza, a nie tylko, że jego obecność nie wpływa na funkcjonowanie. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują brak znajomości standardu IP oraz mylenie różnych klas, co może skutkować niewłaściwym doborem obudowy do konkretnych warunków użytkowania. W praktyce, wybierając obudowę dla urządzeń, warto dokładnie analizować wymagania dotyczące ochrony przed pyłem i wodą, aby zapewnić pełną funkcjonalność i trwałość sprzętu w różnych środowiskach.

Pytanie 5

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć CMOS nie została ustawiona.
B. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
C. pamięć podręczna cache procesora jest uszkodzona.
D. wystąpił problem z sumą kontrolną BIOS-u.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 6

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. w pionie oraz poziomie
B. najkrótszą trasą
C. tylko w poziomie
D. wyłącznie w pionie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 7

Jakie urządzenie należy zastosować do pomiaru rezystancji w układzie elektronicznym?

A. częstotliwościomierza
B. amperomierza
C. woltomierza
D. omomierza
Omomierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru rezystancji. Jego działanie opiera się na zasadzie pomiaru napięcia i prądu w obwodzie, co pozwala obliczyć wartość rezystancji zgodnie z prawem Ohma. W praktyce, omomierz jest niezbędny w diagnostyce elektronicznych układów, ponieważ umożliwia identyfikację uszkodzonych komponentów, takich jak rezystory, diody czy tranzystory. W kontekście instalacji elektronicznych, omomierz pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych przerw czy zwarć w obwodzie. Używanie omomierza jest zgodne z najlepszymi praktykami w branży, które zalecają regularne testowanie komponentów w celu zapewnienia ich poprawnego działania oraz bezpieczeństwa. Cały proces pomiaru powinien być przeprowadzany z zachowaniem odpowiednich środków ostrożności, aby uniknąć uszkodzenia sprzętu oraz zapewnić dokładność pomiarów.

Pytanie 8

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, elewacji, transpondera
B. elewacji, konwertera, transpondera
C. azymutu, konwertera, transpondera
D. elewacji, konwertera, azymutu
Prawidłowe wyznaczenie kierunku ustawienia anteny satelitarnej wymaga znajomości trzech fundamentalnych kątów: elewacji, azymutu oraz kąta konwertera. Niektóre z odpowiedzi zawierają błędne pojęcia lub niewłaściwe zestawienia kątów, co prowadzi do nieporozumień. Na przykład, kąt elewacji jest niezbędny, ponieważ pozwala określić, pod jakim kątem antena ma być skierowana w górę, co jest kluczowe dla odbioru sygnału z satelitów. Kąt azymutu z kolei wskazuje kierunek poziomy, w którym antena powinna być ustawiona, aby móc odebrać sygnał. Zdarza się, że odpowiedzi sugerują użycie kąta transpondera, co jest niepoprawne, ponieważ transponder to element satelity, który przetwarza sygnał, a nie parametr ustawienia anteny. Często występującym błędem jest mylenie funkcji konwertera z innymi kątami, co prowadzi do niepoprawnych wniosków. Konwerter LNB jest kluczowym elementem, który określa, jak sygnał z satelity jest odbierany i przetwarzany, dlatego jego odpowiednie ustawienie jest niezwykle istotne. Właściwe zrozumienie tych kątów i ich zastosowania jest kluczowe dla uzyskania optymalnej jakości sygnału. Niezrozumienie tych aspektów może skutkować problemami z odbiorem, co w praktyce oznacza niedziałającą antenę lub niską jakość sygnału.

Pytanie 9

Podaj właściwą sekwencję działań podczas instalacji tranzystora z radiatorem na płytce PCB?

A. Przykręcić radiator do tranzystora, przylutować tranzystor, zamocować radiator na PCB
B. Przylutować tranzystor, przykręcić radiator do tranzystora, zamocować radiator na PCB
C. Przykręcić radiator do tranzystora, zamocować radiator na PCB, przylutować tranzystor
D. Zamocować radiator na PCB, przylutować tranzystor, przykręcić radiator do tranzystora
Poprawna odpowiedź wskazuje na odpowiednią kolejność czynności przy montażu tranzystora z radiatorem na płytce PCB. Pierwszym krokiem jest przykręcenie radiatora do tranzystora, co zapewnia efektywne odprowadzanie ciepła generowanego przez tranzystor podczas pracy. Niewłaściwe odprowadzenie ciepła może prowadzić do przegrzania i uszkodzenia komponentu, dlatego solidne połączenie radiatora z tranzystorem jest kluczowe. Następnie, przymocowanie radiatora do PCB pozwala na stabilizację pozostałych elementów i eliminuje ryzyko przesunięcia radiatora w trakcie lutowania. Ostatnim krokiem jest przylutowanie tranzystora do płytki, co powinno odbywać się w sposób staranny, aby uniknąć zwarć czy uszkodzeń. Przykładem zastosowania tej metody może być montaż tranzystora w zasilaczach impulsowych, gdzie efektywne chłodzenie jest kluczowe dla prawidłowego działania. Zgodność z dobrymi praktykami montażu komponentów elektronicznych jest istotna, aby zapewnić niezawodność i długotrwałość urządzeń elektronicznych.

