Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 13:17
  • Data zakończenia: 30 maja 2025 13:45

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oblicz czas obsługi pojazdu o przebiegu 60 tys. km. Wykorzystaj dane z tabeli.

Nazwa operacjiPrzebieg (tys. km)
153060100160
Czas wykonania operacji [min]
Kontrola oświetlenia1515151515
Wymiana płynów-10305050
Kontrola układu hamulcowego1010151520
Zabezpieczenia antykorozyjne nadwozia30--30-
Kontrola układu paliwowego-20-40-
Kontrola zawieszenia1010151525

A. 65 minut
B. 75 minut
C. 165 minut
D. 185 minut
Poprawna odpowiedź to 75 minut, co jest wynikiem dokładnego zsumowania czasów poszczególnych operacji serwisowych wymaganych dla pojazdu o przebiegu 60 tys. km. Kontrola oświetlenia trwa 15 minut, wymiana płynów to 30 minut, a kontrola układu hamulcowego i paliwowego po 15 minut każda. Łącznie daje to 15 + 30 + 15 + 15 = 75 minut. Takie podejście do obliczeń jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładność czasu obsługi pojazdu jest kluczowa dla planowania serwisu. Wiedza na temat poszczególnych operacji serwisowych i ich czasów jest niezbędna dla mechaników, aby efektywnie zarządzać harmonogramem prac oraz informować klientów o przewidywanym czasie naprawy. Zrozumienie tych operacji pozwala również na lepsze prognozowanie kosztów serwisowych, co jest istotne z perspektywy zarządzania flotą pojazdów lub w kontekście indywidualnego właściciela samochodu.

Pytanie 2

Podczas naprawy silnika mechanik zauważył biały dym wydobywający się z rury wydechowej. Co może być tego przyczyną?

A. Zużycie bieżnika opon
B. Uszkodzenie uszczelki pod głowicą
C. Przegrzanie tarcz hamulcowych
D. Niedrożność układu paliwowego
Biały dym wydobywający się z rury wydechowej samochodu jest często symptomem uszkodzenia uszczelki pod głowicą. Uszczelka ta znajduje się między blokiem silnika a głowicą cylindrów i pełni kluczową rolę w zapewnieniu szczelności komory spalania. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynu chłodzącego do komory spalania. Spalanie płynu chłodzącego w cylindrach prowadzi do powstawania białego dymu, który jest widoczny na zewnątrz przez rurę wydechową. Taka sytuacja jest nie tylko oznaką problemu, ale może prowadzić do poważniejszych uszkodzeń silnika, jeśli nie zostanie szybko naprawiona. Dobrą praktyką jest regularne sprawdzanie stanu uszczelki pod głowicą, szczególnie przy objawach takich jak biały dym lub nadmierne zużycie płynu chłodzącego. Wymiana uszczelki jest skomplikowanym zadaniem, które wymaga precyzji i odpowiednich narzędzi, dlatego zazwyczaj powinno być zlecone doświadczonemu mechanikowi. Warto także pamiętać o przestrzeganiu zaleceń producenta dotyczących momentów dokręcania śrub głowicy, co może zapobiec przyszłym problemom.

Pytanie 3

W silniku dwusuwowym o jednym cylindrze w trakcie suwu roboczego wał korbowy obraca się o kąt

A. 180°
B. 90°
C. 360°
D. 270°
W silniku dwusuwowym jednocylindrowym wał korbowy wykonuje obrót o kąt 180° podczas suwu pracy. Oznacza to, że w jednym cyklu pracy silnika zadziewa się zarówno suw ssania, jak i suw wydechu, co jest charakterystyczne dla konstrukcji dwusuwowej. Dzięki temu, jedna pełna rotacja wału korbowego wystarcza do zakończenia cyklu pracy, co zwiększa efektywność działania silnika. Przykładem zastosowania tej zasady mogą być małe silniki stosowane w piłach motorowych czy kosiarkach, gdzie objętość skokowa jest ograniczona, a wysoka moc potrzebna podczas pracy. W praktyce, wykorzystanie silników dwusuwowych pozwala na uproszczenie konstrukcji, co przekłada się na mniejsze gabaryty oraz niższą masę jednostki, a także na mniejsze zużycie paliwa, co ma znaczenie w zastosowaniach mobilnych. Zrozumienie tego zjawiska jest kluczowe dla mechaników, którzy pracują nad naprawą i konserwacją takich silników, aby wiedzieli, jak prawidłowo diagnozować i serwisować te jednostki napędowe.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Mierzenie suwmiarką uniwersalną z noniuszem nie pozwala na osiągnięcie precyzji pomiaru do

