Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 czerwca 2025 14:44
  • Data zakończenia: 7 czerwca 2025 14:58

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 20 A
C. gG 20 A
D. aM 16 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 2

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. I
C. II
D. III
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 3

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. żółty
B. zielony
C. szary
D. niebieski
Wybór niewłaściwego koloru wkładki topikowej może prowadzić do poważnych problemów w instalacjach elektrycznych. Odpowiedzi wskazujące na niebieski, szary, czy żółty kolor są nieprawidłowe, co wynika z nieznajomości standardów dotyczących oznaczeń wkładek topikowych. Niebieski kolor najczęściej kojarzony jest z wkładkami o prądzie znamionowym 10 A, co czyni go niewłaściwym dla wartości 6 A. Kolor szary z reguły odnosi się do wkładek o większym prądzie, a żółty często oznacza wkładki o wartości 16 A. Tego typu błędy wskazują na nieprawidłowe postrzeganie systemu kolorów, co może być efektem braku znajomości norm IEC 60127 oraz ogólnych zasad doboru elementów zabezpieczających w instalacjach elektrycznych. Właściwe oznaczenia kolorystyczne mają kluczowe znaczenie dla bezpieczeństwa, ponieważ niewłaściwie dobrana wkładka może nie zadziałać w przypadku przeciążenia, co prowadzi do ryzyka uszkodzenia urządzeń lub pożaru. Dlatego tak ważne jest, aby zapoznać się z obowiązującymi standardami i praktykami, aby uniknąć takich typowych błędów myślowych, które mogą mieć poważne konsekwencje w rzeczywistych warunkach operacyjnych.

Pytanie 4

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 A oraz znamionowy prąd ciągły 40 A
B. 0,03 A oraz napięcie znamionowe 40 V
C. 0,03 mA oraz napięcie znamionowe 40 V
D. 0,03 mA oraz znamionowy prąd ciągły 40 mA
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 5

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/500 V
B. 450/750 V
C. 300/300 V
D. 100/100 V
Izolacja przewodów w sieciach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i efektywność systemów zasilających. Wybór niewłaściwego napięcia znamionowego może prowadzić do poważnych konsekwencji, takich jak uszkodzenie przewodów, ryzyko porażenia prądem, a nawet pożarów. Odpowiedzi takie jak 300/300 V, 100/100 V czy 450/750 V mogą wydawać się atrakcyjne, jednak każda z nich ma swoje ograniczenia i nie spełnia wymagań dla instalacji niskonapięciowych. Na przykład, napięcie 300/300 V jest zbyt niskie w kontekście zastosowań niskonapięciowych, co może prowadzić do uszkodzenia izolacji w przypadku wystąpienia zwarcia. Natomiast 100/100 V jest zdecydowanie niewystarczające dla standardowych instalacji trójfazowych. Z kolei 450/750 V, mimo że może wyglądać na odpowiednie, jest zbyt wysokie dla nominalnych wartości napięcia 230/400 V, co może prowadzić do nieoptymalnego doboru komponentów w instalacji. Dlatego kluczowe jest stosowanie przewodów o odpowiednich dla danego zastosowania parametrach, jak 300/500 V, co zapewnia bezpieczeństwo oraz efektywność działania całego systemu elektrycznego. Zrozumienie norm i standardów, takich jak PN-EN 60228, jest niezbędne dla inżynierów i techników zajmujących się projektowaniem oraz instalowaniem systemów elektrycznych.

Pytanie 6

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Śrubową.
B. Gwintową.
C. Skrętną.
D. Samozaciskową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 7

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik ciśnieniowy.
C. Wyłącznik priorytetowy.
D. Ogranicznik mocy.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 8

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
C. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
D. Do formowania oczek na końcach żył jednodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 9

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 4 A i 3 bieguny
B. 9 A i 4 bieguny
C. 19 A i 3 bieguny
D. 3 A i 4 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 10

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 10 mm2
B. 1,5 mm2
C. 4 mm2
D. 2,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 11

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 302 25-30-AC
B. P 344 C-16-30-AC
C. P 304 25-30-AC
D. P 312 B-16-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 12

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 4 lata
B. 5 lat
C. 8 lat
D. 6 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 13