Pytanie 10

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. filtr krótkoczasowy
B. maskę pełną
C. aparat oddechowy zasilany powietrzem
D. półmaskę
Aparaty oddechowe zasilane powietrzem to najskuteczniejszy sposób ochrony dróg oddechowych w sytuacjach, gdy dostępność tlenu w otoczeniu jest ograniczona. Tego rodzaju urządzenia zasysają powietrze z zewnątrz, filtrując je, aby zapewnić użytkownikowi odpowiednią jakość powietrza do oddychania. W przeciwieństwie do innych urządzeń, takich jak maski pełne czy półmaski, które mogą nie zapewnić wystarczającej ilości tlenu w przypadku znacznego obniżenia jego stężenia w powietrzu, aparaty te są przystosowane do pracy w trudnych warunkach, np. w zamkniętych przestrzeniach lub w pobliżu substancji chemicznych, gdzie ryzyko wystąpienia niskiego poziomu tlenu jest wyższe. Użycie aparatu oddechowego zasilanego powietrzem jest zgodne z obowiązującymi normami BHP oraz standardami ochrony zdrowia, takimi jak normy EN 137 i EN 12942. Przykładem zastosowania tego typu urządzeń jest praca w przemyśle, gdzie narażenie na gazy toksyczne i niedotlenienie może być realnym zagrożeniem. Regularne szkolenia z ich obsługi oraz przeszkolenie użytkowników w zakresie postępowania w sytuacjach awaryjnych są kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 11

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Sterowanie dodatkowymi źródłami światła dla kamer
B. Kontrola kamer z obrotnicą PTZ
C. Zasilanie kamer za pomocą BNC
D. Rozpoznawanie twarzy
Wielu użytkowników może mylnie sądzić, że rejestrator w systemach monitoringu pełni funkcje takie jak zasilanie kamer przez BNC, sterowanie dodatkowym oświetleniem kamer lub wykrywanie twarzy. Zasilanie kamer przez BNC nie jest możliwe, ponieważ ten typ złącza służy głównie do przesyłania sygnału wideo, a nie do zasilania. Kamery zazwyczaj są zasilane przez osobne złącza, takie jak złącze DC lub PoE (Power over Ethernet), co jest standardową praktyką w branży, zapewniającą odpowiednią moc bezprzewodowego przesyłania danych i zasilania. Jeśli chodzi o sterowanie oświetleniem, wiele kamer wyposażonych jest w funkcje nocnego widzenia, które automatycznie dostosowują się do warunków oświetleniowych, co czyni dodatkowe oświetlenie niepotrzebnym. Wykrywanie twarzy jest zaawansowaną funkcją, która zazwyczaj zależy od algorytmów w kamerach, a nie od rejestratora. Źle zrozumiane funkcje rejestratora mogą prowadzić do nieefektywnego wykorzystania systemów monitoringu, dlatego ważne jest, aby operatorzy posiadali rzetelną wiedzę na temat możliwości oraz ograniczeń sprzętu, którego używają.

Pytanie 12

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Symetrycznego
B. Skrętki nieekranowanej
C. Koncentrycznego
D. Skrętki ekranowanej
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 13

Najlepiej połączyć bierne kolumny głośnikowe z akustycznym wzmacniaczem przy użyciu przewodu

A. symetrycznym o dużym przekroju żył
B. koncentrycznym nieekranowanym
C. koncentrycznym ekranowanym
D. symetrycznym o małym przekroju żył
Wybór niewłaściwego rodzaju przewodu do połączenia kolumn głośnikowych z wzmacniaczem akustycznym może prowadzić do znacznych strat jakości sygnału oraz zwiększenia poziomu zakłóceń. Przewody koncentryczne nieekranowane są szczególnie narażone na wpływ zakłóceń elektromagnetycznych, co w praktyce oznacza, że sygnał audio może być zniekształcony przez różnorodne źródła zakłóceń, takie jak inne urządzenia elektroniczne. Użycie przewodów o małym przekroju żył może z kolei prowadzić do zwiększenia oporu, co skutkuje dodatkowymi stratami mocy oraz obniżeniem jakości dźwięku. W kontekście połączeń głośnikowych, zastosowanie przewodu koncentrycznego ekranowanego również nie jest optymalne, ponieważ choć ekranowanie może pomóc w redukcji zakłóceń, to nie zapewnia ono takiej samej ochrony przed interferencjami jak przewody symetryczne. Często błędnie zakłada się, że jakiekolwiek ekranowanie wystarczy do ochrony sygnału, co jest mylnym podejściem, szczególnie w profesjonalnym nagłośnieniu, gdzie jakość sygnału jest kluczowa. Właściwy dobór przewodów do systemów audio jest zgodny z najlepszymi praktykami branżowymi, które promują stosowanie odpowiednich typów kabli w zależności od ich zastosowania, co jest niezbędne do zapewnienia optymalnej wydajności systemów akustycznych.