A. 0,05 mm
B. 0,01 mm
C. 0,02 mm
D. 0,10 mm
Odpowiedź 0,01 mm jest poprawna, ponieważ suwmiarki uniwersalne noniuszowe są zaprojektowane do pomiarów z precyzją do 0,01 mm. Precyzja ta wynika z konstrukcji noniusza, który pozwala na odczytanie wartości z dokładnością, jakiej nie osiągną inne narzędzia pomiarowe, na przykład linijki. W praktyce suwmiarka noniuszowa jest niezwykle użyteczna w inżynierii i mechanice, ponieważ umożliwia dokładne pomiary średnic, grubości, a także głębokości. Przykładowo, w procesie produkcji elementów maszyn, precyzyjne pomiary są kluczowe dla zapewnienia ich odpowiedniego dopasowania i funkcjonalności. Ponadto, zgodnie z normami ISO 14405, które określają tolerancje wymiarowe, użycie narzędzi pomiarowych o wysokiej precyzji, takich jak suwmiarki noniuszowe, jest zalecane, aby sprostać wymaganiom jakościowym w branży wytwórczej. Używając suwmiarki o dokładności 0,01 mm, inżynierowie mogą pewniej podejmować decyzje o obróbce i inspekcji, co przekłada się na lepszą jakość końcowych produktów.

Pytanie 6

Pasek zębaty w napędzie kół mechanizmu rozrządu?

A. trzeba nasuwać najpierw na koło zębate na wale rozrządu
B. trzeba nasuwać jednocześnie na oba koła zębate
C. trzeba nasuwać najpierw na koło zębate na wale korbowym
D. kolejność nasuwania jest dowolna
Prawidłowe nasuwanie paska zębatego na oba koła zębate jednocześnie jest kluczowym elementem prawidłowego funkcjonowania mechanizmu rozrządu. Taki sposób montażu zapewnia równomierne napięcie paska, co minimalizuje ryzyko poślizgu lub niewłaściwego ustawienia momentów obrotowych. W przypadku silników spalinowych, gdzie precyzyjna synchronizacja między wałem korbowym a wałem rozrządu jest niezbędna do prawidłowego działania silnika, każde niedopasowanie może prowadzić do poważnych uszkodzeń. Przykładowo, przy niewłaściwym nasuwaniu paska, istnieje ryzyko kolizji między zaworami a tłokami, co może skutkować kosztownymi naprawami. W praktyce zastosowanie narzędzi takich jak ustalacze rozrządu oraz przestrzeganie instrukcji producenta w kontekście momentów dokręcania i sekwencji montażu jest niezwykle ważne, a zalecane jest również wykonywanie kontroli po złożeniu, aby upewnić się, że wszystkie elementy są prawidłowo zamontowane i działają w pełnej synchronizacji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby dokręcić nakrętki lub śruby kół w pojeździe z odpowiednim momentem, należy zastosować klucz

A. płaski.
B. do kół.
C. dynamometryczny.
D. oczko.
Klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania nakrętek i śrub z precyzyjnie określonym momentem obrotowym, co jest kluczowe w kontekście kół samochodowych. Właściwy moment obrotowy zapewnia, że elementy mocujące są odpowiednio dokręcone, co zapobiega ich poluzowywaniu się w trakcie jazdy, a także minimalizuje ryzyko uszkodzeń gwintów. Standardy producentów pojazdów, takie jak ISO 6789, określają wymagania dotyczące narzędzi pomiarowych, w tym kluczy dynamometrycznych. Na przykład, dla wielu modeli samochodów moment dokręcania śrub kół wynosi od 90 do 120 Nm, w zależności od specyfikacji producenta. Użycie klucza dynamometrycznego pozwala na dokładne osiągnięcie tych wartości, co jest niezbędne dla bezpieczeństwa jazdy. Przykładem dobrych praktyk jest dokręcanie śrub w sekwencji krzyżowej, co równomiernie rozkłada siły działające na felgę. Dodatkowo, stosowanie klucza dynamometrycznego w regularnych przeglądach technicznych pojazdu zapewnia dłuższą żywotność elementów zawieszenia oraz opon.