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Aluminium
B. Miedź
C. Stal
D. Nichrom
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 14

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. amperomierzem
B. omomierzem
C. watomierzem
D. woltomierzem
Omomierz to przyrząd elektryczny zaprojektowany specjalnie do pomiaru rezystancji, dlatego jest idealnym narzędziem do wykonywania pomiarów bezpośrednich rezystancji obwodów. Działa na zasadzie wysyłania prądu przez rezystor i pomiaru spadku napięcia, co umożliwia obliczenie rezystancji zgodnie z prawem Ohma (R = U/I). Przykładowe zastosowania omomierza obejmują testowanie ciągłości połączeń w instalacjach elektrycznych, diagnozowanie uszkodzeń w komponentach elektronicznych oraz pomiary rezystancji w aplikacjach przemysłowych. W kontekście dobrych praktyk, omomierze są często stosowane w serwisach i laboratoriach, gdzie precyzyjne pomiary rezystancji są kluczowe, szczególnie w kontekście bezpieczeństwa urządzeń elektrycznych, co jest zgodne z normami IEC 61010 dotyczącymi bezpieczeństwa przyrządów pomiarowych.

Pytanie 15

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przetwornicę napięcia
B. Transformator separacyjny
C. Przekładnik prądowy
D. Transformator bezpieczeństwa
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 16

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych na żyłach przewodu.
B. Formowania oczek na końcach żył.
C. Zaprasowywania przewodów w połączeniach wsuwanych.
D. Montażu zacisków zakleszczających.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 17

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Świecznikowy
C. Krzyżowy
D. Jednobiegunowy
Łącznik krzyżowy to całkiem sprytne urządzenie, które używamy w instalacjach elektrycznych do sterowania światłem z różnych miejsc. Ma cztery zaciski, więc można do niego podłączyć dwa łączniki schodowe i klawisz krzyżowy. Dzięki temu można włączać i wyłączać światło aż z trzech miejsc, co jest przydatne w dużych pomieszczeniach czy korytarzach, gdzie czasem ciężko dojść do włącznika. Używanie łączników krzyżowych według norm, takich jak PN-IEC 60669-1, nie tylko sprawia, że wszystko działa jak należy, ale zapewnia też bezpieczeństwo. Lokalne przepisy mówią, żeby stosować takie rozwiązania tam, gdzie potrzebujemy lepszej kontroli nad oświetleniem. Przykładowo, w korytarzu w domu mamy jeden włącznik przy drzwiach, drugi na schodach, a jak potrzeba to można dorzucić jeszcze jeden w innym miejscu, żeby było wygodniej.

Pytanie 18

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik różnicowoprądowy
B. ochronnik przeciwprzepięciowy
C. wyłącznik instalacyjny płaski
D. bezpiecznik instalacyjny
Bezpiecznik instalacyjny jest kluczowym elementem zabezpieczeń obwodów elektrycznych, który pełni funkcję zabezpieczającą przed przeciążeniem oraz zwarciem. Jego głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalony poziom, co minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, bezpiecznik instalacyjny montowany jest w rozdzielni elektrycznej i można go łatwo zresetować lub wymienić po wystąpieniu awarii. Stosowanie bezpieczników zgodnie z normą PN-EN 60898-1 zapewnia skuteczną ochronę przed nadmiernym prądem i przeciążeniem, co jest niezbędne w bezpiecznym użytkowaniu instalacji elektrycznych. Warto zaznaczyć, że bezpieczniki instalacyjne powinny być dobrane odpowiednio do charakterystyki obwodu oraz zastosowanych urządzeń, co zwiększa ich efektywność.

Pytanie 19

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. G9
B. MR11
C. GU10
D. E14
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 20

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Sprawdzenie układów sterowania i sygnalizacji
C. Pomiar rezystancji izolacji i próbne uruchomienie
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 21

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
B. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
C. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 22

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 7,07 V
B. 4,50 V
C. 10,00 V
D. 6,40 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.

