Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 stycznia 2025 10:16
  • Data zakończenia: 14 stycznia 2025 10:37

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. obwodów wejściowych
B. obwodów wyjściowych
C. systemu masy
D. układu zasilania
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 2

W przedsiębiorstwie zajmującym się produkcją układów elektronicznych złożono zamówienie na 20 sztuk pilotów telewizyjnych. Cena komponentów potrzebnych do zrealizowania jednego pilota wynosi 30 zł. Koszt pracy pracownika przy wytworzeniu jednego pilota to 10 zł. Jak będzie wyglądać całkowity koszt zamówienia po uwzględnieniu 5% zniżki?

A. 720 zł
B. 760 zł
C. 800 zł
D. 840 zł
Obliczenie całkowitego kosztu zamówienia 20 sztuk pilotów TV wymaga uwzględnienia kosztów elementów oraz kosztów robocizny. Koszt elementów dla jednego pilota wynosi 30 zł, co daje łącznie 600 zł za 20 sztuk (20 x 30 zł). Dodatkowo, koszt wykonania jednego pilota przez pracownika wynosi 10 zł, co przekłada się na 200 zł za 20 pilotów (20 x 10 zł). Zatem łączny koszt produkcji wynosi 800 zł (600 zł + 200 zł). Po zastosowaniu 5% rabatu, który wynosi 40 zł (5% z 800 zł), całkowity koszt zamówienia obniża się do 760 zł (800 zł - 40 zł). Tego rodzaju kalkulacja jest standardową praktyką w branży produkcyjnej, gdzie rabaty są często stosowane przy większych zamówieniach, co może znacznie wpłynąć na ostateczny koszt. Zrozumienie tych obliczeń jest kluczowe dla zarządzania kosztami oraz efektywności finansowej w firmach produkcyjnych.

Pytanie 3

Po uruchomieniu regulowanego zasilacza laboratoryjnego zauważono, że urządzenie nie funkcjonuje, a wskaźnik (dioda LED) nie jest aktywowany. Sprawdzono stan gniazda, do którego podłączono zasilacz i nie wykryto w nim uszkodzeń. Proces lokalizacji awarii w zasilaczu należy rozpocząć od weryfikacji

A. prostownika
B. dioda elektroluminescencyjna
C. bezpiecznika aparatowego
D. podzespołów pasywnych
Bezpiecznik aparatu to taki kluczowy element, który chroni obwody elektryczne przed zbyt dużym prądem. To ważne, bo jak prąd jest za wysoki, to może zniszczyć różne części w układzie. Gdy korzystasz z laboratoryjnego zasilacza regulowanego i zauważysz, że dioda LED nie świeci, a gniazdo zasilające działa normalnie, to pierwszą rzeczą, którą warto sprawdzić, jest bezpiecznik. Jeśli jest przepalony, to zasilacz w ogóle nie będzie działał, co może być frustrujące. Regularne sprawdzanie bezpieczników i ich wymiana na właściwe wartości to dobra praktyka, żeby sprzęt działał bez problemu. A jak już znajdziesz uszkodzony bezpiecznik, to pamiętaj, żeby go wymienić z zachowaniem zasad bezpieczeństwa. Warto też zapisywać, kiedy i co się wymienia, bo to pomaga w lepszym zarządzaniu sprzętem elektronicznym.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Koder i transkoder
B. Multiplekser i dekoder
C. Multiplekser i demultiplekser
D. Koder i demultiplekser
W przypadku odpowiedzi wskazujących na zastosowanie multipleksera i dekodera, ważne jest zrozumienie, że dekoder nie pełni funkcji redukcji linii przesyłowych. Dekodery są używane do konwersji binarnych sygnałów na sygnały wyjściowe, co może zwiększać liczbę linii wymaganych na wyjściu. Takie podejście prowadzi do nadmiarowości i nieefektywności, szczególnie w systemach o dużej liczbie sygnałów. W analogiczny sposób, wybór kodera i transkodera również nie jest odpowiedni w kontekście zmniejszenia linii przesyłowych. Kodery konwertują dane w celu ich efektywnego przesyłania lub przechowywania, natomiast transkodery zmieniają format tych danych. Oba te procesy mogą angażować dodatkowe zasoby, zamiast je minimalizować. Wreszcie, wybór kodera i demultipleksera jest równie mylący, gdyż koder nie jest dedykowany do redukcji linii, a demultiplekser, chociaż przydatny w rozdzielaniu sygnałów, nie niweluje potrzeby posiadania wielu linii na etapie kodowania. W analizie tych odpowiedzi często popełniane są błędy związane z niewłaściwym rozumieniem roli i funkcji poszczególnych układów cyfrowych oraz ich wpływu na architekturę systemów. Kluczowe jest, aby przy wyborze komponentów kierować się ich rzeczywistym zastosowaniem w kontekście redukcji zasobów, co powinno być podstawą wszelkich decyzji inżynieryjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Skrętka bez ekranowania folią jest oznaczana jako