Pytanie 14

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. porażeniem prądem elektrycznym
B. wysoką temperaturą
C. niską wilgotnością
D. uszkodzeniami mechanicznymi
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 15

Urządzenie, które może być używane na zewnątrz i cechuje się wysoką odpornością na negatywne działanie warunków atmosferycznych, to

A. głowica w.cz.
B. tuner telewizji satelitarnej.
C. multiswitch.
D. konwerter satelitarny.
Głowica w.cz. to kluczowy element w telekomunikacji, ale według mnie to nie jest najlepszy wybór do użycia na zewnątrz. Zwykle są używane do odbioru sygnałów radiowych w środku, a ich budowa nie jest za bardzo odporna na trudne warunki pogodowe. Tuner telewizji satelitarnej też jest ważny, ale powinien być trzymany w środku, bo nie radzi sobie z niekorzystnymi warunkami na zewnątrz. Działa on w dużej mierze dzięki konwerterowi, więc jak ten jest słaby, to i tuner nie będzie działał najlepiej. Multiswitch to kolejne urządzenie, które rozdziela sygnał, ale też wymaga ochrony przed warunkami atmosferycznymi. Nieodpowiedni wybór sprzętu na zewnątrz może spowodować problemy z odbiorem sygnału, co wynika często z braku zrozumienia, jak ważne są poszczególne elementy systemu telewizji satelitarnej. Wiedza, które urządzenia sprawdzą się na zewnątrz, jest mega istotna, żeby mieć dobry i niezawodny sygnał.

Pytanie 16

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Odbiornik słuchawek bezprzewodowych 433 MHz.
B. Zakres zmian temperatury 15°C÷30°C.
C. Obce źródło fal radiowych 868 MHz.
D. Napięcie zasilania czujnika 2,9 V.
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 17

W procesie technologicznym konieczne jest, aby w pomieszczeniu o objętości 18 m3 utrzymywana była temperatura 40 st. C +- 5 st. C. Najczęściej wybieranym urządzeniem do sterowania elementami grzejnymi będzie

A. regulator dwustawny
B. regulator tyrystorowy mocy
C. system sterowania manualnego
D. system sterowania czasowego
Regulator dwustawny jest najbardziej odpowiednim rozwiązaniem w przypadku utrzymania temperatury w pomieszczeniu o kubaturze 18 m3, w którym wymagane jest zachowanie stabilnej temperatury 40°C z dopuszczalnym odchyleniem ±5°C. Regulator ten działa na zasadzie włączania i wyłączania źródła ciepła, co skutkuje szybkim osiągnięciem wymaganej temperatury. Przykładem zastosowania regulatora dwustawnego jest systemy grzewcze w domach jednorodzinnych, gdzie często występuje potrzeba szybkiej reakcji na zmiany temperatury. Dodatkowo, w przypadku sterowania grzejnikami, regulator ten może być skonfigurowany do automatycznego włączania się, gdy temperatura spadnie poniżej 35°C i wyłączania, gdy osiągnie 45°C. W przemyśle i budynkach użyteczności publicznej, stosowanie regulatorów dwustawnych pozwala na spełnienie norm dotyczących komfortu cieplnego, takich jak PN-EN 15251. Dobrą praktyką jest również zastosowanie czujników temperatury, które pozwalają na precyzyjniejsze monitorowanie warunków panujących w pomieszczeniu.