Pytanie 9

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. równoległość
B. płaskość
C. prostopadłość
D. szczelność
Płaskość kadłuba i głowicy silnika jest kluczowym parametrem, który wpływa na ich funkcjonowanie oraz trwałość. Liniał krawędziowy oraz szczelinomierz to narzędzia pomiarowe, które pozwalają na precyzyjne mierzenie i weryfikację płaskości powierzchni. W praktyce, jeśli powierzchnie te nie są płaskie, może to prowadzić do nieprawidłowego montażu komponentów, co z kolei wpływa na osiągi silnika oraz jego żywotność. Na przykład, nieprawidłowa płaskość głowicy silnika może prowadzić do problemów z uszczelnieniem, co skutkuje wyciekami płynów eksploatacyjnych. Zgodnie z normami branżowymi, takimi jak ISO 1101 dotyczące geometrii wyrobów, weryfikacja płaskości jest standardową procedurą w procesach produkcji oraz konserwacji silników. Dlatego regularne kontrole płaskości za pomocą tych narzędzi są niezbędne dla zapewnienia jakości i niezawodności silników.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Pojazdem, który nie jest autem osobowym, jest

A. ciągnik drogowy
B. ciągnik rolniczy
C. motocykl
D. autobus
Ciągnik rolniczy nie jest klasyfikowany jako pojazd samochodowy z uwagi na jego specyfikę konstrukcyjną i przeznaczenie. Pojazdy samochodowe to te, które są przeznaczone głównie do transportu osób i ładunków po drogach publicznych. Ciągniki rolnicze, choć mogą poruszać się po drogach, są projektowane do pracy w rolnictwie, gdzie wykonują zadania takie jak orka, siew czy transport materiałów rolniczych. Ich konstrukcja i wyposażenie różnią się od standardowych pojazdów osobowych czy ciężarowych, co sprawia, że nie spełniają definicji pojazdu samochodowego. W praktyce ciągniki rolnicze są często używane w gospodarstwach rolnych i na terenach wiejskich, gdzie ich unikalne właściwości i moc są niezbędne do efektywnego wykonywania prac agrotechnicznych. Ważne jest, aby rozumieć różnice między różnymi kategoriami pojazdów, ponieważ wpływają one na przepisy dotyczące rejestracji, ubezpieczenia oraz przepisów drogowych. Przyjmuje się, że zgodnie z europejskimi standardami, pojazdy samochodowe powinny mieć określone parametry dotyczące prędkości, emisji spalin oraz komfortu podróży, które nie są typowe dla ciągników rolniczych.

Pytanie 12

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. SOHC
B. OHV
C. OHC
D. DOHC
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Pierwsza cyfra w oznaczeniu "9.8" widocznym na śrubach wskazuje

A. klasę wytrzymałości, która definiuje stosunek granicy plastyczności do wytrzymałości wynoszący 90 N/mm2
B. kod producenta
C. moment dokręcenia 90 Nm
D. klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2
Odpowiedź wskazująca na klasę wytrzymałości, która określa wytrzymałość na rozciąganie równą 900 N/mm2, jest poprawna z dwóch powodów. Po pierwsze, oznaczenie '9.8' w kontekście śrub odnosi się do klasy wytrzymałości, która w systemie metrycznym jest często reprezentowana przez pierwszą cyfrę. Druga cyfra, w tym przypadku '8', wskazuje na dodatkowe właściwości materiału. Klasa wytrzymałości 9.8 odpowiada śrubom, które osiągają wytrzymałość na rozciąganie równą 900 N/mm2 oraz granicę plastyczności na poziomie co najmniej 80% tej wartości, czyli 800 N/mm2. Takie oznaczenie jest zgodne z międzynarodowymi standardami ISO, które regulują klasyfikację materiałów. W praktyce, śruby tej klasy są stosowane w przemyśle motoryzacyjnym oraz budowlanym, gdzie wymagana jest znaczna wytrzymałość na obciążenia dynamiczne i statyczne. Zrozumienie tych klasyfikacji jest kluczowe dla inżynierów i techników, aby dobierać odpowiednie komponenty w zależności od zastosowania i wymagań konstrukcyjnych.

Pytanie 16

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. średnicówką mikrometryczną
B. mikrometrem
C. przymiarem kreskowym
D. suwmiarką modułową
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 17

Reparacja uszkodzonego gumowego elementu zawieszenia systemu wydechowego przeprowadzana jest poprzez jego