A. F/FTP
B. F/UTP
C. U/FTP
D. U/UTP
Skrętka, która nie ma folii, czyli U/UTP, to standardowy kabel sieciowy, który nie jest dodatkowo osłonięty. Nazwa U/UTP pochodzi od angielskiego "Unshielded Twisted Pair". Tego typu kable są często wykorzystywane w lokalnych sieciach komputerowych, zwłaszcza tam, gdzie ryzyko zakłóceń elektromagnetycznych jest umiarkowane. Jak dla mnie, idealnie nadają się do biur, gdzie łączą komputery z przełącznikami sieciowymi. Fajnie, że te nieekranowane kable są zgodne z normami, takimi jak TIA/EIA 568, co mówi o ich szerokim zastosowaniu. Generalnie, U/UTP jest popularny w instalacjach Ethernet, zarówno w 10Base-T, 100Base-TX, jak i 1000Base-T, więc naprawdę warto je znać, jeśli interesujesz się sieciami.

Pytanie 8

Jakie dodatkowe środki ochrony przeciwporażeniowej nie są wymagane podczas serwisowania urządzeń elektronicznych?

A. Zerowanie ochronne
B. Ekranowanie elektromagnetyczne
C. Wyłączniki różnicowoprądowe
D. Uziemienie ochronne
Ekranowanie elektromagnetyczne jest techniką stosowaną w celu ograniczenia wpływu pola elektromagnetycznego na urządzenia elektroniczne, jednak nie jest uznawane za środek ochrony przeciwporażeniowej, co czyni tę odpowiedź poprawną. W kontekście serwisowania urządzeń elektronicznych, kluczowymi środkami ochrony są uziemienie ochronne, wyłączniki różnicowoprądowe oraz zerowanie ochronne, które mają na celu ochronę przed porażeniem prądem elektrycznym. Uziemienie ochronne zapewnia bezpieczne odprowadzenie prądu do ziemi w przypadku uszkodzenia izolacji, co jest istotne w przypadku pracy z urządzeniami pod napięciem. Wyłączniki różnicowoprądowe wykrywają różnicę w prądzie między przewodami fazowym a neutralnym, co pozwala na szybkie odcięcie zasilania w przypadku wystąpienia nieprawidłowości. Zerowanie ochronne polega na podłączeniu obudowy urządzenia do uziemienia, co zwiększa bezpieczeństwo użytkowników. Ekranowanie elektromagnetyczne, mimo że jest ważne w kontekście minimalizacji zakłóceń w sygnałach, nie jest niezbędne dla ochrony przed porażeniem.

Pytanie 9

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. konieczności obniżenia napięcia ładowania
B. obniżenia pojemności akumulatora
C. konieczności podwyższenia prądu ładowania
D. wzrostu pojemności akumulatora
Użytkowanie akumulatora żelowego w bardzo niskich temperaturach prowadzi do zmniejszenia jego pojemności ze względu na zwiększony opór wewnętrzny, który występuje w wyniku niskich temperatur. W takich warunkach, chemiczne reakcje zachodzące w elektrolitach są spowolnione, co skutkuje obniżeniem zdolności akumulatora do przekazywania energii. Na przykład, w temperaturach poniżej -10°C, akumulatory żelowe mogą tracić nawet 30% swojej nominalnej pojemności. Z tego powodu, w praktyce, akumulatory te powinny być używane w warunkach, które zapewniają im optymalne temperatury pracy, zazwyczaj w zakresie 0°C do 40°C. W przypadku zastosowań w bardzo zimnym klimacie, warto rozważyć użycie akumulatorów przystosowanych do takich warunków, albo zainwestować w systemy ogrzewania akumulatorów, które pomogą utrzymać odpowiednią temperaturę operacyjną, co jest zgodne z rekomendacjami wielu producentów akumulatorów oraz standardami branżowymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Ile maksymalnie urządzeń można podłączyć do Multiswitcha 9/8 w systemie telewizyjnym?