Pytanie 18

Przy włączaniu wzmacniacza akustycznego konieczne jest ustawienie wartości

A. amplitudy sygnału wejściowego na możliwie najwyższą
B. częstotliwości sygnału wejściowego na możliwie najniższą
C. częstotliwości sygnału wejściowego na możliwie najwyższą
D. amplitudy sygnału wejściowego na możliwie najniższą
Ustawienie amplitudy sygnału wejściowego na możliwie najmniejszą wartość podczas uruchamiania wzmacniacza akustycznego jest kluczowe dla zapewnienia bezpieczeństwa nie tylko samego urządzenia, ale także podłączonych do niego głośników. Wzmacniacze akustyczne mogą być bardzo wrażliwe na nadmierne poziomy sygnału, co może prowadzić do przesterowania, a w konsekwencji do uszkodzeń komponentów, takich jak tranzystory czy końcówki mocy. Ustawienie niskiej amplitudy sygnału umożliwia bezpieczne wprowadzenie sygnału do wzmacniacza, dzięki czemu użytkownik może stopniowo dostosować poziom wzmocnienia do pożądanych wartości, unikając nagłych skoków głośności. Przykładowo, w profesjonalnym środowisku audio, przed rozpoczęciem występu, technicy dźwięku zawsze wprowadzają sygnał na minimalnym poziomie, aby zminimalizować ryzyko nieprzyjemnych zaskoczeń akustycznych. Dobrą praktyką jest również monitorowanie poziomów sygnału za pomocą wskaźników LED lub mierników poziomu, co pozwala na dostosowanie parametrów w czasie rzeczywistym.

Pytanie 19

W jakich systemach wykorzystywany jest sterownik PLC?

A. w telewizji dozorowej
B. w transmisji światłowodowej
C. w automatyce przemysłowej
D. w sieciach komputerowych
Sterownik PLC to naprawdę ważna rzecz w automatyce przemysłowej. Umożliwia kontrolę i monitorowanie produkcji, co jest super istotne w fabrykach. Dzięki temu można dostosować systemy do potrzeb konkretnej produkcji. Na przykład w liniach montażowych, PLC potrafi świetnie koordynować pracę maszyn, tak żeby wszystko działało sprawnie i bezpiecznie. Tak samo, w budynkach, gdzie zarządza się oświetleniem czy wentylacją, PLC pomaga zaoszczędzić energię. Jest też sporo standardów, jak IEC 61131, które mówią, jak projektować te systemy. To wszystko pokazuje, jak ważne są PLC w nowoczesnym przemyśle.

Pytanie 20

Na podstawie dołączonej tabeli błędów testu POST BIOS-u firmy AMI określ, który element uniemożliwia uruchomienie komputera, jeżeli wydaje on 3 krótkie sygnały dźwiękowe.

Kod dźwiękowyZnaczenie
1 krótkibłąd odświeżania pamięci RAM
2 krótkiebłąd parzystości pamięci RAM
3 krótkiebłąd pierwszych 64 kB pamięci RAM
4 krótkiebłąd zegara systemowego
5 krótkichbłąd procesora
6 krótkichbłąd kontrolera klawiatury
7 krótkichbłąd trybu wirtualnego procesora
8 krótkichbłąd wejścia/wyjścia pamięci karty graficznej
9 krótkichbłąd sumy kontrolnej biosu
10 krótkichbłąd pamięci CMOS
11 krótkichbłąd pamięci podręcznej cache procesora
1 długi, 2 krótkiebłąd karty graficznej
1 długi, 3 krótkiebłąd pamięci RAM
1 długi, 8 krótkichproblem z wyświetlaniem obrazów przez kartę graficzną
ciągły sygnałbrak pamięci w bankach lub brak podłączonej karty graficznej
1 długizakończony pomyślnie test post

A. Karta sieciowa.
B. Zegar systemowy.
C. Karta graficzna.
D. Pamięć operacyjna.
Odpowiedź "Pamięć operacyjna" jest poprawna, ponieważ zgodnie z dokumentacją BIOS-u AMI, trzy krótkie sygnały dźwiękowe oznaczają problem z pamięcią RAM, konkretnie z pierwszymi 64 kB tej pamięci. To krytyczny obszar, który jest niezbędny do podstawowej funkcjonalności systemu operacyjnego oraz uruchomienia samego komputera. W praktyce, jeśli komputer nie może uzyskać dostępu do pamięci operacyjnej w tej części, nie jest w stanie zainicjować systemu ani wykonywać żadnych innych operacji. Diagnostyka błędów pamięci RAM jest istotnym krokiem przy uruchamianiu nowych systemów, a także przy naprawie istniejących. Dlatego ważne jest, aby regularnie monitorować stan pamięci RAM, stosując odpowiednie narzędzia diagnostyczne, które mogą pomóc w identyfikacji problemów przed ich eskalacją. Zrozumienie tego błędu jest kluczowe, aby uniknąć potencjalnych przestojów i kosztownych napraw.

Pytanie 21

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. prostownika
B. dioda elektroluminescencyjna
C. podzespołów pasywnych
D. bezpiecznika aparatowego
Bezpiecznik aparatu to taki kluczowy element, który chroni obwody elektryczne przed zbyt dużym prądem. To ważne, bo jak prąd jest za wysoki, to może zniszczyć różne części w układzie. Gdy korzystasz z laboratoryjnego zasilacza regulowanego i zauważysz, że dioda LED nie świeci, a gniazdo zasilające działa normalnie, to pierwszą rzeczą, którą warto sprawdzić, jest bezpiecznik. Jeśli jest przepalony, to zasilacz w ogóle nie będzie działał, co może być frustrujące. Regularne sprawdzanie bezpieczników i ich wymiana na właściwe wartości to dobra praktyka, żeby sprzęt działał bez problemu. A jak już znajdziesz uszkodzony bezpiecznik, to pamiętaj, żeby go wymienić z zachowaniem zasad bezpieczeństwa. Warto też zapisywać, kiedy i co się wymienia, bo to pomaga w lepszym zarządzaniu sprzętem elektronicznym.