A. spajanie
B. skręcanie
C. wymianę
D. klejenie
Wymiana uszkodzonego gumowego elementu zawieszenia układu wydechowego jest kluczowym działaniem w celu zapewnienia prawidłowej funkcjonalności całego systemu. Elementy zawieszenia, takie jak poduszki gumowe, mają za zadanie tłumić drgania oraz zapewniać odpowiednią elastyczność, co jest istotne dla komfortu jazdy oraz redukcji hałasu. Gdy gumowy element ulegnie uszkodzeniu, jego właściwości tłumiące mogą zostać znacznie osłabione, co prowadzi do większego zużycia innych części układu wydechowego oraz obniżenia komfortu podróży. Wymiana jest zalecana w takich przypadkach, ponieważ naprawa, jak spajanie czy klejenie, nie zapewni odpowiedniej wytrzymałości i elastyczności, które są niezbędne w tych elementach. Standardy branżowe, takie jak normy ISO dotyczące jakości i bezpieczeństwa motoryzacyjnego, podkreślają znaczenie stosowania oryginalnych lub wysokiej jakości zamienników przy wymianie części. Przykładem może być wymiana poduszki tłumiącej, która po nowym montażu przywraca prawidłowe funkcjonowanie układu, obniżając drgania i hałas, co jest niezbędne dla bezpieczeństwa i komfortu kierowcy oraz pasażerów.

Pytanie 18

W trakcie wymiany wtryskiwaczy konieczne jest również zastąpienie

A. przewodów paliwowych wysokiego ciśnienia
B. przewodów paliwowych powrotnych
C. spinek zabezpieczających przewody powrotne
D. pierścieni uszczelniających wtryskiwacze
Wymiana pierścieni uszczelniających wtryskiwaczy jest kluczowym elementem podczas serwisowania układu wtryskowego. Te niewielkie komponenty mają za zadanie zapewnienie szczelności połączenia pomiędzy wtryskiwaczem a głowicą cylindrów, co jest niezwykle istotne dla prawidłowego funkcjonowania silnika. Uszkodzone lub zużyte pierścienie mogą prowadzić do wycieków paliwa, co w efekcie może powodować nieefektywne spalanie, zwiększenie emisji spalin, a także uszkodzenia silnika. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie i wymianę tych uszczelek podczas serwisowania wtryskiwaczy, aby zapewnić ich prawidłowe działanie oraz długowieczność całego układu. Ważne jest również, aby używać wysokiej jakości zamienników, które odpowiadają specyfikacjom producenta, co zminimalizuje ryzyko awarii i zapewni optymalne parametry pracy silnika. Przykładowo, podczas wymiany wtryskiwaczy w silniku Diesla, nieprzestrzeganie zaleceń dotyczących wymiany pierścieni uszczelniających może prowadzić do kosztownych napraw związanych z uszkodzeniem pompy wtryskowej lub systemu wtryskowego.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta pochylenia sworznia zwrotnicy
B. pochylenia koła jezdnego
C. kąta wyprzedzenia sworznia zwrotnicy
D. zbieżności całkowitej
Zauważyłem, że wspomniałeś o różnych parametrach związanych z układem jezdnym, ale nie wszystkie one są powiązane z tym, co mierzymy na płycie pomiarowej. Pochylenie koła to coś innego, chodzi głównie o kąt w stosunku do pionu, ale to nie to, co bezpośrednio sprawdzamy na płycie. Tak samo kąt wyprzedzenia czy kąt pochylenia sworznia zwrotnicy to ważne rzeczy, ale wymagają innych metod pomiarowych. Często ludzie mylą te różne parametry i potem mogą źle interpretować wyniki. Dobrze jest zrozumieć, czym różnią się te pojęcia, bo to pomoże lepiej zadbać o auto.

Pytanie 22

Kiedy wał korbowy silnika czterosuwowego obraca się z prędkością 4000 obr/min, to prędkość obrotowa wałka rozrządu wynosi jaką wartość?

A. 1000 obr/min
B. 2000 obr/min
C. 8000 obr/min
D. 4000 obr/min
W silniku 4-suwowym wał korbowy wykonuje dwa obroty w czasie, gdy wałek rozrządu wykonuje jeden obrót. Oznacza to, że prędkość obrotowa wałka rozrządu jest zawsze o połowę mniejsza od prędkości obrotowej wału korbowego. W przypadku prędkości 4000 obr/min wału korbowego, możemy obliczyć prędkość wałka rozrządu dzieląc tę wartość przez dwa, co daje 2000 obr/min. To zjawisko jest kluczowe dla prawidłowego działania silnika, ponieważ wałek rozrządu kontroluje otwieranie i zamykanie zaworów, co jest niezbędne do zapewnienia odpowiedniego cyklu pracy silnika. Zrozumienie tej zależności jest istotne dla inżynierów mechaników oraz techników zajmujących się serwisowaniem silników, aby zapewnić optymalną pracę jednostek napędowych oraz ich wydajność. Znajomość tego aspektu jest również istotna przy projektowaniu układów rozrządu, które muszą być precyzyjnie dopasowane do charakterystyki silnika.