A. 1 antenę satelitarną z konwerterem quatro i 8 odbiorników
B. 2 anteny satelitarne z konwerterami quatro i 8 odbiorników
C. 1 antenę satelitarną z konwerterem single oraz 8 odbiorników
D. 2 anteny satelitarne z konwerterami single oraz 8 odbiorników
Multiswitch 9/8 jest urządzeniem, które umożliwia rozdzielenie sygnału z anten satelitarnych do wielu odbiorników telewizyjnych. W przypadku wybierania konwerterów, kluczowe jest zrozumienie różnicy między konwerterami typu single oraz quatro. Konwertery single mogą obsługiwać tylko jeden sygnał, co znacznie ogranicza możliwości rozbudowy systemu. Natomiast konwertery quatro, które zawierają cztery wyjścia (LNB low i high dla polaryzacji poziomej oraz LNB low i high dla polaryzacji pionowej), pozwalają na pełne wykorzystanie możliwości multiswitcha. Dlatego podłączenie dwóch anten satelitarnych z konwerterami quatro do multiswitcha oraz 8 odbiorników jest rozwiązaniem optymalnym. Umożliwia to jednoczesne odbieranie różnych programów telewizyjnych przez wiele osób, co jest istotne w każdym nowoczesnym systemie telewizyjnym, a także spełnia standardy branżowe dotyczące instalacji telekomunikacyjnych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Co oznacza skrót DISEqC?

A. adapter sieciowy do przesyłania sygnałów satelitarnych
B. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
C. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
D. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
DISEqC, czyli Digital Satellite Equipment Control, to taki protokół, który pozwala na łatwiejsze zarządzanie urządzeniami satelitarnymi, jak konwertery i przełączniki. Dzięki temu, co wymyślono w DISEqC, możemy zdalnie sterować tymi urządzeniami za pomocą sygnałów przez kabel współosiowy, co naprawdę ułatwia życie przy konfigurowaniu i używaniu systemów satelitarnych. to nie jest może coś super skomplikowanego, ale żeby korzystać z różnych sygnałów z wielu satelitów, no to DISEqC staje się mega przydatne, bo pozwala nam przełączać się między różnymi kanałami telewizyjnymi czy radiowymi bez potrzeby manualnego grzebania w konwerterach. Co ciekawe, ten standard jest dość powszechny w branży telekomunikacyjnej, więc warto go znać, jeśli chce się działać w tej dziedzinie. Poza tym, DISEqC działa razem z innymi standardami jak DVB-S, co oznacza, że można go używać z wieloma różnymi urządzeniami. Znajomość DISEqC i tego, jak to działa, zdecydowanie ułatwia projektowanie i korzystanie z systemów satelitarnych, według mnie to naprawdę ważne.

Pytanie 15

THT to metoda

A. umieszczania kabli w rurkach instalacyjnych
B. realizacji instalacji podtynkowej
C. prowadzenia przewodów przez otwory w ścianach
D. montowania elementów elektronicznych na płytkach drukowanych
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. matrycach LED RGB
B. ogniwach fotowoltaicznych
C. światłowodach
D. matrycach LCD
Nieprawidłowe odpowiedzi wskazują na nieporozumienia związane z zastosowaniem reflektometrów optycznych. W przypadku ogniw fotowoltaicznych, technologia ta nie jest stosowana w diagnostyce, ponieważ ogniwa te opierają się na zjawisku fotoelektrycznym, a ich sprawność ocenia się przy użyciu mierników prądu i napięcia. Matryce LCD i LED RGB to technologie wyświetlania, które nie korzystają z systemu światłowodowego, a ich naprawa i diagnostyka wymagają zupełnie innych narzędzi, takich jak multimetry, testery luminancji czy analizy obrazu. Ponadto, błędne podejście do reflektometrii optycznej może wynikać z mylnego przekonania, że technologia ta jest uniwersalna dla wszelkich typów urządzeń elektronicznych. Reflektometria optyczna jest ściśle związana z systemami światłowodowymi, a jej zastosowanie w innych dziedzinach jest ograniczone. Dlatego istotne jest zrozumienie, że różne technologie wymagają odpowiednich narzędzi diagnostycznych, a zamienianie ich miejscami prowadzi do nieefektywności i wydłużenia czasu napraw.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5

