Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 czerwca 2025 11:34
  • Data zakończenia: 3 czerwca 2025 11:43

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wyprostować skrzywiony wentylator lub osłonę
B. wymienić łożyska silnika
C. dokręcić śruby mocujące osłonę wentylatora
D. wycentrować wirnik w stojanie
Wymiana łożysk silnika, wycentrowanie wirnika w stojanie i dokręcanie śrub mocujących osłonę wentylatora to pomysły, które mogą wydawać się OK, ale nie rozwiążą problemu ocierania się wentylatora o osłonę. Zazwyczaj wymiana łożysk jest potrzebna, jak zaczynają się inne objawy, jak wibracje, a niekoniecznie hałas z ocierania. Wycentrowanie wirnika też jest istotne, ale jeżeli wentylator już jest uszkodzony, to centracja to tylko plasterek na ranę. Dokręcanie śrub nie pomoże, jeśli wentylator jest krzywy, bo osłona nie zmieni jego pozycji. Ignorowanie rzeczywistych przyczyn hałasu, jak uszkodzenia, może prowadzić do większych problemów w przyszłości, o czym mówią zasady dotyczące konserwacji urządzeń. Dobrze jest robić regularne przeglądy i podejść do sprawy analitycznie, żeby skutecznie rozwiązywać problemy z hałasem w elektrycznych silnikach.

Pytanie 2

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz dynamometryczny
B. Zaciskarkę konektorów
C. Zaciskarkę tulejek
D. Klucz płaski
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 3

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. spadkiem reaktancji uzwojeń
B. zwiększeniem prędkości obrotowej
C. wzrostem reaktancji uzwojeń
D. zmniejszeniem prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 4

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Utrzymują ustalony poziom ciśnienia
B. Zapewniają ustawiony, stały spadek ciśnienia
C. Redukują nagłe skoki ciśnienia
D. Ograniczają ciśnienie do ustalonego poziomu
Wybór odpowiedzi, która wskazuje na inne funkcje zaworów przelewowych, może prowadzić do nieporozumień w zakresie ich rzeczywistego zastosowania. Zmniejszanie gwałtownych impulsów ciśnienia nie jest zasadniczą funkcją zaworów przelewowych. Takie zadania często są realizowane przez inne elementy układu, takie jak tłumiki czy akumulatory hydrauliczne, które są zaprojektowane do absorpcji szczytowych wartości ciśnienia. Utrzymywanie zadanego, stałego spadku ciśnienia jest również nieprawidłowym podejściem, ponieważ zawory przelewowe nie są przeznaczone do regulowania różnicy ciśnień, lecz do ochrony przed nadmiernym wzrostem ciśnienia. Innym błędnym przekonaniem jest to, że zawory przelewowe po prostu ograniczają ciśnienie do określonego poziomu; w rzeczywistości ich działanie jest bardziej złożone i polega na zapewnieniu stabilności ciśnienia w układzie poprzez odprowadzanie nadmiaru płynu. Mylne interpretacje dotyczące funkcji zaworów przelewowych mogą skutkować nieprawidłowym doborem komponentów w systemach hydraulicznych, co w konsekwencji prowadzi do awarii i zwiększonych kosztów eksploatacyjnych. Dlatego kluczowe jest zrozumienie ich rzeczywistej roli w utrzymywaniu stabilności ciśnienia, co jest niezbędne dla prawidłowego funkcjonowania całego układu hydraulicznego.

Pytanie 5

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Opaskę uziemiającą
B. Ochronne okulary
C. Buty z izolującą podeszwą
D. Fartuch ochronny z bawełny
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 6

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 24 wejściach i 16 wyjściach
B. S7-200 o 6 wejściach i 4 wyjściach
C. S7-200 o 14 wejściach i 10 wyjściach
D. S7-200 o 8 wejściach i 6 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 7

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. spawania
B. napawania
C. lutowania
D. polerowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 8

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Tłokowa z jednostronnym tłoczyskiem
C. Nurnikowa
D. Teleskopowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 9

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Zastępować przewody pneumatyczne
B. Wymieniać szybkozłączki
C. Dostosowywać ciśnienie powietrza
D. Usuwać kondensat
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 10

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Nastawić staw i zabandażować kostkę
B. Podać leki przeciwbólowe
C. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
D. Zabandażować kostkę i przewieźć pacjenta do lekarza
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 11

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Bezpośrednich
B. Złożonych
C. Uwikłanych
D. Pośrednich
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 12

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. pompę hydrauliczną.
B. kompresor olejowy.
C. silnik hydrauliczny.
D. silnik elektryczny.
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 13

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
C. wymienić uszczelkę
D. wymienić membranę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 14

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Rezystancją w obwodzie wzbudzenia
C. Napięciem przyłożonym do obwodu twornika
D. Rezystancją w obwodzie twornika
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 15

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Bezszczotkowy
B. Szeregowy
C. Bocznikowy
D. Obcowzbudny
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 16

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. nawilżenie.
B. stan napięcia.
C. temperaturę.
D. bicie osiowe.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 17

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym

A. czarnym i niebieskim.
B. szarym i niebieskim.
C. czerwonym i czarnym.
D. brązowym i niebieskim.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 18

Do czego służy stabilizator napięcia?

A. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
B. do przekształcania napięcia przemiennego w napięcie stałe
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do wygładzania napięcia po prostowaniu przez prostownik
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 19

Silniki, które mają największy moment rozruchowy to

A. synchroniczne prądu przemiennego
B. bocznikowe prądu stałego
C. asynchroniczne prądu przemiennego
D. szeregowe prądu stałego
Silniki elektryczne różnią się między sobą konstrukcją i zasadą działania, co ma bezpośredni wpływ na ich charakterystyki, w tym moment obrotowy. Synchroniczne silniki prądu przemiennego, mimo że mają swoje zastosowania w przemyśle, nie są optymalne tam, gdzie wymagana jest wysoka wartość momentu rozruchowego. Ich działanie opiera się na synchronizacji wirnika z polem magnetycznym, co może prowadzić do problemów z rozruchem przy dużych obciążeniach. Z drugiej strony, silniki bocznikowe prądu stałego również nie osiągają tak dużego momentu rozruchowego jak silniki szeregowe, gdyż ich uzwojenie wzbudzenia jest podłączone równolegle do wirnika, co skutkuje mniejszym prądem wzbudzenia w momentach startowych. Asynchroniczne silniki prądu przemiennego, znane ze swojej prostoty i niezawodności, także nie potrafią generować momentu rozruchowego porównywalnego z silnikami szeregowymi. Ich charakterystyka rozruchowa jest opóźniona z powodu braku prądu wzbudzenia w stanie spoczynku. Zrozumienie tych różnic jest kluczowe w inżynierii, ponieważ dobór odpowiedniego silnika do konkretnych zastosowań może zadecydować o efektywności i wydajności systemu. Z tego powodu, w obszarach, gdzie wysoka siła rozruchowa jest niezbędna, zaleca się stosowanie silników szeregowych prądu stałego jako najbardziej odpowiedniego rozwiązania.

Pytanie 20

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Buty ochronne
B. Odzież ochronna
C. Rękawice ochronne
D. Okulary ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 21

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. sprawdzenia wymiarów
C. weryfikacji czystości paska
D. analizy stopnia zużycia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 22

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 10,00 A
B. 5,77 A
C. 7,70 A
D. 13,33 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 23

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Stal niskowęglowa
C. Żeliwo szare
D. Stal wysokowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 24

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. kąta obrotu na impulsy elektryczne
B. prędkości obrotowej na napięcie stałe
C. kąta obrotu na regulowane napięcie stałe
D. prędkości obrotowej na impulsy elektryczne
Wybór odpowiedzi dotyczącej konwersji kąta obrotu na impulsy elektryczne jest niepoprawny, ponieważ komutatorowa prądnica tachometryczna nie działa na zasadzie pomiaru kąta obrotu. Kąt obrotu, choć istotny w kontekście niektórych urządzeń pomiarowych, takich jak enkodery, nie jest bezpośrednio związany z funkcjonalnością prądnic tachometrycznych, które koncentrują się na prędkości obrotowej. Kolejna błędna koncepcja dotyczy przekształcania prędkości obrotowej na impulsy elektryczne. Chociaż impulsy elektryczne mogą być generowane przez różne typy czujników, w przypadku prądnic tachometrycznych generowane napięcie stałe jest bardziej stabilnym i dokładnym sposobem przedstawienia prędkości obrotowej, co jest kluczowe w aplikacjach wymagających precyzyjnego pomiaru. Ostatnia nieprawidłowa koncepcja wiąże się z regulowanym napięciem stałym, które nie jest typowe dla działania prądnic tachometrycznych. Te urządzenia dostarczają napięcie stałe, które jest proporcjonalne do prędkości obrotowej, a nie napięcie regulowane. Zrozumienie tych różnic jest kluczowe dla efektywnego wykorzystania technologii w systemach mechatronicznych oraz dla prawidłowej interpretacji i analizy danych pochodzących z różnych czujników i przetworników. Właściwe podejście do wyboru urządzeń pomiarowych może znacząco wpłynąć na wydajność i jakość projektów inżynieryjnych.