Pytanie 23

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. sprężyn zaworowych.
B. sprężyn szczęk hamulcowych.
C. sprężyn układu zawieszenia.
D. łożysk.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 24

Badanie mechanicznego systemu hamulcowego obejmuje inspekcję

A. cylinderka hamulcowego
B. pompy hamulcowej
C. dźwigni hamulca postojowego
D. regulatora siły hamowania
Dźwignia hamulca postojowego jest kluczowym elementem mechanicznego układu hamulcowego, który umożliwia zablokowanie pojazdu w miejscu, gdy nie jest on w ruchu. Jej regularna diagnostyka jest istotna, aby zapewnić bezpieczeństwo użytkowników dróg. W przypadku nieprawidłowego działania, dźwignia może nie skutecznie blokować pojazdu, co stwarza poważne zagrożenie. Przykładowo, w autach osobowych najczęściej spotykaną awarią jest uszkodzenie linki hamulca postojowego, co można zweryfikować poprzez sprawdzenie oporu podczas podciągania dźwigni. Standardy branżowe, takie jak normy ISO dotyczące układów hamulcowych, podkreślają konieczność regularnych przeglądów i testów systemu hamulcowego, aby zapewnić jego optymalną wydajność. Właściwa diagnostyka dźwigni hamulca postojowego powinna obejmować nie tylko jej mechaniczne sprawdzenie, ale także analizę zużycia materiałów oraz systemu sterującego, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 25

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. system monitorowania ciśnienia w oponach kół
B. układ przeciwpoślizgowy
C. diagnostyczne złącze komunikacyjne
D. system sterowania aktywnym zawieszeniem
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 26

Trudności w włączaniu biegów mogą być spowodowane

A. nadmiernym skokiem jałowym pedału sprzęgła
B. zużyciem zębatek w skrzyni biegów
C. zużyciem łożysk w skrzyni biegów
D. niewystarczającym skokiem jałowym pedału sprzęgła
Zbyt duży skok jałowy pedału sprzęgła może rzeczywiście prowadzić do trudności w włączaniu biegów. Pedał sprzęgła pełni kluczową rolę w połączeniu pomiędzy silnikiem a skrzynią biegów. Gdy skok jałowy jest nadmierny, oznacza to, że pedał sprzęgła nie osiąga odpowiedniego punktu, w którym sprzęgło całkowicie rozłącza napęd. W praktyce skutkuje to tym, że kierowca nie może dokładnie i płynnie włączać biegów, co może prowadzić do uszkodzeń mechanicznych, a w dłuższej perspektywie także do problemów z samą skrzynią biegów. Standardowe ustawienia skoku jałowego powinny być zgodne z zaleceniami producenta pojazdu, co zapewnia optymalne działanie wszystkich jego komponentów. W przypadku problemów z włączaniem biegów, warto skontrolować ustawienia skoku jałowego, a także przeprowadzić regulację sprzęgła, co powinno przywrócić prawidłowe funkcjonowanie układu napędowego.

Pytanie 27

Podczas montażu suchych tulei cylindrowych w korpusie silnika powinno się

A. umieścić uszczelki pomiędzy dolną częścią tulei a korpusem
B. ostrożnie wbijać tuleję gumowym młotkiem
C. nasmarować olejem miejsca styku tulei z korpusem
D. wciskać tuleję przy użyciu prasy lub specjalnego narzędzia
Wkładanie suchych tulei cylindrowych w kadłub silnika to proces wymagający precyzji i zastosowania odpowiednich narzędzi. Użycie prasy lub specjalnego przyrządu do wciskania tulei zapewnia równomierne i kontrolowane umiejscowienie tulei w kadłubie. Tego typu narzędzia pozwalają uniknąć deformacji lub uszkodzeń tulei, które mogą wystąpić przy użyciu młotka, zwłaszcza jeśli siła uderzenia nie jest równomierna. W praktyce, prawidłowe umiejscowienie tulei jest kluczowe dla osiągnięcia odpowiednich parametrów pracy silnika, takich jak ciśnienie i szczelność cylindrów. Dodatkowo, takie podejście minimalizuje ryzyko powstania pęknięć materiału oraz poprawia wydajność i trwałość silnika. W branży motoryzacyjnej oraz przemysłowej obowiązują standardy jakości, które zalecają stosowanie profesjonalnych narzędzi w procesach montażowych, co czyni tę metodę najlepszym wyborem.