Pytanie 22

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
B. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
C. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
D. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 23

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. symetryczne (balanced)
B. niesymetryczne (unbalanced)
C. sygnalizacyjne YKSY
D. sygnalizacyjne YKSwXs
Kable niesymetryczne (unbalanced) nie są odpowiednie dla połączeń na dużych odległościach, ponieważ charakteryzują się większą podatnością na zakłócenia zewnętrzne. W sytuacji, gdy sygnał jest przesyłany jednym przewodem z dodatkowym przewodem masy, każdy wpływ elektromagnetyczny może zniekształcić jakość dźwięku, co może prowadzić do szumów oraz innych problemów. Kable sygnalizacyjne YKSwXs oraz YKSY są specyficznymi typami kabli, które również mogą być stosowane w różnych aplikacjach, ale nie zapewniają tej samej ochrony przed zakłóceniami jak kable symetryczne. W przypadku YKSY, jest to kabel stosowany w instalacjach, ale nie jest on zoptymalizowany do długodystansowego przesyłania sygnału audio. Warto zauważyć, że wiele pomyłek w wyborze odpowiednich kabli wynika z niepełnej wiedzy na temat ich właściwości oraz zastosowań. Często myli się zjawisko tłumienia sygnału i zakłóceń, co prowadzi do błędnych decyzji w zakresie doboru sprzętu. Dobre praktyki branżowe podkreślają konieczność stosowania kabli symetrycznych w profesjonalnych aplikacjach audio, zwłaszcza w miejscach, gdzie wymagana jest wysoka jakość dźwięku i minimalizacja zakłóceń.

Pytanie 24

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Aktywuje filtr fal odbitych w odbiorniku.
B. Poprawia warunki funkcjonowania odbiornika.
C. Modyfikuje zakres częstotliwości filtra w.cz.
D. Pogarsza warunki pracy odbiornika.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 25

Podczas instalacji komputerowej na zewnątrz budynku, należy użyć kabla w izolacji

A. gumowej lub polietylenowej z żyłami aluminiowymi
B. papierowej z żyłami aluminiowymi
C. gumowej lub polietylenowej z żyłami miedzianymi
D. papierowej z żyłami miedzianymi
Wybór kabla gumowego lub polietylenowego z żyłami miedzianymi do instalacji komputerowej na zewnątrz obiektu jest zgodny z najlepszymi praktykami w branży elektroinstalacyjnej. Kabel gumowy charakteryzuje się wysoką odpornością na działanie niekorzystnych warunków atmosferycznych, takich jak wilgoć, promieniowanie UV oraz zmienne temperatury. Polietylen natomiast jest materiałem, który zapewnia doskonałą izolację, a jednocześnie jest odporny na działanie chemikaliów. Żyły miedziane cechują się lepszą przewodnością elektryczną w porównaniu do żył aluminiowych, co przekłada się na mniejsze straty energii oraz lepszą efektywność przesyłania sygnałów. Takie kable są często stosowane w zastosowaniach zewnętrznych, takich jak przyłącza do urządzeń zewnętrznych, monitoringu czy instalacji oświetleniowych. Zgodnie z normą PN-EN 60529, kable powinny mieć odpowiednią klasę ochrony przed szkodliwymi warunkami atmosferycznymi, co potwierdza, że wybór gumy lub polietylenu jest zasadne w kontekście chęci zapewnienia trwałości i bezpieczeństwa instalacji elektronicznych na zewnątrz.

Pytanie 26

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 29 dBµV, MER 14 dB
B. Poziom 65 dBµV, MER 12 dB
C. Poziom 55 dBµV, MER 24 dB
D. Poziom 25 dBµV, MER 29 dB
Poziom 55 dBµV oraz MER 24 dB to wartości mieszczące się w standardowych wymaganiach dla sygnałów telewizyjnych nadawanych drogą naziemną. Poziom sygnału 55 dBµV jest uznawany za minimalnie akceptowalny do odbioru sygnału DVB-T w warunkach domowych, co zapewnia stabilność odbioru. MER, czyli Modulation Error Ratio, wynoszący 24 dB oznacza, że jakość sygnału jest na poziomie wystarczającym do zapewnienia wysokiej jakości obrazu bez zakłóceń. W praktyce, odbiorniki telewizyjne powinny operować z MER na poziomie co najmniej 20 dB, aby uniknąć problemów z odbiorem. Wartości te są zgodne z normami ITU oraz ETSI, które określają minimalne wymagania dla odbioru sygnałów DVB-T. Odpowiedni poziom sygnału i MER są kluczowe w kontekście zakłóceń, które mogą wpływać na jakość obrazu oraz stabilność połączenia. W przypadku słabszych parametrów, mogą wystąpić problemy, takie jak zacinanie się obrazu czy całkowity brak sygnału. Przykładem zastosowania tych wartości może być analiza warunków otoczenia przy instalacji anteny, gdzie kluczowe jest zapewnienie odpowiedniego poziomu sygnału dla stabilnego odbioru.