Pytanie 23

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
B. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 24

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze niskoprężne.
C. Wyładowcze wysokoprężne.
D. Półprzewodnikowe.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 25

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 26

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik znajdzie się w stanie jałowym.
B. wirnik silnika zostanie dogoniony.
C. silnik zostanie zasilony prądem przeciwnym.
D. wirnik silnika będzie w bezruchu.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 27

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 300/300 V
B. 300/500 V
C. 600/1000 V
D. 450/750 V
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 28

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Weryfikacja poprawności podłączenia do sieci
B. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
C. Sprawdzenie kolejności faz sieci zasilającej
D. Weryfikacja działania przycisku testowego
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 29

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Przy użyciu kombinerek, pod napięciem
C. Uchwytem izolacyjnym pod obciążeniem
D. Uchwytem izolacyjnym bez obciążenia
Wymiana nożowych wkładek topikowych przy użyciu kombinerek lub innych narzędzi metalowych pod napięciem jest skrajnie niebezpieczna i niezgodna z zasadami bezpieczeństwa. W przypadku pierwszej opcji, korzystanie z kombinerek pod napięciem naraża technika na ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia metalowe, gdy są używane w obecności napięcia, stają się przewodnikami prądu, co zwiększa ryzyko kontaktu z przewodami pod napięciem. Z kolei wymiana wkładek pod obciążeniem również jest niewłaściwa, ponieważ prowadzi do potencjalnych krótkich spięć, które mogą uszkodzić instalację elektryczną oraz zagrażać życiu ludzi. Dodatkowo, próba pracy pod obciążeniem może powodować iskrzenie i inne nieprzewidywalne zjawiska, co znacznie podnosi stopień ryzyka. W kontekście wymiany wkładek topikowych, kluczowym punktem jest upewnienie się, że obwód jest wolny od obciążenia oraz że używa się odpowiednich narzędzi, jak uchwyty izolacyjne, które zapobiegają przypadkowemu kontaktowi z energią elektryczną. Takie podejście jest zgodne z praktykami bezpieczeństwa w pracy ze sprzętem elektrycznym, które są opisane w normach branżowych, jak na przykład IEC 60364, które podkreślają znaczenie pracy w bezpiecznych warunkach.

Pytanie 30

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. omomierz
C. megaomomierz
D. miernik obwodu zwarcia
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 31

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 16 mm2
C. 6 mm2
D. 10 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 32

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,40 V
B. ± 4,60 V
C. ± 4,30 V
D. ± 4,50 V
Poprawna odpowiedź to ± 4,50 V, co wynika z zastosowania wzoru do obliczania błędu bezwzględnego pomiaru. Klasa dokładności miernika analogowego oznacza, że maksymalny błąd pomiarowy wynosi 1,5% zakresu pomiarowego. W przypadku zakresu 300 V, maksymalny błąd obliczamy jako 1,5% z 300 V, co daje 4,5 V. To oznacza, że rzeczywisty wynik pomiaru napięcia sieciowego 230 V może różnić się od wartości rzeczywistej o maksymalnie ± 4,50 V. Praktyczne zastosowanie tego typu pomiarów związane jest z zapewnieniem bezpieczeństwa w instalacjach elektrycznych oraz monitorowaniem ich parametrów, co jest kluczowe dla efektywnego zarządzania energią. W branży elektrycznej stosuje się różne klasy dokładności w zależności od wymaganych precyzji pomiarów, dlatego zrozumienie tych standardów jest niezbędne dla inżynierów i techników zajmujących się systemami zasilania. Odpowiednia interpretacja wyników pomiarów, z uwzględnieniem błędów, ma fundamentalne znaczenie dla analizy i diagnozowania układów elektrycznych.

Pytanie 33

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Megawoltomierza
B. Megaomomierza
C. Omomierza
D. Watomierza
Megaomomierz, znany również jako miernik izolacji, jest specjalistycznym urządzeniem stosowanym do pomiaru rezystancji izolacji instalacji elektrycznych. Jego głównym celem jest ocena stanu izolacji przewodów oraz urządzeń elektrycznych, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa systemu. Pomiar rezystancji izolacji przeprowadza się zazwyczaj przy zastosowaniu napięcia wyższego niż standardowe napięcie robocze, co pozwala na wykrycie potencjalnych uszkodzeń i degradacji materiałów izolacyjnych. Przykładowo, w instalacjach o napięciu 230V, pomiar izolacji przeprowadza się zazwyczaj przy napięciu 500V lub 1000V, co jest zgodne z normami IEC 61010 oraz IEC 60364. Dzięki temu jesteśmy w stanie zidentyfikować uszkodzenia, które mogą prowadzić do porażeń prądem lub zwarć, co czyni ten pomiar niezbędnym w każdej rutynowej konserwacji instalacji elektrycznych.