Pytanie 28

Jasnobłękitny kolor spalin wydobywających się z układu wydechowego wskazuje

A. na zbyt duży luz między tłokiem a cylindrem
B. na zbyt niską temperaturę pracy silnika
C. na nieszczelność przylgni zaworowych
D. na przedostawanie się cieczy chłodzącej do cylindrów
Jasnobłękitna barwa spalin wydobywająca się z układu wydechowego jest często oznaką zbyt dużego luzu między tłokiem a cylindrem. W takich sytuacjach, olej silnikowy może dostawać się do komory spalania, co prowadzi do jego spalania i generuje charakterystyczny jasnobłękitny dym. W przypadku silników spalinowych, odpowiednie luzowanie tłoków jest kluczowe dla ich prawidłowego działania oraz efektywności energetycznej. Dobrą praktyką jest regularne sprawdzanie stanu tłoków oraz cylindrów w ramach konserwacji pojazdu, co pozwala na wczesne wykrycie i eliminację problemów. Należy również pamiętać, że nadmierny luz może prowadzić do większego zużycia paliwa, a także zwiększenia emisji spalin, co jest istotnym problemem w kontekście ochrony środowiska. Standardy dotyczące emisji spalin, takie jak Euro 6, wymagają od producentów utrzymania odpowiednich parametrów, co stawia dodatkowe wymagania przed inżynierami zajmującymi się projektowaniem silników.

Pytanie 29

Luz zaworów w silniku powinno się kontrolować

A. w temperaturze silnika według wskazówek producenta
B. po demontażu głowicy silnika
C. w temperaturze silnika wynoszącej 95°C
D. w temperaturze silnika 70°C
Istnieje szereg nieporozumień dotyczących momentu przeprowadzania kontroli luzu zaworów, które mogą prowadzić do błędnych praktyk mechanicznych. Odpowiedź sugerująca, że kontrolę należy przeprowadzić przy temperaturze 95°C, nie uwzględnia indywidualnych specyfikacji producentów, co może skutkować nieprawidłowym ustawieniem luzu. Każdy producent silników ma własne wytyczne dotyczące optymalnej temperatury, co jest kluczowe dla uzyskania dokładnych pomiarów. Przykładowo, wysokotemperaturowe pomiary mogą prowadzić do zbyt wąskiego luzu, co z kolei może spowodować nadmierne zużycie lub uszkodzenie elementów silnika. W przypadku sugerowania demontażu głowicy silnika, warto podkreślić, że taka operacja jest skrajnie niepraktyczna i czasochłonna. Kontrolę luzu zaworów przeprowadza się w warunkach, które nie wymagają rozkładania silnika, a jedynie dostępu do zaworów. Zatem podjęcie decyzji o demontażu głowicy jest dużym błędem w ocenie sytuacji. Ostatnia z opcji, kontrola przy temperaturze 70°C, również nie jest standardem, ponieważ zbyt niska temperatura może prowadzić do fałszywie wysokich luzów. Właściwe podejście do tego procesu wymaga znajomości specyfikacji i praktyk inżynieryjnych oraz ścisłego trzymania się zaleceń producenta, aby zapewnić długowieczność i prawidłowe funkcjonowanie silnika.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przekładnia ślimakowo-kulkowa wykorzystywana jest w systemie

A. kierowniczym
B. zawieszenia
C. napędowym
D. hamulcowym
Przekładnia ślimakowo-kulkowa jest szczególnie wykorzystywana w układach kierowniczych ze względu na swoją zdolność do precyzyjnego przenoszenia ruchu oraz zapewnienia odpowiedniego momentu obrotowego. Działa na zasadzie ślimaka i kulki, co pozwala na płynne przejście ruchu obrotowego na liniowy. Taki mechanizm jest kluczowy w systemach kierowniczych, gdzie precyzja i kontrola są niezbędne dla bezpieczeństwa pojazdu. Przykładem zastosowania przekładni ślimakowo-kulkowej jest układ kierowniczy w samochodach sportowych, gdzie wymagana jest szybsza i bardziej responsywna reakcja na ruchy kierownicy. Ponadto, przekładnie te są często wykorzystywane w nowoczesnych układach kierowniczych z napędem elektrycznym, co zwiększa ich znaczenie w kontekście współczesnych technologii motoryzacyjnych. W branży motoryzacyjnej standardem jest dążenie do minimalizacji luzów w układzie kierowniczym, a przekładnia ślimakowo-kulkowa, dzięki swojej konstrukcji, efektywnie spełnia te wymagania.