Pytanie 27

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. zwiększyć poziom głośności w unifonie
B. dostosować poziom głośności w zasilaczu
C. dostosować napięcie w kasecie rozmownej
D. zwiększyć napięcie zasilania elektrozaczepu
Regulacja głośności w zasilaczu to bardzo ważny krok, jeśli chcesz, żeby domofon działał prawidłowo. Zasilacz nie tylko daje prąd do urządzenia, ale też wpływa na to, jak dźwięk brzmi. Jak w słuchawce słychać pisk albo rozmowa jest niewyraźna, to znaczy, że coś nie tak z ustawieniem głośności. W praktyce, zasilacze domofonowe często mają potencjometr, który pozwala na dostosowanie dźwięku. Jak zasilacz jest dobrze ustawiony, to powinno być wszystko ładnie słychać. Warto też pamiętać, żeby czasami sprawdzić te ustawienia, bo to wpływa na komfort użytkowania. Jeśli głośność jest za niska, to rzeczywiście można mieć problemy z odbiorem, a to psuje całą zabawę z domofonu.

Pytanie 28

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
Wybór odpowiedzi wskazujących na przewody z żyłą aluminiową jest błędny, ponieważ aluminium, mimo że jest materiałem lżejszym i tańszym od miedzi, ma zdecydowanie gorsze parametry przewodzenia prądu i większą podatność na korozję. Przewody aluminiowe wymagają większych przekrojów, aby osiągnąć te same parametry przewodzenia prądu co przewody miedziane, co prowadzi do zwiększenia kosztów i podniesienia masy instalacji. Odpowiedzi sugerujące typ linki również są mylące, ponieważ w przypadku oznaczenia YTDY mamy do czynienia z przewodem typu drut, co oznacza, że jego żyły nie są plecione, a pojedyncze. Użycie żyły linkowej w instalacjach domowych, zwłaszcza przy małych obciążeniach, nie jest konieczne i może prowadzić do niepotrzebnego zwiększenia kosztów. Typowe błędy w myśleniu, które prowadzą do takich wyborów, to ogólne założenie, że wszystkie przewody aluminiowe są równie dobre jak miedziane, oraz nieznajomość specyfikacji przewodów. Zrozumienie właściwości materiałowych oraz norm dotyczących instalacji elektrycznych jest kluczowe dla wyboru odpowiedniego przewodu, co w praktyce przekłada się na bezpieczeństwo i efektywność energetyczną instalacji. Przewody miedziane są preferowane tam, gdzie ważne jest minimalizowanie strat energii oraz zapewnienie wysokiej jakości połączeń elektrycznych.

Pytanie 29

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. skrócenia okresu użytkowania
B. wzrostu temperatury pracy urządzenia
C. uszkodzenia urządzenia
D. pojawienia się napięcia na obudowie
Podłączenie urządzenia elektronicznego posiadającego I klasę ochronności do gniazdka instalacji elektrycznej bez bolca ochronnego stwarza ryzyko pojawienia się napięcia na obudowie. Urządzenia te są projektowane w taki sposób, aby ich obudowy były uziemione, co zapobiega przypadkowemu porażeniu prądem w sytuacji awaryjnej. W przypadku, gdy bolca ochronnego brakuje, obudowa nie jest uziemiona, co oznacza, że w przypadku awarii lub zwarcia, napięcie może pojawić się na obudowie urządzenia. Przykładem zastosowania tej zasady jest użycie urządzeń takich jak pralki, lodówki, czy komputery, które powinny być podłączane do gniazdek z uziemieniem, aby zapewnić bezpieczeństwo użytkowników. Normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 61140, podkreślają znaczenie poprawnego uziemienia dla ochrony przed ryzykiem porażenia prądem. Dobre praktyki w zakresie instalacji elektrycznych nakazują, aby każde urządzenie klasy I było zawsze podłączane do gniazdka z bolcem ochronnym, co minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji.