A. C.
B. B.
C. A.
D. D.
Odpowiedź A jest prawidłowa, ponieważ dioda prostownicza, którą wybrano, ma parametry URM=1000 V i IFAV=1 A, co przewyższa wymagania uszkodzonej diody o parametrach URM=200 V i IFAV=1 A. Wybór diody o wyższych parametrach jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, gdzie zawsze należy stosować komponenty z odpowiednim marginesem bezpieczeństwa. W przypadku diod prostowniczych, ważne jest, aby napięcie wsteczne (URM) było wyższe niż maksymalne napięcie, które może wystąpić w obwodzie, aby uniknąć uszkodzenia diody. Ponadto, prąd przewodzenia (IFAV) powinien być co najmniej równy prądowi, który przepływa przez diodę w normalnych warunkach pracy. Wybierając komponenty, warto także zwrócić uwagę na parametry dynamiczne diody, takie jak czas przełączania oraz współczynnik temperatury, co ma znaczenie w aplikacjach, gdzie dioda pracuje w zmiennych warunkach. Selekcja odpowiednich komponentów na podstawie ich specyfikacji jest kluczowa dla niezawodności i trwałości układów elektronicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie jest zadanie konwertera satelitarnego?

A. dopasowywanie reaktancji anteny satelitarnej
B. regulacja napięcia w obwodzie antenowym
C. przekazywanie sygnału z satelity do odbiornika satelitarnego
D. przesyłanie sygnału z odbiornika satelitarnego do satelity
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. kontroli dostępu
B. monitoringu wizyjnego
C. systemu alarmowego w razie włamania i napadu
D. przeciwpożarowego
System kontroli dostępu to rozwiązanie, które ma na celu ograniczenie dostępu osób niepowołanych do określonych obszarów obiektu. Jego główną funkcją jest identyfikacja osób wchodzących oraz monitorowanie ich obecności w strefach o podwyższonej ochronie. Przykładami zastosowania systemów kontroli dostępu są karty magnetyczne, identyfikatory biometryczne oraz kodowe zamki elektroniczne. Te technologie są zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 27001, które skupiają się na zarządzaniu bezpieczeństwem informacji. Implementacja systemu kontroli dostępu zwiększa bezpieczeństwo obiektu, ograniczając ryzyko kradzieży, sabotażu czy nieautoryzowanego dostępu. W praktyce, systemy te często są zintegrowane z innymi systemami zabezpieczeń, tworząc kompleksowe rozwiązania do zarządzania bezpieczeństwem.