Pytanie 32

Jazda testowa przeprowadzona na odcinku drogi kamiennej umożliwi przede wszystkim

A. sprawdzenie działania układu rozruchu silnika.
B. określenie siły hamowania pojazdu.
C. określenie stanu technicznego systemu zawieszenia pojazdu.
D. ustalenie czasu ogrzewania się płynu chłodzącego silnik.
Jazda po drodze brukowanej to naprawdę ważny test dla zawieszenia samochodu. Ta nawierzchnia, z wszystkimi swoimi dołkami i drganiami, zmusza układ zawieszenia do działania w trudnych warunkach, co pomaga ocenić, jak to wszystko działa. Dla aut osobowych zawieszenie jest kluczowe, bo wpływa zarówno na komfort jazdy, jak i bezpieczeństwo. Gdy jedziesz po bruku, możesz zobaczyć, jak zawieszenie reaguje na różne nierówności – czy amortyzatory są ok, czy nie słychać dziwnych dźwięków, czy auto nie zjeżdża z toru. Fajnie jest pomyśleć, że na podstawie takich testów można dobrać lepsze amortyzatory czy sprężyny, co zwiększy bezpieczeństwo i komfort podróżowania. W motoryzacji zdarza się, że takie testy przeprowadza się regularnie, żeby mieć pewność, że wszystko działa tak, jak powinno i nie ma ryzyka dla kierowcy i pasażerów.

Pytanie 33

Oznaczenie symbolem dla systemu monitorowania ciśnienia w oponach pojazdu jest

A. BAS
B. TPMS
C. ACC
D. SOHC
System TPMS (Tire Pressure Monitoring System) to nowoczesne rozwiązanie stosowane w pojazdach, które ma na celu monitorowanie ciśnienia w oponach w czasie rzeczywistym. Prawidłowe ciśnienie w oponach jest kluczowe dla bezpieczeństwa, wydajności paliwowej oraz komfortu jazdy. TPMS informuje kierowcę o niskim ciśnieniu w oponach, co pozwala na szybką reakcję i uniknięcie potencjalnych awarii, takich jak uszkodzenie opony czy zwiększone zużycie paliwa. W praktyce, TPMS może być podzielony na dwa główne typy: systemy bezpośrednie, które wykorzystują czujniki ciśnienia zamontowane w oponach, oraz systemy pośrednie, które monitorują prędkość obrotową kół, aby ocenić różnice ciśnienia. Obecnie w wielu krajach stosowanie TPMS jest obowiązkowe w nowych pojazdach, co podkreśla znaczenie tego systemu w poprawie bezpieczeństwa na drogach. W związku z tym kierowcy powinni regularnie sprawdzać działanie systemu TPMS oraz dbać o prawidłowe ciśnienie w oponach, co jest zgodne z zaleceniami producentów pojazdów oraz standardami bezpieczeństwa.

Pytanie 34

Aby zmierzyć spadek napięcia przy uruchamianiu na akumulatorze, należy zastosować woltomierz o zakresie pomiarowym