Pytanie 30

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest ciągły
B. w badanym obwodzie znajduje się źródło prądowe
C. w badanym obwodzie znajduje się złącze półprzewodnikowe
D. badany obwód jest uszkodzony
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 31

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PE o impedancji 75 Ω
B. z PVC o impedancji 75 Ω
C. z PVC o impedancji 50 Ω
D. z PE o impedancji 50 Ω
Odpowiedź "z PE o impedancji 75 Ω" jest poprawna, ponieważ przewód antenowy do instalacji telewizyjnej powinien mieć impedancję 75 Ω, co jest standardem dla większości systemów telewizyjnych. Użycie przewodu z materiału PE (polietylen) zapewnia dodatkową odporność na warunki atmosferyczne, co jest kluczowe w przypadku zastosowań zewnętrznych. Przewody te są w stanie znieść działanie promieni UV oraz wilgotność, co wydłuża ich żywotność. Na przykład, w instalacjach satelitarnych oraz antenowych do odbioru telewizji kablowej wykorzystuje się głównie przewody o impedancji 75 Ω, aby zminimalizować straty sygnału i zapewnić wysoką jakość odbioru. Przestrzeganie tych standardów jest kluczowe dla efektywności systemu, co potwierdzają normy branżowe dotyczące instalacji telewizyjnych. Zastosowanie wysokiej jakości przewodów z PE poprawia również stabilność sygnału oraz zmniejsza ryzyko zakłóceń zewnętrznych.

Pytanie 32

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. wyłączników nadprądowych
B. bezpieczników topikowych
C. transformatora separującego
D. izolowania części czynnych
Odpowiedzi takie jak zastosowanie bezpieczników topikowych, wyłączników nadprądowych czy transformatora separującego dotyczą różnych aspektów zabezpieczeń elektrycznych, ale nie są właściwym rozwiązaniem w kontekście ochrony podstawowej przed dotykiem bezpośrednim. Bezpieczniki topikowe pełnią funkcję ochrony przed przeciążeniem i zwarciem, jednak ich zadaniem nie jest izolacja części czynnych. Ich działanie opiera się na przepalaniu się elementu bezpiecznika w momencie, gdy prąd przekroczy określony poziom, co nie zapobiega bezpośredniemu kontaktowi z częściami pod napięciem. Wyłączniki nadprądowe również mają na celu ochronę przed skutkami zwarć i przeciążeń, ale znowu, nie izolują one części czynnych. Z kolei transformatory separujące są stosowane do galwanicznego oddzielenia obwodów, co może zwiększać bezpieczeństwo, ale nie jest to mechanizm ochrony przed dotykiem bezpośrednim. Często błędnym założeniem jest mylenie różnych form ochrony elektrycznej - niektórzy mogą sądzić, że jakiekolwiek zabezpieczenie przed przeciążeniem wystarczy do zminimalizowania ryzyka, podczas gdy kluczowym aspektem, który rzeczywiście chroni użytkownika przed bezpośrednim porażeniem, jest fizyczna separacja części czynnych za pomocą odpowiedniej izolacji. W profesjonalnym podejściu do projektowania układów elektrycznych, zgodnie z normami bezpieczeństwa, izolacja jest fundamentem, na którym opiera się cała koncepcja bezpiecznego użytkowania urządzeń elektrycznych.

Pytanie 33

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
B. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
C. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
D. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka kluczowych błędów w zrozumieniu procesu odbioru sygnału satelitarnego. Na przykład, w niektórych odpowiedziach zakłada się, że odbiornik satelitarny powinien znajdować się przed konwerterem, co jest technicznie niepoprawne. Odbiornik satelitarny jest urządzeniem odpowiedzialnym za dekodowanie sygnału, który już przeszedł przez konwerter. Konwerter pełni kluczową rolę w przetwarzaniu sygnału, dlatego musi znajdować się bezpośrednio po antenie satelitarnej, a przed odbiornikiem satelitarnym. Innym typowym błędem jest ignorowanie znaczenia anteny satelitarnej, która jest pierwszym punktem kontaktu z sygnałem radiowym. Niepoprawna kolejność może prowadzić do braku sygnału lub znacznego pogorszenia jakości obrazu. Takie nieporozumienia często wynikają z braku wiedzy na temat funkcji poszczególnych komponentów systemu. Standardy branżowe określają, że właściwe ustawienie i konfiguracja systemu są kluczowe dla uzyskania najlepszego odbioru. Niezrozumienie tego procesu nie tylko może skutkować nieodpowiednim działaniem systemu, ale również ogranicza możliwości użytkownika w zakresie wykorzystania pełni potencjału technologii satelitarnej.

Pytanie 34

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. ocenić parametry życiowe poszkodowanego
B. usunąć poszkodowanego spod wpływu prądu
C. ustawić poszkodowanego w stabilnej pozycji bocznej
D. położyć poszkodowanego na brzuchu z głową odchyloną na bok
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 35

Koszt robocizny przy wymianie modułu wynosi 44 zł. Nowy moduł elektroniczny kosztuje 120 zł, a moduł regenerowany jest tańszy o 20%. Jaka będzie całkowita cena wymiany, jeśli zdecydujemy się na moduł regenerowany?