Pytanie 34

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 25 mm2
B. 16 mm2
C. 4,0 mm2
D. 10 mm2
Wybór nieodpowiedniego przekroju dla przewodu PE może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. Przykładowo, odpowiedzi sugerujące mniejsze przekroje, takie jak 4,0 mm² lub 10 mm², są niezgodne z normami, ponieważ nie zapewniają wystarczającej nośności prądowej i mogą nie przewodzić prądów zwarciowych, co naraża użytkowników na niebezpieczeństwo. Zbyt mały przekrój przewodu ochronnego zwiększa opór, co może prowadzić do przegrzewania się przewodu i ewentualnych uszkodzeń instalacji. Natomiast wybór 25 mm², choć większy, nie jest uzasadniony w tym przypadku, ponieważ nadmiarowy przekrój nie wpływa na poprawę bezpieczeństwa, a może generować niepotrzebne koszty i komplikacje w instalacji. W praktyce, nadmiarowy przekrój przewodu PE może wprowadzać dodatkowe problemy, takie jak trudności w instalacji czy manipulacji przewodami w ograniczonej przestrzeni. Zrozumienie tych zasad jest kluczowe dla projektantów instalacji elektrycznych, ponieważ bezpieczeństwo instalacji powinno być priorytetem, a stosowanie właściwych przekrojów przewodów jest częścią dobrych praktyk inżynieryjnych. Dlatego kluczowe jest, aby podczas projektowania systemów elektrycznych kierować się obowiązującymi normami oraz zasadami, które zapewniają nie tylko efektywność, ale i bezpieczeństwo użytkowników.

Pytanie 35

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Fazowy
C. Ochronny
D. Neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 36

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 2,5 mm2
B. 6,0 mm2
C. 4,0 mm2
D. 1,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 37

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Wiertarki udarowej z wiertłem widiowym
B. Wkrętarki akumulatorowej z odpowiednim bitem
C. Klucza nasadowego
D. Klucza imbusowego
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.

Pytanie 38

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. linii kablowej zasilającej budynek.
B. instalacji odgromowej budynku.
C. linii napowietrznej niskiego napięcia.
D. instalacji elektrycznej.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 39

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Zamieniono zacisk przewodu fazowego z neutralnym
B. Nie podłączono przewodu ochronnego
C. Nie podłączono przewodu neutralnego
D. Zamieniono zacisk przewodu ochronnego z neutralnym
Zamiana zacisku przewodu ochronnego z neutralnym jest poważnym błędem w instalacji elektrycznej. W systemach elektrycznych, przewód ochronny (PE) ma na celu zapewnienie bezpieczeństwa poprzez odprowadzanie prądu awaryjnego w przypadku uszkodzenia izolacji urządzenia. Jeśli ten przewód zostanie zamieniony z przewodem neutralnym (N), to w przypadku zwarcia prąd zamiast do ziemi popłynie przez przewód neutralny, co może prowadzić do poważnych zagrożeń, w tym do porażenia prądem. Wyłączniki różnicowoprądowe są zaprojektowane do wykrywania różnicy prądu przepływającego między przewodem fazowym a neutralnym; jeśli coś pójdzie nie tak, a prąd zacznie płynąć przez przewód ochronny, wyłącznik zadziała, co może być objawem niepoprawnego podłączenia. W praktyce, przed podłączeniem gniazda wtyczkowego, należy zawsze upewnić się, że przewody są prawidłowo oznaczone i podłączone zgodnie z aktualnymi normami, takimi jak PN-IEC 60364, aby zminimalizować ryzyko błędów montażowych.

Pytanie 40

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. watomierza oraz woltomierza
B. omomierza oraz woltomierza
C. woltomierza i amperomierza
D. omomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.