A. 20 VDC
B. 2 VDC
C. 20 VAC
D. 2 VAC
Wybór złego zakresu na woltomierzu to spory błąd, który może doprowadzić do złych odczytów i fałszywych wniosków. Używając zakresu 2 VDC, nie będziesz w stanie dokładnie zmierzyć spadków napięcia podczas rozruchu akumulatora, bo te mogą być znacznie wyższe. Zresztą, 2 VAC to pomiar napięcia zmiennego, co w ogóle się nie zgadza w kontekście akumulatora, który działa na napięciu stałym. Nawet woltomierz ustawiony na 20 VAC nie zadziała, bo nie mierzy napięcia stałego. Przy akumulatorach ważne jest, żeby mieć sprzęt, który pasuje do rodzaju napięcia, które chcemy zmierzyć. Często ludzie myślą, że mogą mierzyć napięcie akumulatora w dowolnym zakresie, a to prowadzi do nieprawidłowych wyników. W praktyce, żeby zmierzyć napięcie stałe, trzeba ustawić woltomierz odpowiednio, bo złe zakresy mogą nam utrudnić diagnozowanie problemów. Dlatego ważne, żeby znać różnice między napięciem stałym a zmiennym i dobierać narzędzia do pomiarów, co jest kluczowe, gdy pracujemy z elektryką w autach.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. rodzaju użytego płynu hamulcowego
B. siły hamowania
C. rozkładu siły hamowanej na każde z kół
D. skuteczności hamulców
Ocena siły hamowania po wymianie klocków hamulcowych wydaje się być logicznym podejściem, ale nie jest to kluczowy czynnik, który należy zbadać w trakcie jazdy próbnej. Siła hamowania odnosi się do rzeczywistej mocy, jaką generują hamulce, lecz sama w sobie nie dostarcza informacji o ich skuteczności. W praktyce, siła hamowania nie jest wystarczająca do oceny, ponieważ może być zaniżona przez inne czynniki, takie jak zużycie tarcz hamulcowych czy stan płynu hamulcowego. Z kolei określenie rodzaju zastosowanego płynu hamulcowego również nie ma bezpośredniego wpływu na skuteczność hamulców w kontekście jazdy próbnej, ponieważ nie zmienia to fizycznych właściwości klocków ani ich efektywności. Warto pamiętać, że płyn hamulcowy ma swoje specyfikacje, ale zmiana płynu nie jest celem jazdy próbnej po wymianie klocków. Kolejną kwestią jest rozkład siły hamowania na poszczególne koła, co również nie jest bezpośrednio związane z oceną efektów wymiany klocków. Nierównomierny rozkład siły hamowania może wskazywać na inne problemy, takie jak zużycie hamulców lub niesprawność układu, ale sama jazda próbna w kontekście nowych klocków nie zaadresuje tego problemu. Właściwym podejściem jest ocena skuteczności hamulców jako całości, co uwzględnia wszystkie te aspekty i pozwala na właściwą diagnostykę ich stanu i wydajności.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Wartość luzu zmierzonego w zamku pierścienia tłokowego umieszczonego w cylindrze silnika po naprawie wynosi 0,6 mm. Producent wskazuje, że luz ten powinien mieścić się w zakresie od 0,25 do 0,40 mm. Ustalony wynik wskazuje, że

A. luz mieści się w podanych zaleceniach
B. luz jest zbyt mały
C. luz jest zbyt duży
D. luz zamka pierścienia powinien być powiększony
To, że luz jest za duży, to rzeczywiście dobra ocena. Zmierzony luz 0,6 mm wyraźnie przekracza to, co zaleca producent, który mówi, że powinno być od 0,25 mm do 0,40 mm. Wiesz, że luz w zamku pierścienia tłokowego jest mega ważny dla tego, jak silnik działa? Zbyt duży luz może sprawić, że pierścień się nie osadzi dobrze, co prowadzi do utraty kompresji i do większego zużycia paliwa. No i jeszcze pierścień może się szybciej zużywać. W silnikach spalinowych często korzysta się z różnych metod pomiaru luzu, takich jak feeler gauge, żeby wszystko pasowało idealnie. Różne firmy w branży samochodowej zalecają, żeby regularnie sprawdzać te luzki, żeby silnik działał jak najlepiej i długo. Zbyt duży luz to także wibracje i hałas, co psuje komfort jazdy i może zniszczyć inne elementy silnika. Dlatego przed uruchomieniem silnika trzeba sprawdzić, czy wszystko jest w normie.

Pytanie 40

Jakie ciśnienie oleju w systemie smarowania silnika jest prawidłowe, gdy obroty mieszczą się w zakresie od 2000 do 3000 obr/min?

A. 4,0 MPa
B. 0,1 MPa
C. 2,0 MPa
D. 0,4 MPa
Chociaż wybór 2,0 MPa, 4,0 MPa lub 0,1 MPa może wydawać się logiczny, każda z tych wartości jest niewłaściwa w kontekście ciśnienia oleju w silniku w przedziale prędkości obrotowych 2000-3000 obr/min. Wybór 2,0 MPa przekracza górną granicę optymalnego ciśnienia, co może prowadzić do niekorzystnych warunków pracy pompy olejowej. Zbyt wysokie ciśnienie oleju może wynikać z zatorów w układzie smarowania lub niewłaściwego doboru oleju, co może skutkować uszkodzeniami uszczelek czy przewodów olejowych, a także prowadzić do nadmiernego zużycia pompy. Podobnie, 4,0 MPa jest wartością ekstremalnie wysoką, która w praktyce może powodować uszkodzenia mechaniczne w układzie smarowania. Zbyt niskie ciśnienie, jak w przypadku 0,1 MPa, jest równie niebezpieczne, ponieważ nie zapewnia odpowiedniego smarowania elementów silnika, co może prowadzić do ich przegrzania lub zatarcia. Przedziały ciśnienia oleju są ściśle określane w specyfikacjach technicznych silników, a ich ignorowanie może prowadzić do poważnych awarii. Wartości te można znaleźć w dokumentacji producentów, co podkreśla znaczenie znajomości tych norm dla każdego mechanika i właściciela pojazdu.