A. 140 zł
B. 188 zł
C. 164 zł
D. 132 zł
Całkowity koszt wymiany modułu regenerowanego można obliczyć, sumując koszt robocizny i cenę regenerowanego modułu. Koszt robocizny wynosi 44 zł, a nowy moduł elektroniczny kosztuje 120 zł. Regenerowany moduł jest o 20% tańszy, co oznacza, że jego cena wynosi 120 zł - (20% z 120 zł) = 120 zł - 24 zł = 96 zł. Zatem całkowity koszt wymiany modułu regenerowanego to: 44 zł (robocizna) + 96 zł (moduł regenerowany) = 140 zł. W praktyce, korzystanie z regenerowanych części staje się coraz bardziej popularne, ponieważ pozwala na znaczną oszczędność kosztów, a także jest bardziej przyjazne dla środowiska, zmniejszając ilość odpadów elektronicznych. W branży napraw i serwisu elektroniki, regeneracja modułów jest uznawana za standardowy sposób na wydłużenie żywotności urządzeń oraz obniżenie kosztów napraw, co przekłada się na większą satysfakcję klientów.

Pytanie 36

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Grubość ścian oraz stropów
B. Temperatura otoczenia
C. Liczba użytkowników
D. Poziom wilgotności powietrza
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 37

System RDS (Radio Data System) pozwala na

A. transmisję informacji tekstowych przez emisję UKF FM
B. odbiór cyfrowych danych poprzez emisję UKF FM
C. zdalne włączanie i wyłączanie odbiornika radiowego
D. odsłuch z zaawansowanym efektem przestrzennym stereo
Odpowiedź dotycząca odbioru cyfrowych informacji za pośrednictwem emisji UKF FM jest prawidłowa, ponieważ system RDS (Radio Data System) został zaprojektowany do przesyłania dodatkowych informacji w formie cyfrowej, które mogą być odbierane przez radioodbiorniki wyposażone w tę funkcjonalność. RDS umożliwia nadawanie takich informacji jak nazwa stacji radiowej, tytuł utworu, informacje o ruchu drogowym (TP), a także inne usługi, takie jak Radio Text (RT). Dzięki RDS, słuchacze mogą cieszyć się bardziej interaktywnym doświadczeniem słuchania radia, na przykład widząc na wyświetlaczu radia tytuł piosenki oraz nazwisko wykonawcy. Zastosowanie RDS w standardzie UKF FM znacząco poprawia jakość doświadczeń radiofonicznych, co jest zgodne z ogólnymi trendami w branży mediów, w których wartość dodana dla użytkowników jest kluczowym czynnikiem konkurencyjności. RDS stał się standardem w nowoczesnych systemach radiowych, co podkreśla jego użyteczność i popularność wśród słuchaczy.

Pytanie 38

Jakie oznaczenie skrótowe stosuje się dla komponentów obwodów elektronicznych, które są przeznaczone do montażu powierzchniowego w drukowanych płytkach?

A. SSD
B. SMD
C. CCD
D. LCD
Wybór innego skrótu niż SMD wskazuje na nieporozumienie dotyczące terminologii związanej z technologią montażu elementów elektronicznych. Skrót CCD, oznaczający 'Charge-Coupled Device', odnosi się do technologii wykorzystywanej głównie w kamerach i czujnikach obrazu, a nie do elementów montowanych na powierzchni. Technologia CCD jest zaawansowaną metodą przetwarzania sygnałów świetlnych, ale nie ma zastosowania w kontekście montażu komponentów na płytkach PCB. Z kolei SSD, czyli 'Solid State Drive', to typ pamięci masowej, który również nie ma związku z montażem powierzchniowym. SSD jest wykorzystywane w komputerach i urządzeniach mobilnych, ale nie odnosi się do elementów elektronicznych. LCD, czyli 'Liquid Crystal Display', to technologia wyświetlaczy, która nie dotyczy montażu komponentów w obwodach, ale raczej sposobu wyświetlania informacji. Typowe błędy myślowe, które mogą prowadzić do takich odpowiedzi, obejmują mylenie skrótów oraz brak zrozumienia kontekstu, w jakim dany termin jest używany. W elektronice kluczowe jest zrozumienie, że każdy skrót ma swoje specyficzne znaczenie i zastosowanie, co jest istotne dla skutecznej komunikacji i projektowania systemów elektronicznych.

Pytanie 39

Jak nazywa się jednostka mocy pozornej?

A. war.
B. wat.
C. woltoamper.
D. watogodzina.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 40

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
B. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
C. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
D. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.