Pytanie 25

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Wiercenie wtórne
B. Wiercenie
C. Pogłębianie
D. Rozwiercanie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 26

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrane odpowiedzi nie spełniają wymagań dotyczących wydajności lub ciśnienia roboczego sprężarki, co może prowadzić do niedostatecznej efektywności zasilania siłownika. Na przykład, odpowiedzi z wydajnością 3,6 m3/h są niewystarczające, ponieważ całkowite zapotrzebowanie siłownika wynosi 4,2 m3/h. Użycie sprężarki o niższej wydajności skutkuje ryzykiem obniżenia ciśnienia w systemie, co może prowadzić do nieprawidłowego działania siłownika. Kolejnym błędem jest wybór sprężarki z maksymalnym ciśnieniem 0,7 MPa (7 bar), które jest niższe niż wymagane ciśnienie robocze 8 bar. Użycie sprężarki, która nie osiąga wymaganego ciśnienia, skutkuje brakiem możliwości wydajnego zasilania siłownika, co może prowadzić do jego uszkodzenia. W kontekście inżynierii mechanicznej i pneumatyki, kluczowe jest, aby sprzęt był dobrany do specyficznych wymagań aplikacji, w tym ciśnienia i wydajności, aby zapewnić optymalne działanie systemu. Wybierając sprężarkę, zawsze warto uwzględniać margines bezpieczeństwa, by uniknąć sytuacji, w których urządzenia mogą pracować na granicy swoich możliwości, co znacznie wpływa na ich żywotność oraz efektywność operacyjną. Zgodnie z normami i praktykami branżowymi, odpowiednia specyfikacja sprzętu jest kluczowa dla zapewnienia niezawodności systemu pneumatycznego.

Pytanie 27

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Zawór dławiąco-zwrotny
B. Zawór przelewowy
C. Regulator przepływu
D. Rozdzielacz suwakowy
Wybór rozdzielacza suwakowego jako elementu regulacyjnego w układzie hydraulicznym nie jest właściwy w kontekście utrzymania stałej prędkości obrotowej silnika hydraulicznego. Rozdzielacze suwakowe służą głównie do kierunkowego sterowania przepływem cieczy i umożliwiają zmianę kierunku pracy siłowników. Ich funkcjonalność koncentruje się na rozdzielaniu strumienia cieczy do różnych odbiorników, co nie pozwala na stabilizację prędkości w warunkach zmiennego obciążenia. Z kolei zawór dławiąco-zwrotny, mimo że może regulować przepływ, nie zapewnia stałej prędkości obrotowej, ponieważ jego działanie opiera się na dławieniu przepływu, co może prowadzić do wahań prędkości w zależności od obciążenia. Warto również zauważyć, że zawór przelewowy, który służy do ochrony układu przed nadmiernym ciśnieniem, nie ma wpływu na stabilizację prędkości obrotowej silnika, a jego głównym zadaniem jest odprowadzanie nadmiaru cieczy do zbiornika. Takie myślenie prowadzi do typowego błędu, w którym myli się funkcję regulacyjną z zabezpieczającą lub kierunkową, co może skutkować nieefektywnym działaniem układu hydraulicznego oraz zwiększonym ryzykiem uszkodzeń. Aby zrozumieć istotę regulacji przepływu w systemach hydraulicznych, ważne jest, aby analizować każdy z elementów pod kątem ich przeznaczenia i wpływu na funkcjonowanie całego układu.

Pytanie 28

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 2°49'
B. 11°15'
C. 5°38'
D. 22°30'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 29

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. ochrony prądowej systemu
B. przełącznika instalacyjnego systemu
C. czujnika poziomu światła
D. wskaźnika działania systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 30

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, manometr, smarownica
B. filtr, zawór dławiący, manometr, smarownica
C. sprężarka, filtr, zawór redukcyjny, manometr
D. filtr, zawór redukcyjny, manometr, smarownica
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 31

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Klejenia
B. Zaginania
C. Zgrzewania
D. Spawania
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 32

Do połączeń spoczynkowych trwałych nie wlicza się

A. kołkowania
B. klejenia
C. nitowania
D. spawania
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 33

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. odkręcenie tranzystora
B. wycięcie tranzystora
C. wylutowanie tranzystora
D. wyjęcie tranzystora z gniazda
Wylutowanie tranzystora jest poprawną metodą jego wymiany, ponieważ pozwala na usunięcie uszkodzonego komponentu z płytki PCB w sposób bezpieczny i skuteczny. Proces ten polega na podgrzaniu lutów łączących tranzystor z płytą za pomocą lutownicy lub stacji lutowniczej, co umożliwia jego wydobycie bez uszkodzenia otaczających elementów. Praktyka ta jest zgodna z normami IPC, które definiują wysokie standardy jakości w lutowaniu. W przypadkach, gdy tranzystor jest uszkodzony, wylutowanie jest często jedyną sensowną opcją, aby wymienić go na nowy. Należy również pamiętać o podjęciu odpowiednich środków ostrożności, takich jak użycie odpowiednich narzędzi i okularów ochronnych, aby uniknąć oparzeń czy uszkodzeń komponentów. Ponadto, w przypadku profesjonalnych napraw, warto stosować metody takie jak podgrzewanie całej płytki w piecu lutowniczym, co minimalizuje ryzyko uszkodzenia pozostałych elementów. Oprócz tego, znajomość technik wylutowywania i lutowania jest niezbędna dla osób zajmujących się elektroniką, aby zapewnić trwałość i niezawodność naprawionych urządzeń.

Pytanie 34

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. zmiany przebiegu dwupulsowego na jednopulsowy
C. redukcji tętnień
D. zmniejszenia składowej stałej
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 35

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
B. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
C. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
D. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 36

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. umieszczania elementu w odpowiedniej lokalizacji
B. ochrony ramienia robota przed przeciążeniem
C. ochrony ramienia robota przed zderzeniem z operatorem
D. chwytania elementu z odpowiednią siłą
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 37

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. Q
B. T
C. I
D. R
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 38

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Wytwarza sygnały sinusoidalne
B. Dodaje napięcia
C. Zwiększa prąd
D. Izoluje galwanicznie sygnały
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 39

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 15 V
C. 25 V
D. 5 V
Zasilanie scalonych układów cyfrowych wykonanych w technologii TTL nie powinno przekraczać 5 V, ponieważ wyższe napięcia, takie jak 10 V, 15 V czy 25 V, mogą prowadzić do uszkodzenia tych układów. Wysokie napięcia mogą przekraczać maksymalne wartości tolerancyjne dla tranzystorów stosowanych w TTL, co skutkuje ich nienormalnym działaniem, a w skrajnych przypadkach - całkowitym zniszczeniem. Niezrozumienie zasad działania technologii TTL oraz ich wymagań dotyczących zasilania może prowadzić do typowych błędów w projektowaniu. Na przykład, użytkownicy mogą mylnie zakładać, że wyższe napięcia zwiększają wydajność układów, co jest nieprawda. TTL działa w zakresie niskich napięć, co zapewnia odpowiednie poziomy sygnałów logicznych, a ich stabilność jest kluczowa dla poprawnego działania. Ponadto, użycie niewłaściwego napięcia zasilania może prowadzić do powstawania zakłóceń elektromagnetycznych, co negatywnie wpływa na inne komponenty systemu. Dlatego ważne jest, aby projektując obwody cyfrowe oparte na TTL, przestrzegać ściśle zalecanych parametrów zasilania, co przyczyni się do ich niezawodności oraz trwałości w dłuższym okresie. Kluczowym elementem każdej aplikacji elektronicznej jest zapewnienie zgodności z dokumentacją techniczną oraz standardami branżowymi, które wskazują na konieczność używania odpowiednich wartości napięcia dla różnych technologii.

Pytanie 40

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO16 oraz AI4
B. DI16/DO16 oraz AI2
C. DI16/DO8 oraz AI4
D. DI32/DO8 oraz AI2
Modułowy sterownik PLC z konfiguracją DI32/DO16 oraz AI4 to naprawdę dobry wybór. W układzie mechatronicznym masz aż 18 czujników binarnych, 4 przetworniki analogowe i 11 elementów, które działają w trybie dwustanowym. Dzięki DI32 masz więcej niż dość wejść cyfrowych, żeby połączyć wszystkie czujniki, a nawet zostaje ci trochę zapasu na przyszłość. Z kolei 16 wyjść cyfrowych (DO16) spokojnie obsłuży te 11 elementów wykonawczych, co daje ci możliwość rozszerzenia systemu, jeśli zajdzie taka potrzeba. No i te 4 wejścia analogowe (AI4) są akurat na przetworniki, co pozwala ci na monitorowanie i analizowanie sygnałów, a to jest kluczowe w mechatronice. Przykład? Chociażby automatyka przemysłowa, gdzie trzeba mieć na oku zarówno analogowe sygnały, jak i różne urządzenia wykonawcze.