Pytanie 25

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest uszkodzony
B. badany obwód jest ciągły
C. w badanym obwodzie znajduje się źródło prądowe
D. w badanym obwodzie znajduje się złącze półprzewodnikowe
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. transmisję informacji cyfrowych za pośrednictwem fal radiowych
C. odbieranie cyfrowej telewizji naziemnej
D. kompresję materiałów audio i wideo
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. światłowodu
B. linii radiowej
C. skrętki nieekranowanej
D. skrętki ekranowanej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. OR
B. EX-OR
C. NOT
D. NAND
Wybór bramek takich jak NOT, EX-OR czy OR nie jest wystarczający do realizacji dowolnej funkcji logicznej. Chociaż każda z tych bramek ma swoje zastosowania, ich ograniczenia sprawiają, że nie mogą one samodzielnie zrealizować wszystkich możliwych operacji logicznych. Na przykład, bramka NOT, która neguje sygnał, jest podstawową jednostką, ale sama w sobie nie pozwala na tworzenie bardziej złożonych funkcji logicznych, takich jak AND czy OR. Z kolei bramka EX-OR, stosowana głównie w operacjach arytmetycznych i porównaniach, również nie jest wystarczająca, aby zrealizować pełny zestaw funkcji logicznych, ponieważ jej działanie opiera się na porównywaniu wartości wejściowych, co czyni ją nieuniwersalną. W przypadku bramki OR, chociaż jest przydatna do realizacji funkcji logicznych, nie jest w stanie zrealizować negacji czy operacji AND bez dodatkowych komponentów. Błędem jest myślenie, że można stworzyć pełen zestaw funkcji logicznych, polegając tylko na tych bramkach. Taki sposób rozumowania prowadzi do ograniczeń w projektowaniu układów cyfrowych, które wymagają elastyczności i wszechstronności. W rzeczywistości, projektanci muszą łączyć różne typy bramek, aby uzyskać pożądane wyniki, co podkreśla znaczenie bramek uniwersalnych, takich jak NAND, w nowoczesnym inżynierii cyfrowej.

Pytanie 34

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. obwodzie szeregowym R, L, C
B. stabilizatorze napięcia o działaniu ciągłym
C. stabilizatorze napięcia o działaniu impulsowym
D. obwodzie równoległym R, L, C
Obwód równoległy R, L, C również posiada swoje unikalne właściwości, jednakże nie jest to koncepcja związana z rezonansami napięć. W obwodzie równoległym, elementy są połączone w taki sposób, że napięcie na każdym z nich jest takie samo, co prowadzi do bardziej złożonego zachowania prądów. Stabilizatory napięcia o działaniu impulsowym i ciągłym to urządzenia, które mają na celu utrzymanie stabilnego napięcia wyjściowego, ale nie są bezpośrednio związane z pojęciem rezonansu napięć. Stabilizacja napięcia wiąże się z innym zjawiskiem, które nie wykorzystuje rezonansem jak kluczowy element działania. Błędne może być postrzeganie tych urządzeń jako związanych z zjawiskiem rezonansu, ponieważ ich funkcje skupiają się bardziej na regulacji napięcia niż na interakcji między elementami obwodu w kontekście rezonansu. To zrozumienie jest kluczowe w inżynierii elektrycznej, ponieważ pozwala na właściwe projektowanie układów, które są odpowiednie do określonych zastosowań, jak np. w systemach zasilania czy komunikacji. Ignorowanie tych różnic prowadzi do nieporozumień w projektowaniu i implementacji systemów elektronicznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. halonowej
C. proszkowej
D. pianowej
Gaśnice proszkowe, śniegowe i halonowe nie są odpowiednie do gaszenia pożarów instalacji elektrycznych. Gaśnice proszkowe, mimo że skuteczne w wielu sytuacjach, mogą nie być wystarczająco bezpieczne w bezpośrednim kontakcie z energią elektryczną. Proszek gaśniczy nie przewodzi prądu, ale w przypadku pożaru elektrycznego, może on nie skutkować pełnym ugaszeniem ognia, a jednocześnie może zanieczyścić urządzenia elektryczne, co prowadzi do ich uszkodzenia. Z kolei gaśnice śniegowe, które wykorzystują dwutlenek węgla, mogą powodować niebezpieczne sytuacje, gdyż ich działanie polega na odcinaniu dostępu powietrza do ognia. Jednak w przypadku niektórych instalacji elektrycznych, może dojść do sytuacji, gdzie nagłe zmiany temperatury mogą spowodować uszkodzenia elementów elektronicznych, co w konsekwencji prowadzi do dalszych zagrożeń. Halon, mimo że jest znany jako skuteczny środek gaśniczy, jest substancją, która również nie jest polecana do gaszenia pożarów związanych z urządzeniami elektrycznymi, głównie ze względów ekologicznych i zdrowotnych. W rzeczywistości, stosowanie halonu zostało w dużej mierze ograniczone przez przepisy międzynarodowe dotyczące ochrony środowiska. W związku z tym, użycie tych trzech typów gaśnic do gaszenia pożarów instalacji elektrycznych jest nie tylko niewłaściwe, ale także może zwiększać ryzyko i konsekwencje pożaru, co jasno podkreślają standardy BHP w kontekście ochrony przeciwpożarowej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dBµV
B. dBmV
C. dBA
D. dB
Stosunek poziomu sygnału do szumu (MER - Modulation Error Ratio) w instalacjach telewizyjnych określany jest w decybelach (dB), które stanowią jednostkę miary używaną do wyrażania stosunku dwóch wartości, w tym przypadku mocy sygnału do mocy szumu. Używanie dB jest standardem w telekomunikacji, ponieważ pozwala na wygodne porównywanie poziomów sygnału w różnych warunkach i systemach. Przykładowo, w instalacjach DVB-T (Digital Video Broadcasting - Terrestrial) poprawny MER jest kluczowy dla jakości odbioru sygnału - wartości powyżej 30 dB są zazwyczaj uznawane za satysfakcjonujące. W praktyce, aby osiągnąć odpowiednią jakość sygnału, technicy często korzystają z mierników sygnału, które wskazują wartości MER w dB, co umożliwia szybkie i efektywne diagnozowanie problemów z odbiorem. Dobre praktyki branżowe zalecają regularne monitorowanie tych wartości, co pozwala na wczesne wykrycie problemów z jakością sygnału i szumem, co jest kluczowe dla zapewnienia stabilnej i wysokiej jakości transmisji telewizyjnej.

Pytanie 39

W projekcie kabel oznakowano jako S/FTP, co to oznacza?

A. skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
B. skrętka ekranowana zarówno folią, jak i siatką
C. skrętka z każdą parą w oddzielnym ekranie z folii
D. skrętka z każdą parą w oddzielnym ekranie z folii, dodatkowo w ekranie z folii
Błędna interpretacja oznaczenia S/FTP często prowadzi do nieporozumień w zakresie konstrukcji i właściwości kabli. Wiele z niepoprawnych odpowiedzi koncentruje się na różnych formach ekranowania, jednak nie odnoszą się one do kluczowego aspektu, jakim jest dodatkowa osłona dla każdej pary. Na przykład, odpowiedzi sugerujące jedynie ekranowanie par w folii lub folię z siatką pomijają istotny fakt, że w przypadku S/FTP ekranowanie powinno być zastosowane zarówno dla poszczególnych par, jak i dla całego kabla. Kable bez odpowiedniego podziału ekranów mogą być bardziej narażone na interferencje, co negatywnie wpływa na jakość sygnału. W praktyce, nieprawidłowe zrozumienie tych zasad prowadzi do zastosowania niewłaściwych kabli w środowiskach, gdzie zakłócenia mogą być znaczące. Kluczowe jest, aby przy wyborze kabli kierować się nie tylko ich typem, ale także zrozumieniem ich konstrukcji i zastosowania w kontekście standardów komunikacyjnych, co podkreśla znaczenie dokładności w stosowaniu terminologii branżowej.

Pytanie 40

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. metodę wykonania układów cyfrowych
B. Główny Układ Mikroprocesorowy
C. Główny Urząd Miar
D. technologię realizacji układów scalonych
Główny Urząd Miar (GUM) jest centralnym organem administracji państwowej w Polsce, odpowiedzialnym za metrologię, czyli naukę o pomiarach. Jego zadania obejmują nie tylko legalizację przyrządów pomiarowych, ale również wydawanie wzorców miar oraz certyfikowanie laboratoriów pomiarowych. Dzięki GUM zapewniona jest zgodność pomiarów z obowiązującymi normami i standardami, co jest kluczowe w wielu dziedzinach, takich jak przemysł, medycyna, a także handel. Przykładowo, przed rozpoczęciem działalności gospodarczej w branży spożywczej, przedsiębiorcy muszą upewnić się, że ich urządzenia ważące są legalizowane przez GUM, aby zapewnić rzetelność transakcji. Działania GUM mają na celu nie tylko ochronę interesów konsumentów, ale także wspieranie rozwoju technologii pomiarowej, co przyczynia się do poprawy jakości produktów i usług na rynku. W kontekście międzynarodowym, GUM współpracuje z organizacjami takimi jak Międzynarodowa Organizacja Miar (OIML), co dodatkowo wzmacnia znaczenie metrologii w Polsce.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły